Boundary behavior and the Dirichlet problem for Beltrami equations
HTML articles powered by AMS MathViewer
- by
D. A. Kovtonyuk, I. V. Petkov, V. I. Ryazanov and R. R. Salimov
Translated by: the authors - St. Petersburg Math. J. 25 (2014), 587-603
- DOI: https://doi.org/10.1090/S1061-0022-2014-01308-8
- Published electronically: June 5, 2014
- PDF | Request permission
Abstract:
It is shown that a homeomorphic solution of the Beltrami equation $\bar {\partial }f=\mu {\partial }f$ in the Sobolev class $W^{1,1}_{\mathrm {loc}}$ is a so-called ring and, simultaneously, lower $Q$-homeomorphism with $Q(z)=K_{\mu }(z)$, where $K_{\mu }(z)$ is the dilatation ratio of this equation. On this basis, the theory of the boundary behavior of such solutions is developed and, under certain conditions on $K_{\mu }(z)$, the existence of regular solutions is established for the Dirichlet problem for degenerate Beltrami equations in arbitrary Jordan domains. Also, the existence of pseudoregular as well as many-valued solutions is proved in the case of arbitrary finitely connected domains bounded by mutually disjoint Jordan curves.References
- Vladimir Gutlyanskii, Vladimir Ryazanov, Uri Srebro, and Eduard Yakubov, The Beltrami equation, Developments in Mathematics, vol. 26, Springer, New York, 2012. A geometric approach. MR 2917642, DOI 10.1007/978-1-4614-3191-6
- Olli Martio, Vladimir Ryazanov, Uri Srebro, and Eduard Yakubov, Moduli in modern mapping theory, Springer Monographs in Mathematics, Springer, New York, 2009. MR 2466579
- Elena S. Afanas′eva, Vladimir I. Ryazanov, and Ruslan R. Salimov, On mappings in Orlicz-Sobolev classes on Riemannian manifolds, Ukr. Mat. Visn. 8 (2011), no. 3, 319–342, 461 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 181 (2012), no. 1, 1–17. MR 2906695, DOI 10.1007/s10958-012-0672-z
- Andreĭ A. Ignat′ev and Vladimir I. Ryazanov, Finite mean oscillation in mapping theory, Ukr. Mat. Visn. 2 (2005), no. 3, 395–417, 443 (Russian, with English and Russian summaries); English transl., Ukr. Math. Bull. 2 (2005), no. 3, 403–424. MR 2325895
- Denis A. Kovtonyuk and Vladimir I. Ryazanov, On the theory of lower $Q$-homeomorphisms, Ukr. Mat. Visn. 5 (2008), no. 2, 159–184, 288 (Russian, with Russian summary); English transl., Ukr. Math. Bull. 5 (2008), no. 2, 157–181. MR 2559832
- D. A. Kovtonyuk, I. V. Petkov, and V. I. Ryazanov, On the Dirichlet problem for the Beltrami equations in finitely connected domains, Ukrainian Math. J. 64 (2012), no. 7, 1064–1077. MR 3104818, DOI 10.1007/s11253-012-0699-9
- T. V. Lomako, On extension of some generalizations of quasiconformal mappings to a boundary, Ukraïn. Mat. Zh. 61 (2009), no. 10, 1329–1337 (Russian, with Russian summary); English transl., Ukrainian Math. J. 61 (2009), no. 10, 1568–1577. MR 2888544, DOI 10.1007/s11253-010-0298-6
- V. I. Ryazanov and E. A. Sevost′yanov, Equicontinuous classes of ring $Q$-homeomorphisms, Sibirsk. Mat. Zh. 48 (2007), no. 6, 1361–1376 (Russian, with Russian summary); English transl., Siberian Math. J. 48 (2007), no. 6, 1093–1105. MR 2397516, DOI 10.1007/s11202-007-0111-4
- Vladimir Gutlyanskiĭ, Vladimir Ryazanov, Uri Srebro, and Eduard Yakubov, On recent advances in the Beltrami equations, Ukr. Mat. Visn. 7 (2010), no. 4, 467–515; English transl., J. Math. Sci. (N.Y.) 175 (2011), no. 4, 413–449. MR 2977143, DOI 10.1007/s10958-011-0355-1
- Uri Srebro and Eduard Yakubov, Beltrami equation, Handbook of complex analysis: geometric function theory. Vol. 2, Elsevier Sci. B. V., Amsterdam, 2005, pp. 555–597. MR 2121867, DOI 10.1016/S1874-5709(05)80016-2
- B. V. Boyarskiĭ, Generalized solutions of a system of differential equations of first order and of elliptic type with discontinuous coefficients, Mat. Sb. (N.S.) 43(85) (1957), 451–503 (Russian). MR 0106324
- I. N. Vekua, Obobshchennye analiticheskie funktsii, Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1959 (Russian). MR 0108572
- Yu. Dybov, On regular solutions of the Dirichlet problem for the Beltrami equations, Complex Var. Elliptic Equ. 55 (2010), no. 12, 1099–1116. MR 2811958, DOI 10.1080/17476931003628224
- Bent Fuglede, Extremal length and functional completion, Acta Math. 98 (1957), 171–219. MR 97720, DOI 10.1007/BF02404474
- F. W. Gehring, Rings and quasiconformal mappings in space, Trans. Amer. Math. Soc. 103 (1962), 353–393. MR 139735, DOI 10.1090/S0002-9947-1962-0139735-8
- Raymond Louis Wilder, Topology of Manifolds, American Mathematical Society Colloquium Publications, Vol. 32, American Mathematical Society, New York, N. Y., 1949. MR 0029491
- D. A. Kovtonyuk and V. I. Ryazanov, On the theory of boundaries of spatial domains, Proceedings of the Institute of Applied Mathematics and Mechanics. Vol. 13 (Russian), Tr. Inst. Prikl. Mat. Mekh., vol. 13, Nats. Akad. Nauk Ukrainy Inst. Prikl. Mat. Mekh., Donetsk, 2006, pp. 110–120 (Russian, with Russian summary). MR 2467526
- O. Martio, V. Ryazanov, U. Srebro, and E. Yakubov, $Q$-homeomorphisms, Complex analysis and dynamical systems, Contemp. Math., vol. 364, Amer. Math. Soc., Providence, RI, 2004, pp. 193–203. MR 2099027, DOI 10.1090/conm/364/06685
- O. Martio, V. Ryazanov, U. Srebro, and E. Yakubov, On $Q$-homeomorphisms, Ann. Acad. Sci. Fenn. Math. 30 (2005), no. 1, 49–69. MR 2140298
- Jussi Väisälä, Lectures on $n$-dimensional quasiconformal mappings, Lecture Notes in Mathematics, Vol. 229, Springer-Verlag, Berlin-New York, 1971. MR 0454009
- Raimo Näkki, Boundary behavior of quasiconformal mappings in $n$-space, Ann. Acad. Sci. Fenn. Ser. A I 484 (1970), 50. MR 0285707
- F. W. Gehring and O. Martio, Quasiextremal distance domains and extension of quasiconformal mappings, J. Analyse Math. 45 (1985), 181–206. MR 833411, DOI 10.1007/BF02792549
- O. Martio and J. Sarvas, Injectivity theorems in plane and space, Ann. Acad. Sci. Fenn. Ser. A I Math. 4 (1979), no. 2, 383–401. MR 565886, DOI 10.5186/aasfm.1978-79.0413
- Witold Hurewicz and Henry Wallman, Dimension Theory, Princeton Mathematical Series, vol. 4, Princeton University Press, Princeton, N. J., 1941. MR 0006493
- Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York, Inc., New York, 1969. MR 0257325
- F. W. Gehring and Olli Lehto, On the total differentiability of functions of a complex variable, Ann. Acad. Sci. Fenn. Ser. A I 272 (1959), 9. MR 0124487
- D. Menchoff, Sur les différentielles totales des fonctions univalentes, Math. Ann. 105 (1931), no. 1, 75–85 (French). MR 1512705, DOI 10.1007/BF01455809
- Denis Kovtonyk and Vladimir Ryazanov, On the theory of mappings with finite area distortion, J. Anal. Math. 104 (2008), 291–306. MR 2403438, DOI 10.1007/s11854-008-0025-5
- Vladimir G. Maz’ja, Sobolev spaces, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1985. Translated from the Russian by T. O. Shaposhnikova. MR 817985, DOI 10.1007/978-3-662-09922-3
- V. Ryazanov, U. Srebro, and E. Yakubov, On ring solutions of Beltrami equations, J. Anal. Math. 96 (2005), 117–150. MR 2177183, DOI 10.1007/BF02787826
- Vladimir Ryazanov, Uri Srebro, and Eduard Yakubov, On integral conditions in the mapping theory, Ukr. Mat. Visn. 7 (2010), no. 1, 73–87; English transl., J. Math. Sci. (N.Y.) 173 (2011), no. 4, 397–407. MR 2798548, DOI 10.1007/s10958-011-0257-2
- V. Ryazanov, U. Srebro, and E. Yakubov, To strong ring solutions of the Beltrami equation, Uzbek. Mat. Zh. 1 (2009), 127–137 (English, with Russian and Uzbek summaries). MR 2571387
- V. Ryazanov, U. Srebro, and E. Yakubov, On strong solutions of the Beltrami equations, Complex Var. Elliptic Equ. 55 (2010), no. 1-3, 219–236. MR 2599622, DOI 10.1080/17476930903100417
- V. Ryazanov, U. Srebro, and E. Yakubov, Integral conditions in the theory of the Beltrami equations, Complex Var. Elliptic Equ. 57 (2012), no. 12, 1247–1270. MR 2991571, DOI 10.1080/17476933.2010.534790
- Stanisław Saks, Theory of the integral, Second revised edition, Dover Publications, Inc., New York, 1964. English translation by L. C. Young; With two additional notes by Stefan Banach. MR 0167578
- Thomas Ransford, Potential theory in the complex plane, London Mathematical Society Student Texts, vol. 28, Cambridge University Press, Cambridge, 1995. MR 1334766, DOI 10.1017/CBO9780511623776
- S. Stoïlow, Leçons sur les principes topologiques de la théorie des fonctions analytiques. Deuxième édition, augmentée de notes sur les fonctions analytiques et leurs surfaces de Riemann, Gauthier-Villars, Paris, 1956 (French). MR 0082545
- G. M. Goluzin, Geometric theory of functions of a complex variable, Translations of Mathematical Monographs, Vol. 26, American Mathematical Society, Providence, R.I., 1969. MR 0247039
- Adolf Hurwitz and R. Courant, Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen, Interscience Publishers, Inc., New York, 1944 (German). MR 0011320
Bibliographic Information
- D. A. Kovtonyuk
- Affiliation: Institute of Applied Mathematics and Mechanics, National Academy of Sciences of Ukraine, 74 Roze Luxemburg str., Donetsk 83114, Ukraine
- Email: denis_kovtonyuk@bk.ru
- I. V. Petkov
- Affiliation: Institute of Applied Mathematics and Mechanics, National Academy of Sciences of Ukraine, 74 Roze Luxemburg str., Donetsk 83114, Ukraine
- Email: igorpetkov@list.ru
- V. I. Ryazanov
- Affiliation: Institute of Applied Mathematics and Mechanics, National Academy of Sciences of Ukraine, 74 Roze Luxemburg str., Donetsk 83114, Ukraine
- Email: vl.ryazanov1@gmail.com
- R. R. Salimov
- Affiliation: Institute of Applied Mathematics and Mechanics, National Academy of Sciences of Ukraine, 74 Roze Luxemburg str., Donetsk 83114, Ukraine
- MR Author ID: 824987
- Email: ruslan623@yandex.ru
- Received by editor(s): June 6, 2012
- Published electronically: June 5, 2014
- © Copyright 2014 American Mathematical Society
- Journal: St. Petersburg Math. J. 25 (2014), 587-603
- MSC (2010): Primary 30C65; Secondary 30C75, 35J46, 35J50, 35J56, 35J70, 35Q35
- DOI: https://doi.org/10.1090/S1061-0022-2014-01308-8
- MathSciNet review: 3184618