MONODROMY ZETA-FUNCTION OF A POLYNOMIAL ON A COMPLETE INTERSECTION, AND NEWTON POLYHEDRA

G. G. GUSEV

Abstract. For a generic (polynomial) one-parameter deformation of a complete intersection, its monodromy zeta-function is defined. Explicit formulas for this zeta-function in terms of the corresponding Newton polyhedra are obtained in the case where the deformation is nondegenerate with respect to its Newton polyhedra. This result is employed to obtain a formula for the monodromy zeta-function at the origin of a polynomial on a complete intersection, which is an analog of the Libgober–Sperber theorem.

§1. Introduction

Let \(F_0, F_1, \ldots, F_k \) be a set of functions on \(\mathbb{C}^n \) defined as polynomials in \(n \) complex variables \(z = (z_1, z_2, \ldots, z_n) \). Consider the family of varieties

\[V_c = \{ z \in \mathbb{C}^n \mid F_0(z) = c, F_i(z) = 0, \ i = 1, 2, \ldots, k \}, \]

where \(c \in \mathbb{C} \) is a complex parameter. This family provides a fibration over the punctured neighborhood of the origin in the parameter space with the fiber \(V_c \) over a point \(c \) (see below). In this paper we obtain a formula for the monodromy zeta-function of the above fibration in terms of the Newton polyhedra of the polynomials \(F_0, F_1, \ldots, F_k \). This result can be viewed as a global analog of [3, Theorem 2.2] and an analog of [5, Theorem 5.5], where the monodromy zeta-function at infinity is calculated. In §2 we consider the case where \(F_0(z) = z^n \), so that the fibration corresponds to a polynomial deformation of a set of polynomials in \(n-1 \) variables \(z_1, z_2, \ldots, z_{n-1} \). The general case is deduced from this special one in §3. The study is partially motivated by the results of D. Siersma and M. Tibar (6).

Let \(A = \mathbb{C}^n \setminus Y \) be the complement to an arbitrary algebraic hypersurface \(Y \subset \mathbb{C}^n \). Let \(Z = \{ z \in \mathbb{C}^n \mid F_i = 0, \ i = 1, 2, \ldots, k \} \cap A \). We denote by \(\mathbb{D}_r \) and \(\mathbb{D}_r^* \) the closed disk in \(\mathbb{C} \) of radius \(r \) centered at the origin and the punctured disk \(\mathbb{D}_r^* := \mathbb{D}_r \setminus \{0\} \), respectively. From [11, Theorem 5.1] it follows that there exists a finite set \(B \subset \mathbb{C} \) such that the restriction \(F = F_0|_Z \) of the function \(F_0 \) is a topological fibration over \(\mathbb{C} \setminus B \). In particular, the map \(F|_{F^{-1}(\mathbb{D}_r^*)} (F|_{F^{-1}(\mathbb{C}\setminus\mathbb{D}_d)}) \) is a fibration for any sufficiently small \(\delta \) (for any sufficiently large \(d \)). Consider the restriction of this fibration to the cycle \(\{ c \cdot \exp(2\pi it) \mid t \in [0, 1] \} \), where \(|c| \) is sufficiently small (large, respectively). Consider the monodromy transformation \(h_{F,0} : Z_c \to Z_c \) (\(h_{F,\infty} : Z_c \to Z_c \)) of the fiber \(Z_c \) over the point \(c \) of the resulting fibration.

2010 Mathematics Subject Classification. Primary 14Q15, 14D05; Secondary 58K15, 58K10, 32S20.

Key words and phrases. Deformations of polynomials, monodromy zeta-function, Newton polyhedron.

Partially supported by the grants RFBR-10-01-00678, RFBR-08-01-00110-a, RFBR and SU HSE 09-01-12185-off-m, and NOSH-8462.2010.1.

511
The *zeta-function* of an arbitrary transformation \(h : X \to X \) of a topological space \(X \) is the rational function
\[
\zeta_h(t) = \prod_{i \geq 0} \left(\det(\text{Id} - th_i |_{H^i_c(X;\mathbb{C})}) \right)^{(-1)^i},
\]
where \(H^i_c(X;\mathbb{C}) \) denotes the \(i \)th homology group with closed support.

Definition 1. The monodromy zeta-function (at the origin) of the function \(F_0 \) on the set \(Z \) is the zeta-function of the transformation \(h_{F,0}, \zeta_{F,0}(t) := \zeta_{h_{F,0}}(t) \). The monodromy zeta-function at infinity of the function \(F_0 \) on the set \(Z \) is the zeta-function of the transformation \(h_{F,\infty}, \zeta_{F,\infty}(t) := \zeta_{h_{F,\infty}}(t) \).

Let \(S_1, S_2, \ldots, S_n \subset \mathbb{R}^n \) be a collection of convex bodies. We denote by \(S_1 S_2 \ldots S_n \) their Minkovski mixed volume (see, e.g., [8]). If \(S_j = \emptyset \) for some \(j \), we put \(S_1 S_2 \ldots S_n = 0 \). For a homogeneous polynomial \(T(x_1, x_2, \ldots, x_k) = \sum \alpha_{i_1i_2 \ldots i_n} x_{i_1} x_{i_2} \ldots x_{i_n} \) of degree \(n \), we define \(T(S_1, S_2, \ldots, S_k) \) as \(\sum \alpha_{i_1i_2 \ldots i_n} S_{i_1} S_{i_2} \ldots S_{i_n} \).

Let \(S_1, S_2, \ldots, S_l \subset L \subset \mathbb{R}^n \) be a collection of convex bodies that lie in an \(l \)-dimensional rational affine subspace \(L \). We define \(S_1 S_2 \ldots S_l \) as the \(l \)-dimensional integer mixed volume, that is, the Minkovskian mixed volume in the affine subspace \(L \) normalized in such way that the \(l \)-dimensional volume of the minimal parallelepiped with integer vertices equals one.

In this paper we obtain a formula for the zeta-function \(\zeta_{F_0,V}(t) \), \(V = \{ z \in \mathbb{C}^n \mid F_1(z) = F_2(z) = \cdots = F_k(z) = 0 \} \) for a generic set of polynomials \(F_0, F_1, \ldots, F_k \) in terms of the integer mixed volumes of the faces of their Newton polyhedra \(\Delta_0, \Delta_1, \ldots, \Delta_k \).

§2. Zeta-function of a polynomial deformation

In this section we study the case where \(F_0(z) = z_n \). Consider the set of deformations \(f_{i,\sigma}(z_1, \ldots, z_{n-1}) := F_i(z_1, \ldots, z_{n-1}, \sigma) \) of the functions \(f_i := f_{i,0} \) on the set \(\mathbb{C}^{n-1}, \ i = 1, 2, \ldots, k, \) where \(\sigma \in \mathbb{C} \) is the deformation parameter. The fiber over the point \(c \) of the vibration provided by the function \(F_0 \) on the set \(\{ F_1 = F_2 = \cdots = F_k = 0 \} \) is \(\{ f_{1,c} = f_{2,c} = \cdots = f_{k,c} = 0 \} \times \{ c \} \). This fact motivates the following definition.

Definition 2. Consider \(V = \{ z \in \mathbb{C}^n \mid F_1(z) = F_2(z) = \cdots = F_k(z) = 0 \} \). The zeta-function \(\zeta_{z_n,V}(t) \) \((\zeta_{z_n,V}(t)) \) will be called the monodromy zeta-function (at infinity) of the deformation \(\{ f_{i,\sigma} \mid i = 1, 2, \ldots, k \} \).

2.1. Formulas for the zeta-function of a deformation

Consider the representation \(F_i = \sum_{k \in \mathbb{Z}^n} F_{i,k} z^k \), where the \(F_{i,k} \in \mathbb{C}, k \in \mathbb{Z}^n \), are the coefficients of the polynomial \(F_i \) and \(k = (k_1, k_2, \ldots, k_n) \) are the coordinates in the space \(\mathbb{R}^n \) that correspond to the variables \((z_1, z_2, \ldots, z_n) \). Let \(\Delta_i = \Delta(F_i) \) denote the Newton polyhedron of the polynomial \(F_i, i = 1, 2, \ldots, k, \) i.e., the convex hull of the set \(\{ k \in \mathbb{Z}^n \mid F_{i,k} \neq 0 \} \). A subset \(I \) of the set \(\{ 1, 2, \ldots, n \} \) will be called an index set. Denote \(\mathbb{R}^I = \{ k \in \mathbb{R}^n \mid k_i = 0, i \notin I \} \). Let \(j_1^I < j_2^I < \cdots < j_{k(I)}^I \) be the elements of the set \(\{ j \in \{ 1, 2, \ldots, k \} \mid \Delta_j \cap \mathbb{R}^I \neq \emptyset \} \). We put \(\Delta_I^j = \Delta_j^I \cap \mathbb{R}^I, i = 1, 2, \ldots, k(I) \) and \(F_I^j = \sum_{k \in \Delta_I^j} F_{j,k} z^k \).

An integer covector is said to be primitive if it is not a multiple of another integer covector. We denote by \(\mathbb{Z}^I \) the set of primitive covectors in the dual space \((\mathbb{R}^I)^* \). For a convex set \(S \subset \mathbb{R}^I \) and a covector \(\alpha \in \mathbb{Z}^I \), let \(S^\alpha \) be the subset of \(S \) formed by the points where the function \(\alpha |_S \) attains its minimal value: \(S^\alpha = \{ x \in S \mid \alpha(x) = \min(\alpha(S)) \} \).

For an arbitrary polynomial \(P = \sum_{k \in \Delta} P_k z^k \), with the Newton polyhedron \(\Delta \subset \mathbb{R}^I \) and a covector \(\alpha \in \mathbb{Z}^I \), we denote by \(P^\alpha \) the polynomial \(\sum_{k \in \Delta^\alpha} P_k z^k \). For an index set \(I \) containing \(n \), let \(\mathbb{Z}^I_+ \subset \mathbb{Z}^I \) \((\mathbb{Z}^I_- \subset \mathbb{Z}^I) \) be the subset of covectors \(\alpha = \cdots + \alpha_n \) with strictly positive last component: \(\alpha_n > 0 \) (strictly negative last component: \(\alpha_n < 0 \)).
Definition 3. Consider a covector \(\alpha \in \mathbb{Z}^{(1,2,\ldots,m)} \). We say that a system of polynomials \(F_1, F_2, \ldots, F_k \) is \(\alpha \)-nondegenerate with respect to its Newton polyhedra \(\Delta_1, \Delta_2, \ldots, \Delta_k \) if the 1-forms \(dF_i^\alpha \), \(i = 1, 2, \ldots, k \), are linearly independent at all the points of the set \(\{ z \in (\mathbb{C}^*)^m \mid F_1^\alpha(z) = F_2^\alpha(z) = \cdots = F_k^\alpha(z) = 0 \} \).

We say that a system of polynomials \(F_1, F_2, \ldots, F_k \) is \(\sigma \)-nondegenerate (at infinity) with respect to its Newton polyhedra if for each index set \(I \) containing \(n \) and each covector \(\alpha \in \mathbb{Z}_+^I \) \((\alpha \in \mathbb{Z}_-^I) \), the system of polynomials \(F_1^\alpha, F_2^\alpha, \ldots, F_k^\alpha \) is \(\alpha \)-nondegenerate with respect to its Newton polyhedra.

Finally, a system of polynomials \(F_1, F_2, \ldots, F_k \) is said to be nondegenerate with respect to its Newton polyhedra if for each index set \(I \) and each \(\alpha \in \mathbb{Z}_+^I \) the system of polynomials \(F_1^\alpha, F_2^\alpha, \ldots, F_k^\alpha \) is \(\alpha \)-nondegenerate.

For each index set \(I \subset \{1,2,\ldots,n\} \) containing \(n \), we define the following rational functions:

\[
\zeta_{\Delta_1,\Delta_2,\ldots,\Delta_k}^I(t) = \prod_{\alpha \in \mathbb{Z}_+^I} \left(1 - t^{\alpha(\frac{\partial}{\partial z_n})} \right) Q^I_{\alpha}(\Delta_{1,\Delta_2,\ldots,\Delta_k}^I),
\]

\[
\zeta_{\Delta_1,\Delta_2,\ldots,\Delta_k}^{\infty}(t) = \prod_{\alpha \in \mathbb{Z}_+^I} \left(1 - t^{-\alpha(\frac{\partial}{\partial z_n})} \right) Q^I_{\alpha}(\Delta_{1,\Delta_2,\ldots,\Delta_k}^\infty),
\]

where \(l = |I|-1 \), \(\frac{\partial}{\partial z_n} \) is the vector in \(\mathbb{R}^l \) whose only nonzero coordinate is \(k_n = 1 \), and \(Q^I_{\alpha}(x_1, x_2, \ldots, x_k) := \prod_{i=1}^k \frac{x_i}{1+x_i}^\alpha \), where \([\cdot]_l \) denotes the degree \(l \) homogeneous part of the power series under consideration. In particular, \(Q^I_{\alpha} \equiv 0 \) for \(l > 0 \) and \(Q^I_{\alpha} \equiv 1 \).

Theorem 1. Suppose a system of polynomials \(F_1, F_2, \ldots, F_k \) is \(\sigma \)-nondegenerate with respect to its Newton polyhedra \(\Delta_1, \Delta_2, \ldots, \Delta_k \). Then

\[
(1) \quad \zeta_{z_n, V \cap (\mathbb{C}^*)^n}^\alpha(t) = \zeta_{\Delta_1,\Delta_2,\ldots,\Delta_k}^I(t),
\]

\[
(2) \quad \zeta_{z_n, V}(t) = \prod_{I : n \in I \subset \{1,2,\ldots,n\}} \zeta_{\Delta_1,\Delta_2,\ldots,\Delta_k}^I(t),
\]

where \(V = \{ z \in \mathbb{C}^n \mid F_1(z) = F_2(z) = \cdots = F_k(z) = 0 \} \).

Theorem 2. Suppose a system of polynomials \(F_1, F_2, \ldots, F_k \) is \(\sigma \)-nondegenerate at infinity with respect to its Newton polyhedra \(\Delta_1, \Delta_2, \ldots, \Delta_k \). Then

\[
(3) \quad \zeta_{z_n, V \cap (\mathbb{C}^*)^n}^{\infty}(t) = \zeta_{\Delta_1,\Delta_2,\ldots,\Delta_k}^{\infty} \zeta_{\Delta_1,\Delta_2,\ldots,\Delta_k}^I(t),
\]

\[
(4) \quad \zeta_{z_n, V}^{\infty}(t) = \prod_{I : n \in I \subset \{1,2,\ldots,n\}} \zeta_{\Delta_1,\Delta_2,\ldots,\Delta_k}^{\infty}(t),
\]

where \(V = \{ z \in \mathbb{C}^n \mid F_1(z) = F_2(z) = \cdots = F_k(z) = 0 \} \).

Remark 1. For \(k = 1 \), equation (11) implies

\[
(5) \quad \zeta_{z_n, V \cap (\mathbb{C}^*)^n}^\alpha(t) = \prod_{\alpha \in \mathbb{Z}_+^0} \left(1 - t^{\alpha(\frac{\partial}{\partial z_n})} \right)^{-\alpha(n-1)!} \text{Vol}_{n-1}(\Delta_1^\alpha),
\]

where \(\text{Vol}_l(\cdot) \) denotes the \(l \)-dimensional integer volume, \(I_0 = \{1,2,\ldots,n\} \). This relation is similar to formula (1) in [3] Theorem 2.2 for the zeta-function of a singularity deformation. In fact, let \(f_\sigma \) denote the germ at the origin of the deformation defined by \(f_\sigma(z_1, \ldots, z_{n-1}) = F_1(z_1, \ldots, z_{n-1}, \sigma) \). Using the equation in [3], we obtain

\[
\zeta_{f_\sigma|\cap (\mathbb{C}^*)^{n-1}}(t) = \prod_{\alpha \in \mathbb{Z}_+^0} \left(1 - t^{\alpha(\frac{\partial}{\partial z_n})} \right)^{-\alpha(n-1)!} \text{Vol}_{n-1}(\Delta_1^{I_0 \alpha}),
\]

where \(\mathbb{Z}_+^0 \) is the subset of covectors in \(\mathbb{Z}_+^{I_0} \) whose components are all strictly positive. Hence, the local zeta-function
\[\zeta_{f^*|_{\mathbb{C}^*}^{n-1}}(t) \] is a “natural” factor of the global one \(\zeta_{\mathbb{C}^*}^{n} (t) \). The same observation follows from the localization principle (see below and [2]).

Example 1. Assume that \(n = 2 \) and \(k = 1 \). Consider the polynomial \(F_1(z_1, z_2) = z_1 + z_2(1 + z_1^2) \). Identities (1), (2) and the corresponding relations in [3] Theorem 2.2 imply that \(\zeta_{f^*|_{\mathbb{C}^*}^{n}}(t) = (1 - t) \), \(\zeta_{f^*|_{\mathbb{C}^*}^{2}}(t) = (1 - t)^2 \). The same results can be obtained by the following arguments. The global fiber is \(\mathbb{V}^*_t = \{ z_1 \mid F_1(z_1, \sigma) = 0 \} = \{ \frac{-1 + \sqrt{1 - 4\sigma^2}}{2\sigma} \} = \{ x_1(\sigma), x_2(\sigma) \} \), where \(x_1(\sigma) \approx -\sigma, \ x_2(\sigma) \approx -\sigma^{-1} \) for \(|\sigma| \ll 1 \). Thus, it consists of two points, one of them close to the origin and the other close to infinity. The monodromy transformation is the identical map of the fiber itself, whence \(\zeta_{f^*|_{\mathbb{C}^*}^{2}}(t) = \det((1 - t)\text{Id}) = (1 - t)^2 \). Since the local fiber \(\{ f_\sigma(z_1) = 0 \} = \{ x_1(\sigma) \} \) consists of one point, we have \(\zeta_{f^*|_{\mathbb{C}^*}^{n}}(t) = (1 - t) \).

2.2. Proofs of the theorems.

We reduce the calculation of the zeta-function to integration with respect to the Euler characteristic (see., e.g., [7]), using the following localization principle.

We recall the notion of the zeta-function as applied to a family of sections of a line bundle over a variety, introduced by S. M. Gusein-Zade and D. Siersma in [2]. Let \(W \) be a compact complex analytic variety, and let \(W_1 \) be the complement to a compact subvariety of \(W \). Let \(L \) be a line bundle over \(W \), and let \(q_\sigma \) be a family of sections of \(L \) analytic in \(\sigma \in \mathbb{C}_\sigma \). Let \(U \) be the subset of \(W_1 \times \mathbb{C}_\sigma \) given by \(q_\sigma(x) = 0 \). The restriction to \(U \) of the projection \(W_1 \times \mathbb{C}_\sigma \to \mathbb{C}_\sigma \) is a fibration over the punctured disk \(\mathbb{D}_\sigma^* \subset \mathbb{C}_\sigma \) for \(|\sigma| \ll 1 \). The zeta-function of a family of sections \(q_\sigma \) restricted to the set \(W_1 \) is the zeta-function of the monodromy transformation of the above fibration. We denote it by \(\zeta_{q_\sigma|_{W_1}}(t) \).

The fibration \(L \) is trivial over a neighborhood of a point \(x \in W \). Therefore, using a fixed coordinate system, we can view the family of germs at the point \(x \) of sections \(q_\sigma \) as a deformation in the parameter \(\sigma \) of a function germ. We denote by \(\zeta_{q_\sigma|_{W_1}, x}(t) \) the zeta-function of the germ at the point \(\sigma = 0 \) of the above deformation restricted to the set \(W_1 \) (see, e.g., [3]).

Theorem 3 ([2], “localization principle”). We have

\[\zeta_{q_\sigma|_{W_1}}(t) = \int_W \zeta_{q_\sigma|_{W_1}, x}(t) \, d\chi. \]

Using the Newton polyhedra \(\Delta_1, \Delta_2, \ldots, \Delta_k \) of the polynomials \(F_1, F_2, \ldots, F_k \), we construct a unimodular simplicial partition \(\Lambda \) of the dual space \(\mathbb{R}^n \); we assume that this partition is sufficiently fine for the system \(\{ \Delta_i \} \) in the sense of [9]. Consider the toroidal compactification \(X_\Lambda \) of the torus \((\mathbb{C}^*)^n \) that corresponds to the partition \(\Lambda \). Recall that the standard action of the torus \((\mathbb{C}^*)^n \) on itself uniquely extends to an action of the torus on the variety \(X_\Lambda \). The cones \(\lambda \in \Lambda \) of the partition are in one-to-one correspondence with the orbits \(T_\lambda \subset X_\Lambda \) of this action and the orbit \(T_\lambda \) is isomorphic to \((\mathbb{C}^*)^{n - \dim \lambda} \). Denote by \(X'_\Lambda \) the complement in \(X_\Lambda \) to the torus \(T_{\{0\}} \cong (\mathbb{C}^*)^n \). Let \(\overline{V} \) be the closure of the set \(V \cap T_{\{0\}} \subset X_\Lambda \), and let \(V' = \overline{V} \cap X'_\Lambda \). We prove the following statement.

Lemma 1. For a sufficiently fine partition \(\Lambda \), we have

\[\zeta_{\mathbb{C}^*|_{\mathbb{C}^*}^{n}}(t) = \int_{V'} \zeta_{\mathbb{C}^*|_{\mathbb{C}^*}^{n}, x}(t) \, d\chi, \]

\[\zeta_{\mathbb{C}^*|_{\mathbb{C}^*}^{\infty}}(t) = \int_{V'} \zeta_{\mathbb{C}^*|_{\mathbb{C}^*}^{\infty}, x}(t) \, d\chi. \]
where, for a germ at \(x \in V' \) of a meromorphic function \(f \) on the set \(\tilde{V} \) and for an open subset \(A \subset \tilde{V} \), the expression \(\zeta_{f|A,x}(t) (\zeta_{f|A,x}^\infty(t)) \) denotes the local zeta-function (at infinity) of the germ at \(x \) of the function \(f \) restricted to \(A \).

Proof. We may assume the partition \(\Lambda \) to be a subdivision of the standard partition \(\Pi \) of the space \((\mathbb{R}^n)^* \) corresponding to the \(n \)-dimensional projective space: \(X_\Pi = \mathbb{CP}^n \supset (\mathbb{C}^*)^n \). Let \(p : X_\Lambda \to \mathbb{CP}^n \) be the map of the toric varieties induced by the refinement \(\Lambda \prec \Pi \). Consider the family of global sections \(s_\sigma, \sigma \in \mathbb{C}, \) of the fibration \(\mathcal{O}(1) \) over \(\mathbb{CP}^n \) that is defined by the condition \(s_\sigma|_\mathbb{C}^n = z_n - \sigma \). Denote \(\pi = p \circ \text{inj} \), where \(\text{inj} : \tilde{V} \hookrightarrow X_\Lambda \) is the inclusion map. Let \(S_\sigma = \pi^*(s_\sigma) \) be the family of sections of the bundle \(\pi^*(\mathcal{O}(1)) \) that is the pull-back of \(s_\sigma \). In a similar way, consider a family of sections \(s'_\sigma, \sigma \in \mathbb{C}, \) of the fibration \(\mathcal{O}(1) \) that is defined by the condition \(s'_\sigma|_\mathbb{C}^n = 1 - \sigma z_n \), and consider the pull-back \(S'_\sigma = \pi^*(s'_\sigma) \).

By simple reformulations, we can easily show that

\[
\zeta_{z_n,V \cap \mathbb{C}^n}(t) = \zeta_{s_\sigma|V \cap \mathbb{C}^n}(t), \quad \zeta_{z_n|V \cap \mathbb{C}^n}(t) = \zeta_{s'_\sigma|V \cap \mathbb{C}^n}(t), \quad \zeta_{z_n,V \cap \mathbb{C}^n, x}(t) = \zeta_{s_\sigma|V \cap \mathbb{C}^n, x}(t), \quad \zeta_{z_n|V \cap \mathbb{C}^n, x}(t) = \zeta_{s'_\sigma|V \cap \mathbb{C}^n, x}(t).
\]

Applying Theorem 3 to the families \(S_c \) and \(S'_c \), we obtain

\[
\zeta_{s_\sigma|V \cap \mathbb{C}^n}(t) = \int_{\tilde{V}} \zeta_{s_\sigma|V \cap \mathbb{C}^n, x}(t) d\chi = \int_{\tilde{V}} \zeta_{z_n|V \cap \mathbb{C}^n, x}(t) d\chi,
\]

\[
\zeta_{s'_\sigma|V \cap \mathbb{C}^n}(t) = \int_{\tilde{V}} \zeta_{s'_\sigma|V \cap \mathbb{C}^n, x}(t) d\chi = \int_{\tilde{V}} \zeta_{z_n|V \cap \mathbb{C}^n, x}(t) d\chi.
\]

Moreover, it is easily seen that \(\zeta_{z_n|V \cap \mathbb{C}^n, x}(t) = \zeta_{z_n|V \cap \mathbb{C}^n}(t) = 1 \) for \(x \notin V' \). Therefore, using the multiplicative property of the integration, we get

\[
\int_{\tilde{V}} \zeta_{z_n|V \cap \mathbb{C}^n, x}(t) d\chi = \int_{\tilde{V}} \zeta_{z_n|V \cap \mathbb{C}^n, x}(t) d\chi = \int_{\tilde{V}} \zeta_{z_n|V \cap \mathbb{C}^n, x}(t) d\chi.
\]

\(\square \)

Let \(\Lambda_+ \subset \Lambda \) and \(\Lambda_\pm \subset \Lambda \) be the subset of cones \(\lambda \in \Lambda \) generated by a set of primitive covectors \(\alpha_1, \alpha_2, \ldots, \alpha_l \) lying in \(\mathbb{Z}^{1,2,\ldots,n} \setminus \mathbb{Z}^+_{1,2,\ldots,n} \) in \(\mathbb{Z}^{1,2,\ldots,n} \setminus \mathbb{Z}^+_{1,2,\ldots,n} \), respectively. We may assume that \(\Lambda = \pm \Lambda_+ \pm \Lambda_+ = \Lambda \).

Consider an arbitrary point \(x_0 \in V' \). It is contained in the torus \(T_\lambda \) that corresponds to some \(l \)-dimensional cone \(\lambda \in \Lambda, l < n \). This cone lies on the border of an \(n \)-dimensional cone \(\lambda' \in \Lambda \). Denote by \(\alpha_1, \alpha_2, \ldots, \alpha_l \) the primitive integer covectors that generate the cone \(\lambda \). The cone \(\lambda' \) is generated by the covectors \(\alpha_1, \alpha_2, \ldots, \alpha_l \) and some covectors \(\alpha_{l+1}, \alpha_{l+2}, \ldots, \alpha_n \). Consider the coordinate system \(u = (u_1, u_2, \ldots, u_n) \) corresponding to the set of covectors \((\alpha_1, \alpha_2, \ldots, \alpha_n) \). We have \(u_i(x_0) = 0, i \leq l, u_i(x_0) \neq 0, i > l \). We express the monomial \(z_n \) as a function \(F \) of the variables \(u \):

\[
F(u) = b \cdot u_1^{\alpha_1 (\partial / \partial k_n)} u_2^{\alpha_2 (\partial / \partial k_n)} \cdots u_l^{\alpha_l (\partial / \partial k_n)},
\]

where \(b(u) = \prod_{j=l+1}^n u_j^{\alpha_j (\partial / \partial k_n)} \), \(b(x_0) \in \mathbb{C}^* \). Now we are ready to calculate the values of the integrands \(\zeta_{z_n|V \cap \mathbb{C}^n, x_0}(t) \) and \(\zeta_{z_n|V \cap \mathbb{C}^n, x_0}(t) \) in the following two cases.

1. If \(\lambda \in \Lambda_\pm \), then the value of the function \(F \) at the point \(x \) is not zero, so that \(\zeta_{z_n|V \cap \mathbb{C}^n, x_0}(t) = 1 \). Accordingly, assume that \(\lambda \notin \Lambda_\pm \). Then the point \(x_0 \) is not a pole of the function \(F \) and therefore \(\zeta_{z_n|V \cap \mathbb{C}^n, x_0}(t) = 1 \).

2. Assume that \(\lambda \in \Lambda \setminus \Lambda_\pm \). The system of polynomials \(F_1, F_2, \ldots, F_k \) is \(\sigma \)-nondegenerate (at infinity) with respect to its polyhedra \(\Delta_1, \Delta_2, \ldots, \Delta_k \).
Therefore, \(l + k \leq n \), and there is a coordinate system \((u_1, \ldots, u_l, w_{l+1}, \ldots, w_n)\) in a neighborhood of \(x_0 \) such that \(u_i(x_0) = 0 \), \(i = l + 1, \ldots, n \), and

\[
(7) \quad F_i = a_i u_1^{m_{i,1}} \cdots u_l^{m_{i,l}} \cdot w_{n-i+1}, \quad i = 1, 2, \ldots, k,
\]

where \(m_{i,j} = \min(\alpha_j|\Delta_i) \) and \(a_i \) is a germ of an analytic function such that \(a_i(x_0) \neq 0 \). Denote \(V_{x_0} = V \cap (C^*)^n \cap U \). By (7), we have

\[
V_{x_0} = \{ u_i \neq 0, \ i \leq l; \ w_i = 0, \ i > n - k \} \subset U.
\]

Hence,

\[
(8) \quad \zeta_{\varphi|_{V \cap (C^*)^n}, x_0}(t) = \zeta_{g|_{(u_i \neq 0, i \leq l)}, 0}(t) \quad (\zeta_{\varphi|_{V \cap (C^*)^n}, x_0}(t) = \zeta_{g|_{(u_i \neq 0, i \leq l)}, 0}(t)),
\]

where \(g \) is the germ of the function in the variables \((u_1, \ldots, u_l, w_{l+1}, \ldots, w_{n-k})\) that is given by the relation

\[
g = \prod_{j=1}^l u_j^{\alpha_j} (\partial/\partial k_n) \cdot b(u_1, \ldots, u_l, w_{l+1}, \ldots, w_{n-k}, 0, \ldots, 0).
\]

Using the Varchenko-type formula for meromorphic functions (see \(\Pi \)), we calculate the right-hand side of (8). For \(l = 1 \), we obtain

\[
(9) \quad \zeta_{\varphi|_{V \cap (C^*)^n}, x_0}(t) = 1 - t^{\alpha_1}(\partial/\partial k_n) \quad \left(\zeta_{\varphi|_{V \cap (C^*)^n}, x_0}(t) = 1 - t^{\alpha_1}(\partial/\partial k_n) \right).
\]

Finally, the two zeta-functions in question are trivial if \(l > 1 \).

Now we specify the only case where the function \(\zeta_{\varphi|_{V \cap (C^*)^n}, x_0}(t) \) is not trivial. Namely, we assume that \(x_0 \in T_\Lambda, \lambda \in \Lambda \setminus \Delta_\Lambda \) (\(\lambda \in \Lambda \setminus \Delta_\Lambda \)) and \(\dim \lambda = 1 \). Denote \(\alpha = \alpha_1 \). The set \(T_\Lambda \cap V' \) can be defined in the coordinates \((u_2, \ldots, u_{n+1})\) on the torus \(T_\Lambda = \{ u_1 = 0 \} \) by the system of equations \(\{ Q_1^\alpha = Q_2^\alpha = \cdots = Q_k^\alpha = 0 \} \), where

\[
Q_i^\alpha = \sum_{k \in \Delta_i^\alpha} F_{i,k} u_2^{\alpha_2(k)} u_3^{\alpha_3(k)} \cdots u_n^{\alpha_n(k)}.
\]

Using the main results of (9) and (10), we obtain

\[
(10) \quad \chi(T_\Lambda \cap V') = (n - 1)! Q_k^{n-1}(\Delta(Q_1^\alpha), \Delta(Q_2^\alpha), \ldots, \Delta(Q_k^\alpha)),
\]

where \(\Delta(\cdot) \) denotes the Newton polyhedron of the Laurent polynomial under consideration. The covectors \(\alpha_2, \alpha_3, \ldots, \alpha_n \) determine an isomorphism of the integer lattices of the hyperplane \(\{ \alpha = 0 \} \subset \mathbb{R}^n \) and the space \(\mathbb{R}^{n-1} \), which contains the polyhedra \(\Delta(Q_i^\alpha) \). Under this isomorphism, the polyhedra \(\Delta(Q_i^\alpha) \) correspond to parallel shifts of the polyhedra \(\Delta_i \). Therefore, the corresponding mixed integer volumes coincide and

\[
(11) \quad Q_k^{n-1}(\Delta(Q_1^\alpha), \Delta(Q_2^\alpha), \ldots, \Delta(Q_k^\alpha)) = Q_k^{n-1}(\Delta_1^\alpha, \Delta_2^\alpha, \ldots, \Delta_k^\alpha).
\]

Relations (9), (10), (11) imply the following answers:

\[
\int_{T_\Lambda \cap V'} \zeta_{\varphi|_{V \cap (C^*)^n}, x}(t) \, d\chi = \left(1 - t^{\alpha_1(\partial/\partial k_n)} \right)^{(n-1)!} Q_k^{n-1}(\Delta_1^\alpha, \Delta_2^\alpha, \ldots, \Delta_k^\alpha),
\]

\[
\int_{T_\Lambda \cap V'} \zeta_{\varphi|_{V \cap (C^*)^n}, x}(t) \, d\chi = \left(1 - t^{\alpha_1(\partial/\partial k_n)} \right)^{(n-1)!} Q_k^{n-1}(\Delta_1^\alpha, \Delta_2^\alpha, \ldots, \Delta_k^\alpha).
\]

We can multiply identities (12) over all strata \(T_\Lambda \subset X'_{\Lambda} \) of dimension \(n - 1 \) corresponding to the tori \(\lambda \in \Lambda \setminus \Delta_\Lambda \) (\(\lambda \in \Lambda \setminus \Delta_\Lambda \)), and apply (9), obtaining the required formulas (1) and (3). Formulas (2) and (4) follow from (1) and (3) (respectively) by the multiplicative property of zeta-functions.
§3. ZETA-FUNCTION OF A POLYNOMIAL ON A COMPLETE INTERSECTION

In this section we obtain the general formula for the zeta-function at the origin of a polynomial \(F_0 = \sum_{k \in \mathbb{Z}^n} F_{0,k} z_k^k \) on the set of common zeros of a set of polynomials \(F_1, F_2, \ldots, F_k \). We use the notation and definitions introduced in [2]. Let \(\Delta_0 \) be the Newton polyhedron of \(F_0 \). For an index set \(I \), we denote \(\Delta^I_0 = \Delta_0 \cap \mathbb{R}^I \), \(F^I_0 = \sum_{k \in \Delta^I_0} F_{0,k} z_k^k \).

For each index set \(I \subset \{1, 2, \ldots, n\} \), consider the following rational function:

\[
\tilde{\zeta}^I_{\Delta^I_0; \Delta^I_1, \ldots, \Delta^I_k}(t) := \prod_{\alpha \in \mathbb{Z}^I_{\Delta^I_0}} \left(1 - t^{m_{\Delta^I_0}(\alpha)} \right)^{!} \tilde{Q}^I_{k(t)+1}(\Delta^I_0; \Delta^I_1, \ldots, \Delta^I_k(t)) \tag{13}
\]

where \(m_{\Delta^I_0}(\alpha) = \min(\alpha | \Delta^I_0) \) is the minimal value of the covector \(\alpha \) on the set \(\Delta^I_0 \), the symbol \(\mathbb{Z}^I_{\Delta^I_0} \) stands for the set of covectors \(\alpha \in \mathbb{Z}^I \) such that \(\min(\alpha | \Delta^I_0) > 0 \) (for \(\Delta^I_0 = \emptyset \), we put \(\mathbb{Z}^I_{\Delta^I_0} = \emptyset \)), and

\[
\tilde{Q}^I_{k+1}(x_0, x_1, \ldots, x_k) = Q^I_k(x_1, x_2, \ldots, x_k) - Q^I_{k+1}(x_0, x_1, \ldots, x_k) \tag{14}
\]

is a homogeneous polynomial of degree \(l := |I| - 1 \). The following statement is a consequence of Theorem 1 and some observations concerning the formula for the Euler characteristic of a nondegenerate complete intersection that was obtained in [10].

Theorem 4. Suppose that systems of polynomials \(F_0, F_1, \ldots, F_k \) and \(F_1, F_2, \ldots, F_k \) are nondegenerate with respect to their Newton polyhedra \(\Delta_0, \Delta_1, \ldots, \Delta_k \) and \(\Delta_1, \Delta_2, \ldots, \Delta_k \), respectively. Then

\[
\zeta_{F_0, V \cap (C^*)^n}(t) = \zeta^{(1, \ldots, n)}_{\Delta^0_0; \Delta^1_1, \ldots, \Delta^k_k}(t), \quad \zeta_{F_0, V}(t) = \prod_{I \subset \{1, \ldots, n\} : I \neq \emptyset} \tilde{\zeta}^I_{\Delta^I_0; \Delta^I_1, \ldots, \Delta^I_k}(t), \tag{15, 16}
\]

where \(V = \{ z \in \mathbb{C}^n \mid F_1(z) = F_2(z) = \cdots = F_k(z) = 0 \} \) is the set of common zeros of the system \(F_1, F_2, \ldots, F_k \).

Remark 2. Consider the case where \(k = 0 \). Using (16) and (13), we can obtain the relation

\[
\zeta_{F_0, \mathbb{C}^n}(t) = \prod_{I \neq \emptyset, 2^I_0} \prod_{\alpha \in \mathbb{Z}^I_{\Delta^I_0}} \left(1 - t^{m_{\Delta^I_0}(\alpha)} \right)^{!} \Vol_{0}(\Delta^I_0; \alpha) \tag{17}
\]

(here we put \(\Vol_{0}(pt) = 1 \)). This is an analog of the Libgober–Sperber theorem (see [4]) and (in a slightly different form) was obtained by Y. Matsui and K. Takeuchi ([5, §4]).

Proof of the theorem. Note that formula (16) follows from (15) by the multiplicative property of zeta-functions. We prove (15).

Consider the system of polynomials \(G_1, G_2, \ldots, G_{k+1} \) in \(n + 1 \) variables \((z, z_{n+1}) = (z_1, z_2, \ldots, z_{n+1}) \) given by

\[
G_i(z_1, z_2, \ldots, z_{n+1}) = F_i(z_1, z_2, \ldots, z_n), \quad i = 1, 2, \ldots, k;
\]

\[
G_{k+1}(z_1, z_2, \ldots, z_{n+1}) = F_0(z_1, z_2, \ldots, z_n) - z_{n+1}. \tag{18}
\]

Consider the set \(W = \{ (z, z_{n+1}) \in \mathbb{C}^{n+1} \mid G_1(z) = G_2(z) = \cdots = G_{k+1}(z) = 0 \} \). Since, obviously, the fibrations defined by the maps

\[
V \cap (\mathbb{C}^*)^n \cap F_0^{-1}(D^\delta_0) \to D^\delta_0 \quad \text{and} \quad W \cap (\mathbb{C}^*)^{n+1} \cap \{ 0 < |z_{n+1}| \leq \delta \} \to D^\delta_0
\]

are isomorphic, we have

\[
\zeta_{F_0, V \cap (\mathbb{C}^*)^n}(t) = \zeta_{z_{n+1}, W \cap (\mathbb{C}^*)^{n+1}}(t). \tag{19}
\]
The space \(\mathbb{R}^n \) with the coordinates \((k_1, k_2, \ldots, k_n)\) is enclosed in a standard manner in the space \(\mathbb{R}^{n+1} \) with the additional coordinate \(k_{n+1} \) that corresponds to the variable \(z_{n+1} \). For \(i \leq k \), the Newton polyhedra of the polynomials \(F_i \) and \(G_i \) coincide: \(\Delta(G_i) = \Delta_i \).

The Newton polyhedron of the polynomial \(G_{k+1} \) is a cone of integer height 1 over the Newton polyhedron of the polynomial \(F_0, \Delta(G_{k+1}) = C \Delta_0 \).

Proposition 1. For a system of polynomials \(F_0, F_1, \ldots, F_k \) such that both this system itself and the system \(F_1, F_2, \ldots, F_k \) are nondegenerate with respect to their Newton polyhedra, the system of polynomials \(G_1, G_2, \ldots, G_{k+1} \) is also nondegenerate with respect to its Newton polyhedra.

Proof. Consider an arbitrary subset \(I \subset \{1, 2, \ldots, (n+1)\} \) and an arbitrary covector \(\alpha \in \mathbb{Z}^I \). For \(n+1 \not\in I \), obviously, the conditions of \(\alpha \)-nondegeneracy as applied to the system \(\{ G_i^I \} \) and to the system \(\{ F_i^I \} \) are equivalent. Assume that \(n+1 \in I \). Denote \(I' = I \setminus \{ n+1 \} \), \(\alpha' = \alpha|_{\mathbb{R}^I} \). Extending the notation of Subsection 2.1 to the system of polynomials \(G_1, G_2, \ldots, G_{k+1} \), we see that \(k(I) = k(I') + 1, G_i^{I', \alpha}(z, z_{n+1}) = F_i^{I', \alpha'}(z) \) for \(i \leq k(I') \). Three cases are possible.

1. \(\alpha(\frac{\partial}{\partial k_{n+1}}) > \min(\alpha'|_{\Delta_i' \setminus \Delta_i}) \). Then \((C \Delta_0 \cap \mathbb{R}^I)^\alpha = \Delta_0^{I', \alpha'} \), \(G_i^{I, \alpha}(z, z_{n+1}) = F_i^{I', \alpha'}(z) \).
2. \(\alpha(\frac{\partial}{\partial k_{n+1}}) < \min(\alpha'|_{\Delta_i' \setminus \Delta_i}) \). Then \((C \Delta_0 \cap \mathbb{R}^I)^\alpha = \{ \frac{\partial}{\partial k_{n+1}} \}, G_i^{I, \alpha} = -z_{n+1} \).
3. \(\alpha(\frac{\partial}{\partial k_{n+1}}) = \min(\alpha'|_{\Delta_i' \setminus \Delta_i}) \). Then \((C \Delta_0 \cap \mathbb{R}^I)^\alpha = C \Delta_0^{I', \alpha'} \) is a cone of integer height 1 over \(\Delta_0^{I', \alpha'} \), \(G_i^{I, \alpha}(z, z_{n+1}) = F_i^{I', \alpha'}(z) - z_{n+1} \).

Using the \(\alpha \)-nondegeneracy of the systems \(F_0, F_1, \ldots, F_k \) and \(F_1, F_2, \ldots, F_k \), we verify easily that the 1-forms \(dG_i^{I', \alpha}, i = 1, 2, \ldots, k(I) \), are linearly independent at the points of the set

\[
\{(z, z_{n+1}) \in (\mathbb{C}^*)^{n+1} | G_1(z, z_{n+1}) = G_2(z, z_{n+1}) = \cdots = G_{k+1}(z, z_{n+1}) = 0 \}.
\]

Proposition 1 shows that Theorem 1 is applicable to the polynomials \(G_1, G_2, \ldots, G_{k+1} \):

\[
(19) \quad \zeta_{z_{n+1}, W \cap (\mathbb{C}^*)^{n+1}}(t) = \prod_{\alpha \in \mathbb{Z}^I_0} (1 - t^\alpha(\frac{\partial}{\partial k_{n+1}}))^n Q_{k+1}^n((C \Delta_0)^\alpha, \Delta_1^\alpha, \ldots, \Delta_k^\alpha),
\]

where \(I_0 = \{1, 2, \ldots, n+1\} \). It is easily seen that in the above cases 1 and 2 the exponent \(Q_{k+1}^n((C \Delta_0)^\alpha, \Delta_1^\alpha, \ldots, \Delta_k^\alpha) \) equals 0. Therefore,

\[
(20) \quad \zeta_{z_{n+1}, W \cap (\mathbb{C}^*)^{n+1}}(t) = \prod_{\alpha \in \mathbb{Z}^I_0} (1 - t^{n \Delta_0(\alpha)})^n Q_{k+1}^n(C(\Delta_0^\alpha, \Delta_1^\alpha, \ldots, \Delta_k^\alpha)),
\]

where \(I_0 = \{1, 2, \ldots, n\} \). Now, formula (18) follows from (18), (20), and the identity

\[
n! Q_{k+1}^n((C(\Delta_0^\alpha, \Delta_1^\alpha, \ldots, \Delta_k^\alpha)) = (n-1)! \tilde{Q}_{k+1}^{n-1}(\Delta_0^\alpha, \Delta_1^\alpha, \ldots, \Delta_k^\alpha),
\]

which is a consequence of the following statement.

Proposition 2. Let \(\Delta_0, \Delta_1, \ldots, \Delta_k \) be a set of integer polyhedra lying in a rational affine hyperplane \(L \subset \mathbb{R}^{n+1} \). Let \(C \Delta_0 \) be the cone over \(\Delta_0 \) with vertex at some point \(v \in \mathbb{R}^{n+1} \) that lies at the integer distance 1 from the hyperplane \(L \). Then

\[
(21) \quad (n+1)! Q_{k+1}^n(C \Delta_0, \Delta_1, \ldots, \Delta_k) = \tilde{Q}_{k+1}^n(\Delta_0, \Delta_1, \ldots, \Delta_k).
\]

Proof. We choose an affine integer coordinate system \(k = (k_1, k_2, \ldots, k_{n+1}) \) in the space \(\mathbb{R}^{n+1} \) in such a way that \(L = \{ k \in \mathbb{R}^n | k_{n+1} = 0 \} \) and \(v = (0, 0, \ldots, 1) \). Choose Laurent polynomials \(F_0, F_1, \ldots, F_k \) in the variables \(z = (z_1, z_2, \ldots, z_n) \) with fixed Newton polyhedra \(\Delta_0, \Delta_1, \ldots, \Delta_k \) in such a way that the systems \(F_0, F_1, \ldots, F_k \) and \(F_1, F_2, \ldots, F_k \)
are nondegenerate in the sense of [9] with respect to their Newton polyhedra. One can easily show (see Proposition 1) that the system of Laurent polynomials \(G_1, G_2, \ldots, G_{k+1}\) in \(n + 1\) variables defined in terms of the polynomials \(\{F_i\}\) by formulas (17) is also non-degenerate in the sense of [9] with respect to its Newton polyhedra \(\Delta_1, \ldots, \Delta_k, C(\Delta_0)\).

We put
\[
V = \{F_0 = F_1 = \cdots = F_k = 0\} \subset (\mathbb{C}^*)^n,\\
V_1 = \{F_1 = F_2 = \cdots = F_k = 0\} \subset (\mathbb{C}^*)^n,\\
W = \{G_1 = G_2 = \cdots = G_{k+1} = 0\} \subset (\mathbb{C}^*)^{n+1}.
\]

Applying the results of [10], we find the Euler characteristics of the sets \(V, V_1, W:\)
\[
(22) \quad \chi(V) = n! Q_{k+1}^n(\Delta_0, \Delta_1, \ldots, \Delta_k), \quad \chi(V_1) = n! Q_k^n(\Delta_1, \Delta_2, \ldots, \Delta_k),
\]
\[
(23) \quad \chi(W) = (n + 1)! Q_{k+1}^{n+1}(C\Delta_0, \Delta_1, \ldots, \Delta_k).
\]

Consider the projection \(p: (\mathbb{C}^*)^{n+1} \to (\mathbb{C}^*)^n\) to the coordinate hyperplane with the coordinates \((z_1, z_2, \ldots, z_n)\). Its restriction \(p|_W\) provides an isomorphism between \(W\) and \(V_1 \setminus V\). Therefore,
\[
\chi(W) = \chi(V_1) - \chi(V).
\]

Applying this relation and using (22), (23), and [14], we get (21). \(\square\)

REFERENCES

Moscow Institute of Physics and Technology, Independent University of Moscow, Russia

E-mail address: gusev@mccme.ru

Received 23/SEP/2009

Translated by THE AUTHOR