Examples of Hamiltonian structures in the theory of integrable models, and their quantization
HTML articles powered by AMS MathViewer
- by
L. D. Faddeev
Translated by: M. A. Semenov-Tyan-Shanskiĭ - St. Petersburg Math. J. 25 (2014), 295-302
- DOI: https://doi.org/10.1090/S1061-0022-2014-01291-5
- Published electronically: March 12, 2014
- PDF | Request permission
Abstract:
A brief survey of certain important examples mentioned in the title and certain quantization methods.References
- V. S. Buslaev, The generating integral and the Maslov canonical operator in the WKB method, Funkcional. Anal. i Priložen. 3 (1969), no. 3, 17–31 (Russian). MR 0467854
- L. Faddeev and A. Yu. Volkov, Abelian current algebra and the Virasoro algebra on the lattice, Phys. Lett. B 315 (1993), no. 3-4, 311–318. MR 1238474, DOI 10.1016/0370-2693(93)91618-W
- Franco Magri, A simple model of the integrable Hamiltonian equation, J. Math. Phys. 19 (1978), no. 5, 1156–1162. MR 488516, DOI 10.1063/1.523777
- J.-L. Gervais, Transport matrices associated with the Virasoro algebra, Phys. Lett. B 160 (1985), no. 4-5, 279–282. MR 807873, DOI 10.1016/0370-2693(85)91327-9
- L. D. Faddeev and L. A. Takhtajan, Liouville model on the lattice, Field theory, quantum gravity and strings (Meudon/Paris, 1984/1985) Lecture Notes in Phys., vol. 246, Springer, Berlin, 1986, pp. 166–179. MR 848618, DOI 10.1007/3-540-16452-9_{1}0
- E. K. Sklyanin, The Goryachev-Chaplygin top and the method of the inverse scattering problem, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 133 (1984), 236–257 (Russian). Differential geometry, Lie groups and mechanics, VI. MR 742161
- Marcel Paul Schützenberger, Une interprétation de certaines solutions de l’équation fonctionnelle: $F(x+y)=F(x)F(y)$, C. R. Acad. Sci. Paris 236 (1953), 352–353 (French). MR 53402
- L. D. Faddeev and R. M. Kashaev, Quantum dilogarithm, Modern Phys. Lett. A 9 (1994), no. 5, 427–434. MR 1264393, DOI 10.1142/S0217732394000447
- A. Yu. Volkov, Beyond the “pentagon identity”, Lett. Math. Phys. 39 (1997), no. 4, 393–397. MR 1449584, DOI 10.1023/A:1007341702306
- L. D. Faddeev, Discrete Heisenberg-Weyl group and modular group, Lett. Math. Phys. 34 (1995), no. 3, 249–254. MR 1345554, DOI 10.1007/BF01872779
- —, Modular double of quantum group, Preprint math. QA/9912078.
Bibliographic Information
- L. D. Faddeev
- Affiliation: St. Petersburg Branch, Steklov Mathematical Institute, Russian Academy of Sciences, Fontanka 27, St. Petersburg 191023, Russia
- Email: faddeev@pdmi.ras.ru
- Received by editor(s): January 20, 2013
- Published electronically: March 12, 2014
- Additional Notes: Partially supported by RFBR (grants nos. 11-01-00570 and 11-01-12037) and by the RAS program “Mathematical problems of nonlinear dynamics”
- © Copyright 2014 American Mathematical Society
- Journal: St. Petersburg Math. J. 25 (2014), 295-302
- MSC (2010): Primary 81S05, 81S10, 81S20; Secondary 37K10
- DOI: https://doi.org/10.1090/S1061-0022-2014-01291-5
- MathSciNet review: 3114855
Dedicated: To the memory of Vladimir Buslaev