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ABEL AND TAUBERIAN THEOREMS FOR INTEGRALS

A. F. GRISHIN AND I. V. POEDINTSEVA

Abstract. A new method is suggested for obtaining Abel and Tauberian Theorems
for integrals of the form

∫ ∞
0 K

(
t
r

)
dμ(t). It is based on properties of limit sets for

measures. Accordingly, a version of Azarin’s cluster set theory for Radon measures
on the half-line (0,∞) is created. Theorems of new sort are proved, in which the
asymptotic behavior of the above integrals is described in terms of cluster sets for
μ. With the use of these results and a stronger version (also proved in the paper) of
Karleman’s well-known analytic continuation lemma, the second Tauberian theorem
by Wiener is refined considerably.
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§1. Preface

Since a proximate order occurs in the most part of the statements presented here, we
begin with some notation and relevant facts.

Proximate orders ρ(r) play an important part in the theory of Abel and Tauberian
theorems, in the growth theory for subharmonic functions, and in probability theory.
If ρ(r) is a proximate order, then the function V (r) = rρ(r) is a Karamata function of
slow regular variation. Some properties of a proximate order were discussed in [1]. The
more resent book [2] is an encyclopaedic treatise on regularly varying functions and their
applications.

Before the formal definition of a proximate order, the reader may assume that V (r) =
rρa(r),

a(r) =

{
lnα(er), r ≥ 1,

lnα e
r , r ∈ (0, 1),

where ρ and α are arbitrary real numbers.
Let ρ = ρ(∞) = limr→∞ ρ(r). Putting

(1.1) γ(t) = sup
r>0

V (rt)

tρV (r)
,

we clearly have V (rt) ≤ tργ(t)V (r) for r > 0 and t > 0.
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In Theorem 9 (in the Preface we use the same enumeration of statements as in the
main text) it will be proved that γ(t) is a continuous function with

lim
t→∞

ln γ(t)

ln t
= 0, lim

t→∞

ln γ
(
1
t

)
ln t

= 0.

This theorem is a slight refinement of Potter’s result in [3] and lightens its statement.
It is an important tool for handling proximate orders. In what follows, we do not denote
any other functions by γ(t) .

Now, we define two classes of Radon measures on (0,∞). We shall mainly deal with
measures of these classes here.

Let M∞(ρ(r)) denote the class of Radon measures on (0,∞) that obey the inequality

sup
r≥1

|μ|([r, er])
V (r)

< ∞.

Next, M(ρ(r)) will denote the class of Radon measures on (0,∞) that obey the in-
equality

sup
r>0

|μ|([r, er])
V (r)

< ∞.

If

lim sup
r→∞

|μ|([r, er])
V (r)

∈ (0,∞),

then the proximate order ρ(r) will be called a proximate order for the measure μ, and the
number ρ = ρ(∞) will be called the order of μ. Thus, Radon measures of an arbitrary
real order can be considered.

In accordance with Azarin’s ideas, the cluster set Fr[μ] = Fr[ρ(r), μ] of a Radon
measure is defined to be the set of all measures ν of the form ν = limn→∞ μtn , where
tn → ∞ and μt is defined by the formula

μt(E) =
μ(tE)

V (t)
.

The relation ν = limn→∞ μtn means that the sequence μtn converges coarsely to ν. The
coarse convergence will be defined in §3.

It can be shown that if μ ∈ M∞(ρ(r)), then the set Fr[μ] possesses the properties
listed in the corresponding theorem by Azarin, see [4]. These properties are also listed
in Theorem 20 of the present paper. Azarin only considered positive measures on Rn;
he defined a proximate order of a measure in a somewhat different way, applicable only
when ρ > 0. In this case, our definition of a proximate order is equivalent to Azarin’s
definition. It should also be noted that Azarin considered a convergence of measures
different from that used here.

A measure μ is said to be (Azarin) regular if the cluster set Fr[μ] consists of a unique
measure ν. In this case, necessarily dν(t) = ctρ−1 dt (Theorem 27).

The following notation will be adopted throughout the paper.

1. The function Ψ(r) is defined by

(1.2) Ψ(r) =

∫ ∞

0

K
( t

r

)
dμ(t).

Sometimes a more informative notation Ψ(K, r) will be used in place of Ψ(r).

2. J(r) = 1
V (r)Ψ(r).

3. The measure s is defined by ds(t) = Ψ(t) dt.
The symbol μ(t) will denote the distribution function of a measure μ, so that μ((a, b]) =

μ(b)− μ(a).



ABEL AND TAUBERIAN THEOREMS FOR INTEGRALS 359

The cluster set of a function f in the direction r → ∞ (i.e., the set of limits
limn→∞ f(rn) as rn → ∞) will be denoted by L(f,∞).

A function f(r) is said to be compactly supported on (0,∞) if supp f ⊂ [a, b] ⊂ (0,∞).
The properties of Fr[μ] have permitted us to prove several new theorems of Abel and

Tauberian type for integrals of the form (1.2).
Theorems of Abel type are those describing properties of Ψ if μ is given.
Theorems of Tauberian type are those describing properties of μ on the basis of known

properties of Ψ.
Many well-known theorems of Abel type claim that Ψ(r) ∼ BV (r) whenever μ′(t) ∼

AV (t)
t (t → ∞). See, for instance, the books [2, 5, 6, 7].
We state a simplest Abel type theorem of the present paper.

Theorem 31. Let μ ∈ M∞(ρ(r)), and let K be a continuous compactly supported kernel
on (0,∞). Then

L(J,∞) =

{∫ ∞

0

K(t) dν(t) : ν ∈ Fr[μ]

}
.

Other Abel type theorems obtained here are analogs of Theorem 31, which are proved
under various restrictions on K and μ. Sometimes we lift the requirement that K be
compactly supported. In other, more complicated cases, we also lift the requirement that
K be continuous. In the general case, K is a Borel function on (0,∞).

An important distinction of the above results from the results known before should be
mentioned. In the latter, the case of a regular measure μ was treated. In our results, a
much wider class of measures is studied. In particular, this is M∞(ρ(r)) in Theorem 31.

Without the assumption of continuity for K, the cluster set Fr[μ] with an arbitrary
Radon measure μ does not determine the set L(J,∞) any longer, as can be seen from
Theorem 32.

An important new result is the statement that, for discontinuous K, the cluster set
Fr[μ] determines the set Fr[s] uniquely. The involvement of the cluster set Fr[s] for the
measure s should be treated as an achievement of the paper. The next statement is
among our principal results. Recall that γ(t) is defined by (1.1).

Theorem 38. Let ρ(r) be an arbitrary proximate order, and let μ ∈ M(ρ(r)). Suppose
that K is a Borel function on (0,∞) such that tρ−1γ(t)K(t) ∈ L1(0,∞), and let Ψ be
defined by (1.2). Then the measure s, ds(t) = Ψ(t) dt, belongs to M(ρ(r) + 1), and
its cluster set Fr[ρ(r) + 1, s] consists of absolutely continuous measures whose densities
constitute the set {∫ ∞

0

K
( t

u

)
dν(t) : ν ∈ Fr[μ]

}
.

In the case where our results yield L(J,∞) = {0}, the question about the order of
growth of Ψ(r) at infinity remains open.

Consider the case where the kernel K is infinitely differentiable on (0,∞) and com-
pactly supported. Then, along with (1.2), we have the following formulas for Ψ(r):

(1.3) (−1)n+1rn+1Ψ(r) =

∫ ∞

0

K(n+1)
( t

r

)
Fn(t) dt, n = 0, 1, . . . ,

where F0(t) = μ(t), F ′
n+1(t) = Fn(t).

The question arises as to whether Theorem 31 and formulas (1.3) allow us to determine
the order of growth of Ψ(r) at infinity. This question will be treated in §4. The answer
is as follows. Often, the order can be determined, but there are various exceptional cases
in which the question lies beyond the scope of the present paper.

Now, we turn to Tauberian theorems. We recall the important Tauberian theorems
proved by Wiener.
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Theorem 1. Suppose F (x) ∈ L1(−∞,∞) with
∫ ∞
−∞ F (x)e−iλx dx 	= 0 for λ ∈ (−∞,∞),

and let g(x) be a bounded measurable function on the real axis. Let

lim
x→+∞

∫ ∞

−∞
F (x− y)g(y) dy = A

∫ ∞

−∞
F (y) dy.

Then for every H ∈ L1(−∞,∞) we have

lim
x→+∞

∫ ∞

−∞
H(x− y)g(y) dy = A

∫ ∞

−∞
H(y) dy.

Denote by M the space of continuous functions F on (−∞,∞) with the mixed norm

‖F‖M =

∞∑
n=−∞

max
{
|F (x)| : x ∈ [n, n+ 1]

}
.

The next statement is often called Wiener’s second Tauberian theorem.

Theorem 2. Suppose that F ∈ M and
∫ ∞
−∞ F (x)e−iλx dx 	= 0 for λ ∈ (−∞,∞). Let ν

be a Radon measure on the real axis such that |ν|([n, n + 1]) ≤ B for every n, with B
independent of n. Let

lim
x→+∞

∫ ∞

−∞
F (x− y) dν(y) = A

∫ ∞

−∞
F (y) dy.

Then for every H ∈ M we have

lim
x→+∞

∫ ∞

−∞
H(x− y) dν(y) = A

∫ ∞

−∞
H(y) dy.

It will be convenient for us to deal with the multiplicative version of Theorem 2
resulting from it by the change of variables y = ln t in the integrals. We use also the
notation x = ln r, K(t) = 1

tF (− ln t), dμ(t) = tdν(ln t).
Let M1 denote he space of function K continuous on (0,∞) and such that the series∑∞
n=−∞ Kne

n converges, where Kn = max{|K(x)| : x ∈ [en, en+1]}.

Theorem 3. Suppose that K(t) ∈ M1 satisfies
∫ ∞
0

K(t)tiλ dt 	= 0, λ ∈ (−∞,∞). Let μ

be a Radon measure on (0,∞) such that |μ|([en, en+1]) ≤ Ben for all integers n, with B
independent of n. Suppose that

lim
r→∞

1

r

∫ ∞

0

K
( t

r

)
dμ(t) = A

∫ ∞

0

K(t) dt.

Then for every Q ∈ M1 we have

lim
r→∞

1

r

∫ ∞

0

Q
( t

r

)
dμ(t) = A

∫ ∞

0

Q(t) dt.

The wording of Theorem 3 inherits Wiener’s wording of Tauberian theorems. However,
Theorem 3 is equivalent to a statement in a more standard form specific for Tauberian
theorems.

Theorem 4. Suppose that K(t) ∈ M1 satisfies
∫ ∞
0

K(t)tiλ dt 	= 0 for λ ∈ (−∞,∞). Let

μ be a Radon measure on (0,∞) such that |μ|([en, en+1]) ≤ Ben for all integers n, with
B independent of n. Suppose also that the following limit exists:

lim
r→∞

1

r

∫ ∞

0

K
( t

r

)
dμ(t) = c.

Then the cluster set Fr[μ] consists of a unique measure ν, specifically, dν(x) = c
c1

dx,

c1 =
∫ ∞
0

K(t) dt.
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Theorem 4 is a trivial consequence of Theorems 3 (it suffices to look at the precise
definition of the cluster set in the present paper, namely, at the explanation of the
meaning of the relation μtn → ν). At the same time, Theorem 3 is a consequence of
Theorem 4 and the corresponding Abel-type theorem.

Now, we analyze a Tauberian theorem proved in this paper.

Theorem 52. Let ρ(r) be an arbitrary proximate order. Suppose that μ is a Radon mea-
sure on (0,∞) belonging to M(ρ(r)) and K a Borel function on (0,∞) with tρ−1γ(t)K(t)
∈ L1(0,∞). Suppose also that the function

∫ ∞
0

K(t)tρ−1+iλ dt does not vanish on the real
axis. Let Ψ(r) be defined by (1.2). If the measure s, ds(t) = Ψ(t) dt, is regular with re-
spect to the proximate order ρ(r)+ 1, then μ is regular with respect to ρ(r). Moreover, if
Fr[s] consists of only one measure whose density is ctρ, then Fr[μ] reduces to the measure
whose density is c

c1
tρ−1, where c1 =

∫ ∞
0

K(t)tρ−1 dt.

1. Theorem 4 is about the case of ρ(r) ≡ 1, Theorem 52 is about a general proximate
order. However, even the partial case of Theorem 52 with ρ(r) ≡ 1 is much stronger than
Theorem 4. We comment on this case in detail.

2. The assumptions about K are relaxed considerably. We permit discontinuities and
local unboundedness of K. In Theorem 4, it was required that K be continuous and the
series

∑∞
n=−∞ Kne

n converge. In the partial case in question of Theorem 52, the last
requirement is relaxed to K(t) ∈ L1(0,∞).

3. The requirement that the limit limr→∞
1
rΨ(r) should exist is replaced in the version

in quastion of Theorem 52 by, roughly speaking, the requirement that the limit

lim
r→∞

1

r2

∫ r

1

Ψ(t) dt

should exist (see Theorem 29 and 30 for precise statements).
However, the conclusions of Theorem 4 and of the version in question of Theorem 52

are the same.
Also, Theorem 52 is a refinement of the result by Bingham, Goldie, and Teugels (see

[2, Subsection 4.9, Theorem 4.9.1]; it was also quoted in [7, Chapter 4, Theorem 9.3]).
Like Theorem 52, the theorem of Bingham, Goldie, and Teugels treats an arbitrary
proximate order. But, unlike Theorem 52, it treats only positive measures and requires
the finiteness of the mixed norm for K.

We say a few words about the proof of Theorem 52 and the proof of the uniqueness
of a solution of the integral equation∫ ∞

0

K
( t

r

)
dν(t) = crρ

with an unknown measure ν. This is done by the Carleman method, but we must improve
Carleman’s analytic continuation lemma.

Also, a version of Theorem 52 will be proved where the function
∫ ∞
0

K(t)tρ−1+iλ dt is
permitted to vanish on a finite set on the real axis.

Resorting to some repetition, we emphasize once again the following. We consider
integrals of the form ∫ ∞

0

K
( t

r

)
f(t) dt,

∫ ∞

0

K
( t

r

)
dμ(t).

Such integrals occur in the theory of growth of entire and subharmonic functions, in
probability theory, in the proofs Abel-type and Tauberian theorems, in operator theory.

In the majority of the preceding Abel-type theorems for such integrals, it was assumed
that f(t) ∼ c

tV (t), μ(t) ∼ CV (t) (t → ∞). We prove Abel-type theorems under the basic
assumption that μ ∈ M∞(ρ(r)).
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In the previous results of Abel and Tauberian type for the integrals
∫ ∞
0

K
(
t
r

)
dμ(t),

the kernel K was subject to fairly strong restrictions. For instance, in Theorems 4.4.2
and 4.9.1 in [2] (which are most close to our results), it was required that K be continuous
and

∞∑
n=−∞

min
(
e−σn, e−τn

)
max

[en,en+1]
|K(t)| < ∞,

where σ and τ satisfy σ < ρ < τ and ρ is the order of μ. We relax this requirement to
K(t)tρ−1γ(t) ∈ L1(0,∞). In their comments to Theorem 4.9.1 (Subsection. 4.9, item 2),
the authors of [2] wrote: “As to the continuity of K, no clear general method of lifting
this condition is apparent”.

In the majority of our proofs, we use the properties of cluster sets for measures. Earlier,
similar properties were used in the theory of growth for subharmonic functions.

§2. On proximate orders

Let f(r) be a positive function on (0,∞). Suppose we want to describe its asymptotic
behavior at infinity. An important numerical characteristic of f is its order ρ defined
by the formula

ρ = lim sup
r→∞

ln f(r)

ln r
.

In general, ρ is an element of the extended real line [−∞,∞]. The relation ρ ∈ (−∞,∞)
distinguishes an important class of functions called the functions of finite order. In the
sequel, we consider the functions of finite order only.

If ρ is the order of f and ε is an arbitrary strictly positive number, then

f(r) < rρ+ε, r ≥ R(ε),

f(r) > rρ−ε, r ∈ E,
(2.4)

where E is a certain unbounded set depending on ε and f . If, in a specific problem,
inequalities (2.4) are too rough, finer growth characteristics should be introduced.

The type of f at the order ρ is the quantity

σ = lim sup
r→∞

f(r)

rρ
.

The example of f(r) = Arρ(ln(e+r))β, A > 0, β ∈ (−∞,∞), shows that, for functions
of order ρ, the quantity σ can be an arbitrary element of the set [0,∞].

The functions f is said to be of minimal, normal, or maximal type at the order ρ if,
respectively, σ = 0, σ ∈ (0,∞), and σ = ∞. If σ < ∞, then for every ε > 0 we have

f(r) < (σ + ε)rρ, r ≥ R(ε),

f(r) > (σ − ε)rρ, r ∈ E,
(2.5)

where E is a certain unbounded set depending on f and ε. Inequalities (2.5) are much
sharper than (2.4).

We say that a function f(r) grows at infinity as ϕ(r) if there are two constants a and b,
0 < a < b, with

f(r) < bϕ(r), r > R,

f(r) > aϕ(r), r ∈ E,

where E is an unbounded set. If f(r) is of minimal type at the order ρ, then inequali-
ties (2.5) show that f(r) grows at infinity as rρ.

The following problem, to be called Problem A, arises naturally in connection with
the said above. Indicate a class A that consists of fairly simple functions resembling rρ
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and has the property that for every f of finite order there exists a function ϕ(r) in A

such that f(r) grows at infinity as ϕ(r).
We already know that the class consisting of only one function rρ does not fit. Let

lnk r be the kth iteration of the logarithm (for example, ln2 r = ln ln r). We denote by
ek the sequence defined by e1 = e, ek+1 = eek . It can be shown that the class consisting
of the functions

(2.6) ϕ(r) = rρ(ln(r + e))α1 . . . (lnk(r + ek))
αk ,

where k is an arbitrary positive integer, also does not fit. Clearly, the problem stated
above is nontrivial. A way to its solution was indicated by Valiron, see [8].

A locally absolutely continuous function ρ(r) on (0,∞) is called a proximate order (in
the sense of Valiron) if

1) limr→+∞ ρ(r) = ρ(∞) = ρ ∈ (−∞,∞);
2) limr→+∞ r ln rρ′(r) = 0.
Note that ρ′(r) is understood as a derivation number of maximal absolute value.
We shall use the following property of a proximate order (see, e.g., [1, Chapter 1,

§12]).
Theorem 5. Let ρ(r) be an arbitrary proximate order, and let ρ = ρ(∞). Then for
every t > 0 the following limit exists:

lim
r→∞

V (tr)

V (r)
= tρ.

Moreover, the convergence is uniform on every segment [a, b] ⊂ (0,∞).

A proximate order ρ(r) is called a proximate order of a function f(r) if

lim sup
r→∞

f(r)

V (r)
= σ ∈ (0,∞).

This relation is equivalent to the statement that f(r) grows at infinity as V (r). Note
also that if ρ(r) is a proximate order for f(r), then ρ = ρ(∞) is the order of f(r).

The notion of a proximate order is important because the class A consisting of the
functions V (r) = rρ(r) is a solution of Problem A stated above. This is a consequence of
the following statement.

Theorem 6. Let f(r) be a function of finite order ρ. Then there exists a proximate
order ρ(r) such that the following conditions are satisfied:

1) limr→∞ ρ(r) = ρ;
2) ρ(r) is a monotonic function on [1,∞);
3) we have

(r + e) ln(r + e)|ρ′(r)| ≤ |ρ(r)− ρ|, r ≥ 1;

4) we have

lim sup
r→∞

f(r)

V (r)
= σ ∈ (0,∞).

The proof of this theorem can be found in [9]. However, in [9] the continuity of f(r)
was assumed. We are going to show that this additional requirement is inessential.

Let f(r) be an arbitrary function of order ρ. There is no loss of generality in assuming
that f(r) is bounded on any segment [0, N ]. Taking an integer n ≥ 0, we denote mn =
inf{f(x) : x ∈ [n, n + 1]}, Mn = sup{f(x) : x ∈ [n, n + 1]}, αn = n + 1

3 , βn = n + 2
3 .

We construct a function f1(r) in the following way. It is linear on every segment [n, αn],
[αn, βn], [βn, n + 1] and f1(n) = f(n), f1(αn) = mn, f1(βn) = Mn. Then f1(r) is
continuous on [0,∞). Clearly, every proximate order for f1(r) is also a proximate order
for f(r).
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We note that the function ρ(r) whose existence is claimed in Theorem 6 possesses
some additional properties that may be absent for arbitrary proximate orders. First,
this is the condition for ρ(r) to be monotonic, and second, condition 3) in the theorem
is a stronger restriction on ρ(r) than the requirement limr→+∞ r ln rρ′(r) = 0 in the
definition of a proximate order. For this reason, Theorem 6 does not follow from similar
statements in [1, 2].

We also note the relationship of proximate orders with regularly varying functions in
the sense of Karamata.

A positive function f on (0,∞) is said to be regularly varying in the sense of Karamata
if for every λ > 0 the limit

lim
r→∞

f(λr)

f(r)

exists and is finite. We have the following statement.

Theorem 7. If f(r) is a measurable function regularly varying in the sense of Karamata,
then there exists a function C(r) → 1 (as r → ∞) and a proximate order ρ(r) with
f(r) = C(r)V (r).

This is a well-known theorem about representation of regularly varying functions (see,
e.g., [2, Theorem 1.3.1]).

A proximate order ρ(r) is said to be a zero proximate order if limr→∞ ρ(r) = 0.
If ρ(r) is an arbitrary proximate order, then ρ(r) = ρ+ pρ(r), where ρ = limr→∞ ρ(r)

and pρ(r) is a zero proximate order.
The introduction of proximate orders is aimed at the possibility for every function f(r)

of finite order to find a function V (r) = rρ(r) such that f(r) grows at infinity as V (r).
In this setting, the behavior of ρ(r) near zero plays no role. However, specific problems
of various origins often lead to integrals of the form

∫ ∞
0

K(t, r)V (t) dt. In the study of
such integrals, the behavior of ρ(t) near zero is as important as its behavior near infinity.
Thus, in this paper we shall assume in addition to the above that any zero proximate
order ρ(t) satisfies ρ

(
1
r

)
= −ρ(r), which is equivalent to the relation V

(
1
r

)
= V (r). For

instance, the function V (r) = 1 + | ln r|α, α > 1, is such. The corresponding proximate
order is given by the formula

ρ(r) =
ln(1 + | ln r|α)

ln r
.

Note that for α ≤ 1 the function given by this formula is not a proximate order because,
by definition, a proximate order ρ(r) must be absolutely continuous on (0,∞).

We also note that the relation ρ
(
1
r

)
= −ρ(r) singles out the point 1 among other

points on (0,∞). In particular, we see that ρ(1) = 0.
In the study of a proximate order, along with ρ(r) it is useful to employ the function

η(r) = ρ(r) + r ln rρ′(r). We have

(2.7) V (r) = exp

( ∫ r

1

η(t)

t
dt

)
.

The proof of this relation reduces to taking the logarithms of the two sides followed by
differentiation.

If ρ(r) is zero proximate order, then η(r) → 0 as r → ∞. If, moreover, ρ
(
1
r

)
= −ρ(r),

then η
(
1
r

)
= −η(r) and, by (2.7), it easily follows that

(2.8) V (r) ≤ Mε(r
ε + r−ε)

on (0,∞) for every ε > 0. Though rough, this inequality turns out to be useful sometimes.
If η(t) is a locally integrable function on [1,∞) tending to zero at infinity, then there

exists an infinitely differentiable function η1(t) on [1,∞) tending to zero at infinity
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and such that the integral
∫ ∞
1

|η(t)−η1(t)|
t dt converges. Moreover, we can require that∫ ∞

1
η(t)−η1(t)

t dt = 0. Then the function V (r) defined by (2.7) satisfies

V (r) = C(r)V1(r),

where

V1(r) = exp

( ∫ r

1

η1(t)

t
dt

)
, C(r) = exp

( ∫ ∞

r

η1(t)− η(t)

t
dt

)
.

These comments imply the following statement.

Theorem 8. Let ρ(r) be an arbitrary zero proximate order such that ρ
(
1
r

)
= −ρ(r).

Then

(2.9) V (r) = C(r)V1(r),

where V1(r)=rρ1(r), ρ1(r) is a zero proximate order infinitely differentiable on (0,∞)\{1}
and satisfying ρ1

(
1
r

)
= −ρ1(r), and C(r) is a function continuous on (0,∞) and such

that C(r) → 1 as r → ∞ or r → 0. Moreover, the infinitesimal order of C(r) − 1 as
r → ∞ and as r → 0 can be prescribed arbitrarily.

Next, we shall explore the function γ(t) mentioned in the Preface. The following
lemma contains some easy properties of γ(t).

Lemma 1. Let ρ(r) be a zero proximate order satisfying ρ
(
1
r

)
= −ρ(r), and let

γ(t) = γ(ρ( · ), t) = sup
r>0

V (rt)

V (r)
, γ(t) = γ(ρ( · ), t) = inf

r>0

V (rt)

V (r)
.

Then the following statements hold true.
1) γ(t), γ(t) ∈ (0,∞);
2) γ(t) ≤ γ(t), γ(1) = γ(1) = 1;

3) γ
(
1
t

)
= 1

γ(t) , γ
(
1
t

)
= γ

(
ρ( · ), 1t

)
= γ(−ρ( · ), t);

4) γ(t1t2) ≤ γ(t1)γ(t2), γ(t1t2) ≥ γ(t1)γ(t2);
5) γ(t) ≥ V (t), γ(t) ≤ V (t);
6) the functions γ(t) and γ(t) are continuous on (0,∞).

Proof. Statement 2) is obvious. Next, we have

γ
(1

t

)
= sup

r>0

V
(
r
t

)
V (r)

= sup
R>0

V (R)

V (tR)
=

1

infR>0
V (tR)
V (R)

=
1

γ(t)
,

γ
(1

t

)
= sup

R>0

V (R)

V (tR)
= sup

R>0

Rρ(R)

(tR)ρ(tR)
= sup

R>0

(tR)−ρ(tR)

R−ρ(R)
= γ(−ρ( · ), t).

This proves 3).
Since V (1) = 1, property 5) follows.

Since limr→∞
V (rt)
V (r) = 1 and limr→0

V (rt)
V (r) = 1, there exist r1 and r2, 0 < r1 < r2,

such that V (rt)
V (r) ≤ 2 for r ∈ (0, r1) ∪ (r2,∞). Since the function V (rt)

V (r) is continuous for

r ∈ [r1, r2], there exists M > 0 such that V (rt)
V (r) ≤ M for r ∈ [r1, r2]. If follows that

γ(t) ≤ max(M, 2). Together with the inequality γ(t) ≥ V (t), this yields γ(t) ∈ (0,∞).
Next, γ(t) ∈ (0,∞) by 3). This proves statement 1).

Statement 4) is obvious.
Put

γ(r, t) =
V (tr)

V (r)
.
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Let [a, b] be an arbitrary segment in (0,∞), and let ε be an arbitrary strictly positive
number. Since, by Theorem 5, the limits

lim
r→∞

V (rt)

V (r)
= 1, lim

r→0

V (rt)

V (r)
= 1

are attained uniformly on [a, b], we can find r3 and r4, 0 < r3 < r4, such that for all t1,
t2 ∈ [a, b] and all r ∈ (0, r3) ∪ (r4,∞) we have

(2.10) −ε ≤ γ(r, t2)− γ(r, t1) ≤ ε.

Since γ(r, t) is continuous on the rectangle [r3, r4] × [a, b], by the Cantor theorem it
is uniformly continuous on this rectangle. Thus, there exists δ > 0 such that (2.10)
is fulfilled whenever t1, t2 ∈ [a, b] and |t1 − t2| < δ. Together with the facts proved
earlier, this implies that (2.10) is fulfilled with arbitrary r > 0 whenever t1, t2 ∈ [a, b]
and |t2 − t1| < δ.

Let t1, t2 ∈ [a, b] and |t2 − t1| < δ. Then for every r > 0 we have

γ(t2)− γ(t1) ≤ γ(t2)− γ(r, t1).

There exists r > 0 such that γ(t2) < γ(r, t2) + ε. Together with (2.10), this yields
γ(t2)− γ(t1) < 2ε. Interchanging the roles of t1 and t2, we arrive at |γ(t2)− γ(t1)| < 2ε.
This implies the continuity of γ(t) on the segment [a, b] and, consequently, on (0,∞).
Thus, statement 6) and, with it, the lemma, are proved. �

Theorem 9. Let ρ(r) be an arbitrary zero proximate order with ρ
(
1
r

)
= −ρ(r), and let

(2.11) γ(t) = sup
r>0

V (tr)

V (t)
.

Then

lim
t→∞

ln γ(t)

ln t
= 0, lim

t→∞

ln γ
(
1
t

)
ln t

= 0.

Proof. We define V1(r) by (2.9). Then

1

M
≤ V1(r)

V (r)
≤ M.

Next, we have

γ(t) = sup
r>0

V (rt)

V (r)
= sup

r>0

V1(rt)

V1(r)

V (rt)

V1(rt)

V1(r)

V (r)
≤ M2 sup

r>0

V1(rt)

V1(r)
= M2γ(ρ1( · ), t).

Therefore, it suffices to prove the theorem in the case where the proximate order ρ(r) is
differentiable on the set (0,∞) \ {1}. In the rest of the proof, we assume this.

Put h(x) = lnV (ex). Then h(x) is a continuous even function differentiable every-
where except, maybe, at zero. The fact that ρ(r) is a zero proximate order implies

(2.12) lim
x→+∞

h(x)

x
= 0.

The condition limr→∞ r ln rρ′(r) = 0, which is equivalent to limr→∞
rV ′(r)
V (r) = 0, leads to

the relation

(2.13) lim
x→+∞

h′(x) = 0.

We have

ϕ(y) = ln γ(ey) = sup
x∈(−∞,∞)

(
h(x+ y)− h(x)

)
.
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The first statement of the theorem is equivalent to the relation

(2.14) lim
y→+∞

ϕ(y)

y
= 0.

If (2.14) fails, then there exists a > 0, a sequence yn → +∞, and a sequence xn ∈
(−∞,∞) such that

(2.15) |h(xn + yn)− h(xn)| ≥ ayn.

Moreover, we may also assume that there exists α ∈ [−∞,∞] with xn → α as n → ∞.
Let ε be an arbitrary number in the interval

(
0, 1

2a
)
.

Suppose that α ∈ (−∞,∞). Then the inequalities

|h(xn + yn)− h(xn)| ≤ ε(xn + yn) + |h(α)|+ 1 ≤ εyn + ε(|α|+ 1) + |h(α)|+ 1

are fulfilled for all sufficiently large n. This contradicts (2.15).
Suppose that α = +∞. Then there exists ξn ∈ (xn, xn + yn) such that h(xn + yn) −

h(xn) = h′(ξn)yn. Now, (2.13) shows that |h(xn + yn)− h(xn)| ≤ εyn for all sufficiently
large n. This contradicts (2.15).

Now, suppose that α = −∞. We may assume additionally that there exists β ∈
[−∞,∞] with xn + yn → β as n → ∞.

Suppose that β ∈ (−∞,∞). Then for all sufficiently large n we have

|h(xn + yn)− h(xn)| ≤ |h(β)|+ 1 + ε|xn| ≤ |h(β)|+ 1 + ε|xn + yn|+ εyn

≤ |h(β)|+ 1 + ε(|β|+ 1) + εyn.

This contradicts (2.15).
Suppose that β = −∞. Then there exists ξn ∈ (xn, xn+yn) with h(xn+yn)−h(xn) =

h′(ξn)yn. Since h is even, (2.13) shows that |h(xn+yn)−h(xn)| ≤ εyn for all sufficiently
large n. This contradicts (2.15).

Now, suppose that β = +∞. Then for all n sufficiently large we have

|h(xn + yn)− h(xn)| ≤ ε(xn + yn) + ε|xn| = εyn.

This contradicts (2.15).
The contradictions obtained above prove (2.14) and, with it, the formula

(2.16) lim
t→+∞

ln γ(t)

ln t
= 0.

Together with statement 3) of Lemma 1, this yields the relation

�(2.17) lim
t→+∞

ln γ
(
1
t

)
ln t

= 0.

Let ρ(r) be a proximate order representable in the form ρ(r) = ρ + pρ(r), where pρ(r)
is a zero proximate order satisfying pρ

(
1
r

)
= −ρ

(
1
r

)
. Then for r > 0 and t > 0 we have

(2.18) V (rt) ≤ tργ(t)V (r),

where the continuous function γ(t) satisfies (2.16) and (2.17). As was mentioned in
the Preface, this inequality is a refinement of Potter’s result [3] with a much simpler
statement. Potter’s result was cited and used in [2]. Inequality (2.18) will be employed
fairly often in this paper. In particular, the proof of the following lemma shows why this
inequality is important.

Lemma 2. Let ρ(r) be an arbitrary zero proximate order satisfying ρ
(
1
r

)
= −ρ(r), and

let

V1(r) =
2r

π

∫ ∞

0

V (t)

t2 + r2
dt.
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Then the following statements are true:
1) V1(r) admits a holomorphic extension from (0,∞) to the half-plane Re z > 0;
2) V1(r) = rρ1(r), where ρ1(r) is a zero proximate order satisfying ρ1

(
1
r

)
= −ρ1(r);

3) we have

lim
r→∞

V1(r)

V (r)
= 1.

Proof. The fact that the function

V1(z) =
2z

π

∫ ∞

0

V (t)

t2 + z2
dt

is holomorphic in the half-plane Re z > 0 is an easy consequence of the inequality V (t) ≤
M(t

1
2 + t−

1
2 ) (see (2.8)). This proves statement 1).

We split the semiaxis [0,∞) into three parts, namely, [0, εr], [εr,Nr], and [Nr,∞).
Accordingly, V1(r) splits into the sum of three integrals:

V1(r) = I1(r) + I2(r) + I3(r).

We have
I2(r)

V (r)
=

2

π

∫ N

ε

V (ur)

V (r)

du

u2 + 1
.

Theorem 5 shows that

(2.19) lim
r→∞

I2(r)

V (r)
=

2

π

∫ N

ε

du

u2 + 1
.

Next, we obtain

I1(r) =
2

π

∫ ε

0

V (ur)

u2 + 1
du ≤ 2V (r)

π

∫ ε

0

γ(u)

u2 + 1
du,

implying the inequality

(2.20) lim sup
r→∞

I1(r)

V (r)
≤ 2

π

∫ ε

0

γ(u)

u2 + 1
du.

Similarly, we see that

(2.21) lim sup
r→∞

I3(r)

V (r)
≤ 2

π

∫ ∞

N

γ(u)

u2 + 1
du.

Formulas (2.19)–(2.21) imply

lim sup
r→∞

∣∣∣∣V1(r)

V (r)
− 1

∣∣∣∣ ≤ 2

π

∫ ε

0

γ(u)

u2 + 1
du+ 1− 2

π

∫ N

ε

du

u2 + 1
+

2

π

∫ ∞

N

γ(u)

u2 + 1
du.

Passing to the limit as ε → 0, N → ∞, we prove statement 3) of the lemma.
We define ρ1(r) by the relation V1(r) = rρ1(r). By statement 3), we obtain

(2.22) lim
r→∞

ρ1(r) = 0.

Next, we have

rV ′
1(r) =

2r

π

∫ ∞

0

t2 − r2

(t2 + r2)2
V (t) dt.

Repeating the arguments that prove 3), we arrive at

lim
r→∞

rV ′
1(r)

V (r)
= − 2

π

∫ ∞

0

d

dt

t

t2 + 1
dt = 0,

lim
r→∞

rV ′
1(r)

V1(r)
= 0.

(2.23)
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Formulas (2.22) and (2.23) show that ρ1(r) is a zero proximate order. Next,

V1

(1

r

)
=

2

πr

∫ ∞

0

V (t)

t2 + 1
r2

dt =
2

πr

∫ ∞

0

V
(
1
u

)
1
u2 + 1

r2

du

u2
=

2r

π

∫ ∞

0

V (u)

u2 + r2
du = V1(r).

This shows that ρ1
(
1
r

)
= −ρ1(r). Thus, statement 2) and, with it, the Lemma 2 are

proved. �

In particular, Lemma 2 shows that, when solving Problem A (see the beginning of this
section), we need not consider the class of all functions V (r) = rρ(r), where ρ(r) is an
arbitrary proximate order. Instead, we can take the much smaller class of all functions
V (r) for which ρ(r) is analytic on (0,∞) and is representable in the form ρ(r) = ρ+ pρ(r),
where pρ(r) is a zero proximate order satisfying pρ

(
1
r

)
= −pρ(r).

Theorem 9 says that the function γ(t) satisfies (2.16) and (2.17). Much sharper
estimates hold true for a fairly large class of functions of the form V (r) = rρ(r). Lemma 1
says that γ(t) ≥ V (t). The following theorem provides us with a large class of proximate
orders such that the corresponding functions γ(t) satisfy γ(t) ≤ MV (t) for t ≥ 1 with
some constant.

Theorem 10. Let ρ(r) be a zero proximate order differentiable two times on (0,∞)\{1}
and satisfying ρ

(
1
r

)
= −ρ(r). Let V (r) = rρ(r), V (r) → ∞ (r → ∞), and let the function

h(x) = lnV (ex) be concave in some neighborhood of infinity. Define γ(t) by (2.11). Then
there exists a constant M such that γ(t) ≤ MV (t) for t ≥ 1. If h(x) is concave on (0,∞),
then γ(t) = V (t) for t ≥ 1.

Proof. Consider the function a(x) = h(x) − xh′(x). We have a′(x) = −xh′′(x). By
assumption, a(x) is monotone increasing in a neighborhood of infinity. For x ≥ 1, we
have

(2.24) h(x) = −x

( ∫ x

1

a(t)

t2
dt+ c

)
, c = −h(1).

We claim that the integral

(2.25)

∫ ∞

1

a(t)

t2
dt

converges. Otherwise, if a(t) ≤ 0 in a neighborhood of infinity, we arrive at a con-
tradiction with (2.12), and the assumption that a(t) ≥ 0 in a neighborhood of infinity
contradicts the relation V (r) → ∞ (as r → ∞). Thus, the integral (2.25) does converge.
Now, (2.24) can be rewritten in the form

(2.26) h(x) = x

∫ ∞

x

a(t)

t2
dt.

By (2.12), the supplementary summand c1x on the right arising in the passage from
(2.24) to (2.26) is absent.

We show that

(2.27) lim
t→∞

a(t) = +∞.

Indeed, otherwise, h(x) and, with it, V (r) are bounded in a neighborhood of +∞,
which contradicts the assumptions of the theorem.

Let x0 > 0 be such that the function h(x) is concave a for x ≥ x0. The equation of
the tangent to the curve y = h(x) at x0 has the form

Y (x) = h(x0)− x0h
′(x0) + h′(x0)x.

If x0 is sufficiently large, we have Y (0) > 0. Then there exists a function h1(x) with the
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following properties:
1) h1(x) is an even function continuous on (−∞,∞) that is concave and differentiable

on (0,∞);
2) h1(x) ≥ 0 for x ≥ 0, h1(0) = 0;
3) h1(x) = h(x) for x ≥ x0.
These properties imply the following supplementary properties:
4) there exists a constant M1 such that |h(x)− h1(x)| ≤ M1 on the entire real axis;
5) h1(x) is monotone increasing on [0,∞);
6) h1(x+ y) ≤ h1(x) + h1(y) for x ≥ 0 and y ≥ 0.
Next, for y > 0 we have

ln γ(ey) = sup
x∈(−∞,∞)

(
h(x+ y)− h(x)

)
≤ 2M1 + sup

x∈(−∞,∞)

(
h1(x+ y)− h1(x)

)
= 2M1 + sup

x∈(−∞,∞)

(
h1(|x+ y|)− h1(|x|)

)
≤ 2M1 + sup

x∈(−∞,∞)

(
h1(|x|+ y)− h1(|x|)

)
≤ 2M1 + h1(y) ≤ 3M1 + h(y) = 3M1 + lnV (ey).

It follows that γ(t) ≤ e3M1V (t) for t > 1 . If h(x) is concave on the semiaxis [0,∞), we
have h1(x) = h(x), M1 = 0, γ(t) ≤ V (t). Together with the inequality γ(t) ≥ V (t), this
yields γ(t) = V (t). �

Quite often, the principal role is played by the function V (r) = rρ(r) rather than by
a proximate order ρ(r). Sometimes, not only the properties of V (r) near infinity are
important, but also its behavior near zero (for instance, the knowledge of this behavior
required in the study of the integral

∫ ∞
0

K(t, r)V (t) dt). So, as has already been said, in

what follows we assume that zero proximate orders satisfy the relation ρ
(
1
r

)
= −ρ(r).

This is equivalent to the relation V
(
1
r

)
= V (r). By Theorem 8, the requirement that

ρ(r) be differentiable on (0,∞) \ {1} is often not an essential restriction. The relation

ρ(r) =
lnV (r)

ln r

shows that the requirement of differentiability for ρ(r) at 1 is fairly restrictive. For

instance, this condition eliminates the functions ρ(r) = A| ln r|α
ln r , α ∈ (0, 1), for which

V (r) has the form V (r) = exp(A| ln r|α). Since these functions are simple, they are used
as “patterns for comparison”. Also, for them we have γ(t) = V (t) for t ≥ 1.

Surely, by Lemma 2, also the requirement of the existence of ρ′(1) is inessential: it
suffices to replace V (r) by V1(r). However, the use of V1(r) presents some difficulties
because this function is somewhat complicated.

In the rest of the paper, by a zero proximate order we mean a function ρ(r) with the
following properties:

1) limr→∞ ρ(r) = 0;
2) ρ

(
1
r

)
= −ρ(r);

3) ρ(r) is continuously differentiable on the set (0,∞) \ {1};
4) limr→∞ r ln rρ′(r) = 0;
5) the function V (r) = rρ(r) extends by continuity to the point 1 and V (1) = 1 (the

function ρ(r) itself may fail to be defined at 1).
Other proximate orders ρ(r) have the form ρ(r) = ρ + pρ(r), whee pρ(r) is a zero

proximate order satisfying the above conditions.
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§3. Measures; limit sets of measures

In this section we present the theory of limit sets for Radon measures of finite order
on the semiaxis (0,∞). For the reader’s convenience, we define the terms and state the
results to be used. The omitted proofs can be found in [10, 11, 12].

We start with some information from the “abstract” measure theory.
A measure space with a real measure μ is a triple (X,A, μ), where X is a set, A

is a σ-algebra of subsets of X, and μ is a function on A with values in [−∞,∞] that
is countably additive: μ

( ⋃∞
k=1Ek

)
=

∑∞
k=1 μ(Ek) whenever the Ek ∈ A are pairwise

disjoint (Ek ∩Ej = ∅ if k 	= j).
The measure μ is said to be positive if μ(E) ≥ 0 for every E ∈ A.
A positive measure is said to be finite if μ(X) < ∞.
Let A ∈ A. The restriction of μ to A (denoted by μA) is the measure defined by

μA(E) = μ(A ∩E).
A measure μ is said to be supported on A if μA = μ.
Let μ1 and μ2 be two measures defined on the same σ-algebra A. They are said to be

mutually singular if they are supported on disjoint sets A1 and A2. The Hahn theorem
says that if μ is a real measure, then there exist two sets A1 and A2 in A such that
A1 ∩ A2 = ∅, X = A1 ∪ A2, the restriction of μ to A1 is positive and the restriction of
μ to A2 is negative.

This pair of sets A1, A2 is called a Hahn decomposition for μ. The measure μ+ = μA1

is called the positive component of μ, and the measure μ− = −μA2
is called its negative

component. Thus, an arbitrary real measure μ is the difference of two mutually singular
positive measures.

The representation μ = μ+ −μ− of μ as a difference of two mutually singular positive
measures is called the Jordan decomposition of μ.

Though a Hahn decomposition X = A1 ∪A2 is not unique, the Jordan decomposition
μ = μ+ − μ− is unique. The measures μ+ and μ− are uniquely determined by μ. If
μ = μ+ − μ− is the Jordan decomposition of a measure μ, then at least one of the
measures is finite (otherwise, the formula μ(X) = μ+(X)− μ−(X) has no sense).

The measure |μ| = μ+ + μ− is called the modulus or the total variation of μ.
In the important case where X is a topological space and A is the σ-algebra of its

Borel sets, μ is called a Borel measure.
Let X = K be a compact metric space. Then the set of all finite real Borel measures

on K is a Banach space. This space can be identified with the space dual to C(K), i.e.,
to the space of real continuous functions on K with the norm ‖f‖ = maxx∈K |f(x)|. This
follows from the Riesz theorem that says that every continuous linear functional T on
C(K) has the form

(T, f) =

∫
K

f(x) dμ(x),

where μ is a finite Borel measure on K.
In the sequel, we write (μ, f) in place of (T, f). We have ‖μ‖ = |μ|(K) (‖μ‖ is the

norm of the linear functional μ, ‖μ‖ = sup‖f‖≤1(μ, f)).

The Banach space of all finite real Borel measures on K will be denoted by Mr(K).
In Mr(K), convergence in norm is less important than weak convergence. By the gen-
erally adopted terminology, a sequence μn converges weakly to μ (in symbols: μ =
w-limn→∞ μn) if the numerical sequence (μn, f) converges to (μ, f) for every f ∈ C(K).

By the Alaogly theorem, if H ⊂ Mr(K) and sup{|μ|(K) : μ ∈ H} < ∞, then every
sequence μn ∈ H has a weakly convergent subsequence.

Along with the real space Mr(K), the complex Banach space Mc(K) of all complex
measures μ = μ1 + iμ2 (μ1, μ2 being finite real Borel measures) is also considered. The
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space Mc(K) can be identified with the dual to the Banach space C(K) of all complex
continuous functions on K, where ‖f‖ = maxx∈K |f(x)|. In the space Mc(K), we also
have ‖μ‖ = sup‖f‖≤1 |(μ, f)| = |μ|(K).

In the complex case, the definition of the measure |μ| is more involved, but we have
the following simple inequalities. If μ = μ1 + iμ2, then |μ1| ≤ |μ|, |μ2| ≤ |μ|, and
|μ| ≤ |μ1|+ |μ2|.

Now, we pass to the analysis of an object important for our study, namely, the space
of Radon measures on the semiaxis (0,∞).

First, we introduce the space Φ of test functions on (0,∞) (we have borrowed the term
from the theory of distributions and the notation from Landkof’s book [12]). A function
f belongs to Φ if f is continuous on (0,∞) and there exists a segment [a, b] such that
supp f ⊂ [a, b] ⊂ (0,∞). We shall consider either the real or the complex space Φ.

The notion of convergence in Φ is introduced in a well-known way. A sequence fn is
said to converge to f in the space Φ if there exists a segment [a, b] ⊂ (0,∞) such that
supp fn ⊂ [a, b] for every n and the sequence fn converges uniformly to f(x) on (0,∞).

For a function f ∈ Φ, we use the notation ‖f‖ = max |f(x)|.
A Borel measure μ on (0,∞) is said to be locally finite if |μ|([a, b]) < ∞ for every

segment [a, b] ⊂ (0,∞).
A set function μ is called a real Radon measure on (0,∞) if it is representable in

the form μ = μ1 − μ2, where μ1 and μ2 are mutually singular positive Borel measures
on (0,∞).

For every Borel set A ⊂ (0,∞), the restriction of μ to A is defined by the formula
μA = (μ1)A − (μ2)A. Though the set function μ defined above is not a Borel measure on
(0,∞) (it is not defined on the Borel sets E for which either μ1(E) = μ2(E) = +∞ or
μ1(E) = μ2(E) = −∞), the restriction μ[a,b] is a finite Borel measure for every segment
[a, b] ⊂ (0,∞).

Thus, for every f ∈ Φ the expression (μ, f) =
∫ ∞
0

f(x) dμ(x) makes sense. Clearly,
the function (μ, f) defined in this way is a linear functional on Φ. It is also clear that
this functional is continuous, i.e., (μ, fn) → (μ, f) whenever fn → f in Φ.

The converse is also well known. If T is a continuous linear functional on Φ, then
there exists a Radon measure μ such that (T, f) = (μ, f) for every f ∈ Φ. Moreover, a
Radon measure μ with this property is unique.

The initial definition of Radon measures was given by Bourbaki for an arbitrary locally
compact space. In accordance with that definition, Radon measures are continuous linear
functionals on the space of compactly supported continuous functions f . A functional
T is said to be positive if (T, f) ≥ 0 for every f ≥ 0. An adaptation of Bourbaki’s
result to metric locally compact underlying spaces says that in this case every continuous
positive functional coincides with a positive locally finite Borel measure. Next, every
continuous linear functional is representable as the difference of two positive continuous
linear functionals.

Thus, if the locally compact space in question is the semiaxis (0,∞), the definition of
a Radon measure given in this paper is equivalent to Bourbaki’s definition.

The set of real Radon measures on (0,∞) is a real linear space, to be denoted by R.
We shall also consider the complex linear space Rc of complex Radon measures μ =

μ1 + iμ2, where μ1 and μ2 are real Radon measures.
We introduce the notion of coarse convergence in the spaces R and Rc. The terminol-

ogy is due to Bourbaki. A sequence μn of Radon measures is said to converge coarsely to
a Radon measure μ (notation: μ = limn→∞ μn or μn→μ) if for every f ∈ Φ the numerical
sequence (μn, f) converges to (μ, f). The term “coarse convergence” plays a privileged
role in our paper. The formula μn → μ, when used without explanations, always means
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coarse convergence. However, we also use other types of convergence for sequences μn of
measures.

A set E is said to be Jordan measurable with respect to a Radon measure μ if
|μ|(∂E) = 0.

The following statements are well known.

Theorem 11. Suppose that μn → μ and |μn| → pμ. If E is Jordan measurable with
respect to pμ, then (μn)E → μE.

Theorem 12. Suppose that μn → μ and |μn| → pμ. Let K ⊂ (0,∞) be a compact set
Jordan measurable with respect to pμ. Then the sequence (μn)K converges weakly to μK .

For sequences of positive measures, the proofs of these statements can be found in
[12, Introduction, §1]. In the general case, it suffices to apply these statements to the
measures (μn)+ and (μn)− separately. We shall need the following statement, which can
be deduced from Theorem 11.

Theorem 13. Suppose that a sequence μn of Radon measures on (0,∞) converges
coarsely to a Radon measure ν. Suppose, moreover, that |μn| → pν and pν({ξ}) = 0.
Then for every ϕ ∈ Φ we have

lim
n→∞

∫ ∞

0

ϕ(t)χ(0,ξ](t) dμn(t) =

∫ ∞

0

ϕ(t)χ(0,ξ](t) dν(t),

lim
n→∞

∫ ∞

0

ϕ(t)χ(ξ,∞)(t) dμn(t) =

∫ ∞

0

ϕ(t)χ(ξ,∞)(t) dν(t).

Proof. It suffices to take (0, ξ] and (ξ,∞) for the role of E in Theorem 11. �
A set H ⊂ Rc(R) is said to be coarsely bounded if for every ϕ ∈ Φ the set {(μ, f) :

μ ∈ H} is bounded.
A set H is said to be strongly bounded if for every segment [a, b] ⊂ (0,∞) the set

{|μ|([a, b]) : μ ∈ H} is bounded.
A set H is said to be compact if every sequence μn ∈ H has a coarsely convergent

subsequence.
The next statement is the main result of measure theory to be used in this paper.

Theorem 14. The classes of coarsely bounded, strongly bounded, and compact subsets
of R (Rc) coincide.

The proof can be found in [10, Chapter 3, §1, Theorem 15, Remark].
Note that the following statement is an easy consequence of the above theorem.

Theorem 15. The mapping (μ, ϕ) : Rc × Φ → C is a continuous mapping of two
variables.

Proof. Let μn → μ, ϕn → ϕ. There is a segment [a, b] ⊂ (0,∞) such that suppϕn ⊂ [a, b],
suppϕ ⊂ [a, b]. Since μn → μ, the sequence μn is coarsely bounded and, consequently,
strongly bounded. Therefore, there exists a constant M such that |μn|([a, b]) ≤ M . Next,
we have

|(μn, ϕn)− (μ, ϕ)| ≤ |μn|([a, b])‖ϕn − ϕ‖+ |((μ− μn), ϕ)| ≤ M‖ϕn − ϕ‖+ |(μn − μ), ϕ|.
This implies the claim. �
Theorem 16. A sequence of positive Radon measures μn converges coarsely to a Radon
measure μ if (μn, f) → (μ, f) for f in a dense subset of Φ.

Theorem 17. Suppose that Radon measures μ and ν are such that (μ, f) = (ν, f) for f
in a dense subset of Φ. Then μ = ν.
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The proofs of Theorems 16 and 17 can be found in [12, Introduction, §1].
Though we usually employ coarse convergence, sometimes it is more convenient to

argue in metric spaces. For this reason, we shall use the following well-known metrics
in Rc. Let {ϕn : n = 1, 2, . . . } be a countable dense subset of Φ. This means that for
every ϕ ∈ Φ there exists a subsequence ϕnk

such that ϕnk
→ ϕ. Next, we introduce the

function

(3.28) d(μ1, μ2) =
∞∑

n=1

|(μ1 − μ2)(ϕn)|
2n(1 + |(μ1 − μ2)(ϕn)|)

,

μ1, μ2 ∈ Rc. It can easily be checked that d is a metric on Rc.
Moreover, it is easily seen that d(μk, μ) → 0 whenever μk → μ. However, the converse

is not true. Let, for example, all functions ϕn be continuously differentiable, and let

μk = k

(
δ
(
x− 1− 1

2k

)
− δ

(
x− 1 +

1

2k

))

−
√
2k

(
δ
(
x− 1− 1

2
√
2k

)
− δ

(
x− 1 +

1

2
√
2k

))
,

where δ(x − a) is the Dirac measure at a. Then d(μk, 0) → 0 but the relation μk → 0
fails. Yet, the following theorem holds.

Theorem 18. If μk is a compact sequence in Rc and d(μk, μ) → 0, then μk tends to μ
coarsely.

Proof. If not, there exists ϕ ∈ Φ and two subsequences μk1
p
, μk2

p
of the sequence μk such

that

lim
p→∞

(μk1
p
, ϕ) 	= lim

p→∞
(μk2

p
, ϕ).

Let νp = μk1
p
−μk2

p
, and let ϕn be the sequence of functions in Φ that determines the metric

d. Since the sequence ϕn is dense in Φ, there exists its subsequence ψn that converges
to ϕ in Φ. There is a segment [a, b] on the semiaxis (0,∞) such that suppψn ⊂ [a, b] for
every n. Therefore, lim supp→∞ |νp(ϕ)| ≤ M‖ϕ−ψn‖ with some constantM independent
of n. Thus, νp(ϕ) → 0, which contradicts the choice of ϕ. �

Thus, generally speaking, convergence in the metric d is weaker than coarse conver-
gence, whereas the two types of convergence coincide on compact sets. The metric d is
determined by a countable dense sequence ϕn. Thus, there are infinitely many metrics
of this type. In general, convergence in one metric does not imply convergence in an-
other one. However, on compact sets, convergence in any metric is equivalent to coarse
convergence, so all they are equivalent.

Next, for μ ∈ Rc, we shall consider the integrals
∫ ∞
0

f(x) dμ(x) not necessarily with
f ∈ Φ. In this connection we note that, if f ∈ Φ, then the integral in question can be
viewed as the Riemann–Stiltjes integral of f against the distribution function μ(x) for μ.
However, we shall also need the case of an arbitrary Borel function f on (0,∞). Suppose
first that supp f ⊂ [a, b] ⊂ (0,∞). The restriction of μ to [a, b] is a finite Borel measure,

and
∫ b

a
f(x) dμ(x) is viewed as the Lebesgue integral of f against μ. Surely, not every

such function is μ-integrable.
Now, let f(x) be an arbitrary Borel function on (0,∞) that is locally integrable

against μ. Than we put ∫ ∞

0

f(x) dμ(x) = lim
a→+0
b→+∞

∫ b

a

f(x) dμ(x).
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So,
∫ ∞
0

f(x) dμ(x) is viewed as an improper integral with singularities at zero and at
infinity. For some f , this integral may converge.

Let ρ(t) be an arbitrary proximate order. On the space Rc, we introduce the one-
parameter family of Azarin transformations At : Rc → Rc, t ∈ (0,∞), by the formulas

μt = Atμ, μt(E) =
μ(tE)

V (t)
.

If μ(x) is the distribution function for a measure μ, then the distribution function for
μt is

1
V (t)μ(tx).

Let f ∈ Φ. A change of variables yields∫
E

f(x) dμt(x) =
1

V (t)

∫
tE

f
(y

t

)
dμ(y)

and, in particular,

(3.29)

∫ ∞

0

f(x) dμt(x) =
1

V (t)

∫ ∞

0

f
(y

t

)
dμ(y).

Formula (3.29) and Theorem 15 easily imply that the function μt : Rc × (0,∞) → Rc

is continuous in the totality of variables, that is, (μn)tn → μτ whenever tn → τ and
μn → μ.

Classical dynamical systems in a metric space X are defined (see [13]) as one-
parametric families of mappings Bt : X → X, t ∈ (−∞,∞), satisfying the following
conditions:

1) B0x = x (the initial condition);
2) the mapping Bt : X× (−∞,∞) → X is continuous in the totality of variables (the

continuity condition);
3) Bt1Bt2 = Bt1+t2 (the group condition).
If ρ(r) ≡ ρ, then the Azarin system At is a dynamical system in Rc with the coarse

convergence, where the additive group of reals is replaced by the multiplicative group of
strictly positive reals, the initial condition reads as A1μ = μ, and the group condition
looks like this: At1At2μ = At1t2μ.

For positive measures μ on Rm, the system Atμ was introduced by Azarin (see [4, 14]),
who efficiently applied it to the theory of subharmonic functions.

In the classical theory of dynamical systems, the set{
y ∈ X : y = lim

n→∞
Btnx, lim

n→∞
tn = +∞

}
is called the ω-cluster set of the trajectory Btx.

To avoid terminological complications, we shall refer to a system Atμ as an Azarin
dynamical system even in the case of an arbitrary proximate order. The set{

ν ∈ Rc : ν = lim
n→∞

Atnμ, lim
n→∞

tn = +∞
}

will be called the Azarin cluster set for μ, and Azarin’s notation Fr[μ] will be used for it.
Nothing definite can be said about Fr[μ] without knowledge of the relationship between
μ and ρ(r). So, we shall assume that μ ∈ M∞(ρ(r)). The set M∞(ρ(r)) was defined in
the Preface. Since a Radon measure is locally finite, we see that μ ∈ M∞(ρ(r)) if and
only if

lim sup
r→∞

|μ|([r, er])
V (r)

< ∞.

As we shall see, if μ ∈ M∞(ρ(r)), the properties of set Fr[μ] are similar to those of cluster
sets in the theory of dynamical systems.
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The relation μ ∈ M∞(ρ(r)) easily implies that the positive semitrajectory μt (the set
{μt : t ∈ [1,∞)}) is compact. We state this as a separate lemma.

Lemma 3. Let ρ(r) be an arbitrary proximate order, and let μ ∈ M∞(ρ(r)). Then the
semitrajectory μt, t ≥ 1, is a compact set of Radon measures.

Proof. Let 0 < a < b < ∞. By (2.11) and (2.18), we obtain

|μt|([a, b]) =
|μ| ([at, bt])

V (at)

V (at)

V (t)
≤ γ(a)aρ

|μ|
([
at, b

aat
])

V (at)
≤ M(a, b).

The last inequality is true by the definition of M∞(ρ(r)) and because μ is locally finite.
Now, the claim of the lemma follows by Theorem 14. �

Our next goal is a description of the properties of cluster sets for measures belonging
to M∞(ρ(r)). We start with a theorem that reduces this problem to the simpler case
where ρ(r) ≡ ρ.

Theorem 19. Let ρ1(r) and ρ2(r) be proximate orders such that lim ρ1(r) = ρ1 and
lim ρ2(r) = ρ2 (r → ∞). Taking μ ∈ M∞(ρ1(r)), we put

dλ(t) =
V2(t)

V1(t)
dμ(t).

Then λ ∈ M∞(ρ2(r)), and the relation μtn → ν is equivalent to the relation λtn → ν1,
where dν1(t) = tρ2−ρ1dν(t). Here

μt(E) =
μ(tE)

V1(t)
, λt(E) =

λ(tE)

V2(t)
, V1(r) = rρ1(r), V2(r) = rρ2(r), tn → ∞.

Proof. We have

|λ|([r, er]) =
∫ er

r

V2(t)

V1(t)
d|μ|(t).

Theorem 5 shows that

lim sup
r→∞

|λ|([r, er])
V2(r)

≤
(
e(ρ2−ρ1)+

)
lim sup
r→∞

|μ|([r, er])
V1(r)

(a+ = max{a, 0}),

whence λ ∈ M∞(ρ2(r)). Suppose that μtn → ν, then for ϕ ∈ Φ we obtain

lim
n→∞

∫ ∞

0

ϕ(t) dλtn(t) = lim
n→∞

1

V2(tn)

∫ ∞

0

ϕ
( u

tn

)
dλ(u)

= lim
n→∞

1

V2(tn)

∫ ∞

0

ϕ
( u

tn

)V2(u)

V1(u)
dμ(u) = lim

n→∞

∫ ∞

0

ϕ(τ )
V2(τtn)

V1(τtn)

V1(tn)

V2(tn)
dμtn(τ ).

Since the sequence

ϕ(τ )
V2(τtn)

V1(τtn)

V1(tn)

V2(tn)

converges to τρ2−ρ1ϕ(τ ) in Φ, and since μtk → ν, by Theorem 15 we obtain

lim
n→∞

∫ ∞

0

ϕ(t) dλtn(t) =

∫ ∞

0

τρ2−ρ1ϕ(τ ) dν(τ ).

Thus, we have proved that λtn → ν1. Finally, the roles of μ and ν can be interchanged
in the above argument. �

A similar theorem for measures on the plane can be found in [15, Theorem 4].

Remark 1. If ρ1 = ρ2, then the measures ν and ν1 coincide.

In the case where ρ(r) ≡ ρ, the mapping At, Atμ = μt, will be denoted by Ft or Ft(ρ).
In the following statement, some properties of the cluster set Fr[μ] are collected.
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Theorem 20. Let ρ(r) be an arbitrary proximate order, and let μ ∈ M∞(ρ(r)). Then:
1) Fr[μ] is a nonempty compact set;
2) Fr[μ] is a connected set in the metric space (Rc, d);
3) Fr[μ] is invariant under Ft, moreover, Ft is a bijection of Fr[μ] onto itself.

Proof. By the remark to Theorem 19, there is no loss of generality in assuming that
ρ(r) ≡ ρ. By Lemma 3, the semitrajectory μt, t ≥ 1, is a compact set. In the language
of the theory of dynamical systems, this can be restated as follows: the movement μt is
positively Lagrange stable. On compact subsets inRc, coarse convergence is equivalent to
the convergence in the metric space (Rc, d). Thus, the Azarin cluster set Fr[μ] coincides
with the ω-cluster set of the trajectory μt in the metric space (Rc, d). Now, we can employ
the fairly well developed theory of dynamical systems in metric spaces. Theorem 10 in
Chapter 5, §3 of the book [13] says that Fr[μ] is a nonempty compact set taken by Ft

onto itself bijectively, and Theorem 14 is the same book says that Fr[μ] is connected. �

The following theorems are a useful supplement to the preceding one.

Theorem 21. Suppose that μ ∈ M∞(ρ(r)), a sequence tn → ∞ satisfies μtn → ν, and
a sequence τn converges to τ > 0. Then the sequence μτntn converges to ντ .

Proof. Let ϕ be an arbitrary function belonging to Φ. We have

(ϕ, μtnτn) =
1

V (tnτn)

∫ ∞

0

ϕ
( u

tnτn

)
dμ(u) =

V (tn)

V (tnτn)

∫ ∞

0

ϕ
( ξ

τn

)
dμtn(ξ).

Since μtn → ν and the sequence V (tn)
V (tnτn)

ϕ
(

ξ
τn

)
converges to 1

τρϕ
(
ξ
τ

)
in Φ, by Theorem 15

we obtain

lim
n→∞

(ϕ, μtnτn) =
1

τρ

∫ ∞

0

ϕ
( ξ

τ

)
dν(ξ) = (ϕ, ντ ).

Thus, μtnτn → ντ . �

Theorem 22. Suppose that μ ∈ M∞(ρ(r)) and a sequence tn → ∞ is such that μtn → ν
and |μ|tn → pν. Then |ν| ≤ pν.

Proof. For arbitrary ϕ in Φ, we have

|(ν, ϕ)| = lim
n→∞

|(μtn , ϕ)| ≤ lim
n→∞

(|μ|tn , |ϕ|) = (pν, |ϕ|),

and it easily follows that |ν|(E) ≤ pν(E). �

In the next theorem we show that some asymptotic estimates for μ imply certain
global estimates for the measures ν in Fr[μ]. As a preliminary, we introduce some new
notions.

If a Radon measure μ is real, then, along with the Azarin cluster set, there are two
other important asymptotic characteristics of μ, namely, its upper and lower densities
N(α) and N(α). These are functions on [0,∞), so, mathematically, these two objects
are simpler than Fr[μ]. This is an advantage of density functions. On the other hand, as
we shall see later, generally speaking, the set Fr[μ] gives much more information about
μ than N(α) and N(α).

Let μ be a real Radon measure on (0,∞) whose distribution function is μ(r), and let
ρ(r) be a proximate order. The upper density of μ with respect to ρ(r) is defined to be
the quantity

(3.30) N(α) = lim sup
r→∞

μ(r + αr)− μ(r)

V (r)
.
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For α > 0 we can also write

(3.31) N(α) = lim sup
r→∞

μ(r, r + αr]

V (r)
.

Observe that formula (3.30) defines N(α) for α > −1, and formula (3.31) defines it for
α > 0. In the sequel, we agree that N(0) = 0.

The lower density of μ with respect to ρ(r) is defined similarly:

N(α) = lim inf
r→∞

μ(r + αr)− μ(r)

V (r)
.

The properties of limits and those of a proximate order ρ(r) imply the following inequal-
ities for N(α) and N(α):

N(α+ β) ≤ N(α) + (1 + α)ρN
( β

1 + α

)
,(3.32)

N(α+ β) ≥ N(α) + (1 + α)ρN
( β

1 + α

)
,(3.33)

N(α+ β) ≥ N(α) + (1 + α)ρN
( β

1 + α

)
,(3.34)

N(α+ β) ≤ N(α) + (1 + α)ρN
( β

1 + α

)
,(3.35)

where ρ = ρ(∞) = limr→∞ ρ(r). We agree that if the right-hand side in some of these in-
equalities is ∞−∞, then this particular inequality is a void statement. If μ ∈ M∞(ρ(r)),
we always have −∞ < N(α) ≤ N(α) < ∞. However, N(α) and N(α) may happen to be
finite for measures not belonging to M∞(ρ(r)). This emphasizes the importance of N(α)
and N(α) in the study of measures μ. Recall that the theorem about the properties of
Fr[μ] was proved under the assumption that μ ∈ M∞(ρ(r)).

Theorem 23. Let μ ∈ M∞(ρ(r)) be a real measure, let Fr[μ] be its cluster set, and let
N(α) and N(α) be its upper and lower densities. Then for every measure ν ∈ Fr[μ] there
exists an at most countable set E(ν) such that for a, b /∈ E(ν), 0 < a < b < ∞, we have

ν([a, b]) ≤ aρN
( b

a
− 1

)
, ν([a, b]) ≥ aρN

( b

a
− 1

)
.

For every a and b, 0 < a < b < ∞, we have

ν([a, b]) ≤ aρ lim inf
ε→+0

N
( b

a
− 1 + ε

)
, ν([a, b]) ≥ aρ lim sup

ε→+0
N

( b

a
− 1 + ε

)
.

Proof. Let ν = limn→∞ μtn . Assume, moreover, that the limit pν = limn→∞ |μ|tn . Put
E(ν) = {x ∈ (0,∞) : pν({x}) > 0}. The set E(ν) is at most countable. Now, let
[a, b] ⊂ (0,∞), a, b /∈ E(ν). By Theorem 12, we obtain

ν([a, b]) = lim
n→∞

μtn([a, b]).

Since ν({a}) = 0, the same theorem implies limn→∞ μtn({a}) = 0. Therefore,

ν([a, b]) = lim
n→∞

μtn((a, b]) ≤ lim sup
r→∞

μr((a, b]) = aρN
( b

a
− 1

)
.

The inequality ν([a, b]) ≥ aρN
(
b
a − 1

)
is proved similarly. Consider the general case.

Suppose that ak → a, ak < a, and bk → b, bk > b, where ak, bk /∈ E(ν) and

lim
k→∞

N
( bk
ak

− 1
)
= lim inf

ε→+0
N

( b

a
− 1 + ε

)
.
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We have

ν([a, b]) = lim
k→∞

ν([ak, bk]) ≤ lim
k→∞

aρkN
( bk
ak

− 1
)
= aρ lim inf

ε→+0
N

( b

a
− 1 + ε

)
.

Similarly,

ν([a, b]) ≥ aρ lim sup
ε→+0

N
( b

a
− 1 + ε

)
. �

We observe the following consequence of the above statement.

Remark 2. Let μ ∈ M∞(ρ(r)), and let N(α) ≡ N(α) ≡ 0. Then Fr[μ] = {0}.

It should be noted that the relations N(α) ≡ N(α) ≡ 0 and

lim inf
r→∞

|μ|([ar, br])
V (r)

> 0

are compatible.
A measure μ is said to be continuous if x ν({x}) = 0 for every x. Sometimes, it

is important that the measures in the cluster set Fr[μ] be continuous. We present a
condition sufficient for continuity.

Theorem 24. Let N(α) and N(α) be the density functions with respect to a proximate
order ρ(r) for a measure μ ∈ M∞ (ρ(r)). If N(α) and N(α) are continuous on [0,∞),
then every measure ν in the set Fr[μ] is continuous.

Proof. Let ν ∈ Fr[μ], and let x ∈ (0,∞). Take a strictly monotone increasing sequence an
and a strictly monotone decreasing sequence bn that converge to x and have the property
that an, bn /∈ E(ν). Theorem 23 yields

ν({x}) = lim
n→∞

ν([an, bn]) ≤ lim
n→∞

aρnN
( bn
an

− 1
)
= 0,

ν({x}) = lim
n→∞

ν([an, bn]) ≥ lim
n→∞

aρnN
( bn
an

− 1
)
= 0. �

For positive measures μ, we have a criterion for the continuity of all measures in Fr[μ].

Theorem 25. Suppose that μ is a positive measure and μ ∈ M∞(ρ(r)). Let N(α) be
the upper density of μ with respect to the proximate order ρ(r). All measures in Fr[μ] are
continuous if and only if N(α) → 0 as α → +0.

Proof. Suppose that N(α) → 0 as α → +0. Then also N(α) → 0 as α → +0. In
this case, the functions N(α) and N(α) are continuous. By the preceding theorem, an
arbitrary measure in Fr[μ] is continuous.

To prove the necessity of the condition N(α) → 0 as α → +0, we suppose the contrary:
N(α) → 2a with a > 0 as α → +0. Then there exist sequences rn → ∞ and εn ↓ 0
such that μ((rn, (1 + εn)rn]) > aV (rn). We may assume that, moreover, μrn → ν. Let
0 < ak < 1 < bk, ak → 1, bk → 1, ν({ak}) = 0, ν({bk}) = 0. By Theorem 12, we see that

ν({1}) = lim
k→∞

ν([ak, bk]) = lim
k→∞

lim
n→∞

μrn((ak, bk]) = lim
k→∞

lim
n→∞

μ((akrn, bkrn])

V (rn)
.

If k is fixed and n is sufficiently large, then (rn, (1 + εn)rn] ⊂ (akrn, bkrn). Therefore,

lim
n→∞

μ((akrn, bkrn])

V (rn)
≥ lim sup

n→∞

μ((rn, (1 + εn)rn])

V (rn)
≥ a.

Consequently, ν({1}) ≥ a. This contradicts the continuity of all measures in Fr[μ]. �
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We denote by M(ρ, σ) the set of real or complex Radon measures μ with

|μ|((0, r]) ≤ σrρ for 0 < r < ∞, ρ > 0,

|μ|([a, b]) ≤ σ ln
b

a
for 0 < a < b < ∞, ρ = 0,

|μ|((r,∞)) ≤ σrρ for 0 < r < ∞, ρ < 0.

Theorem 26. Let μ ∈ M∞(ρ(r)). Then there exists σ > 0 such that Fr[μ] ⊂ M(ρ, σ).

Proof. Denote by N1(α) the upper density of |μ| with respect to the proximate order
ρ(r). Since μ ∈ M∞(ρ(r)), we have N1(α) < ∞. Take q > 1 arbitrarily. Applying
Theorems 22 and 23, we obtain

|ν|((0, r]) ≤ pν((0, r]) =

∞∑
n=0

pν
(( r

qn+1
,
r

qn

])

≤ rρN1(q − 1 + 0)

∞∑
n=0

1

q(n+1)ρ
=

N1(q − 1 + 0)

qρ − 1
rρ,

provided ρ > 0. Similarly, for ρ < 0 we obtain

|ν|((r,∞)) ≤ pν((r,∞)) =

∞∑
n=0

pν((qnr, qn+1r])

≤ rρN1(q − 1 + 0)
∞∑

n=0

qnρ =
N1(q − 1 + 0)

1− qρ
rρ.

The case of ρ = 0 is treated in the same way. �

Remark 3. The above proof shows that the relation Fr[μ] ⊂ M(ρ, σ) is ensured with

pσ = inf
q>1

N1(q − 1 + 0)

|qρ − 1|
in the role of σ.

Note that, by Theorems 6 and 14 in [16], for ρ > 0 we have

pσ = lim
q→∞

N1(q − 1 + 0)

qρ − 1
= lim sup

r→∞

|μ|((1, r])
V (r)

.

The case of ρ < 0 was also considered in [16].
We present some examples of calculation of Fr[μ].

Lemma 4. Let ρ(r) be a proximate order, and let μ be a measure on (0,∞) with the

density V (x)
x . Then the cluster set Fr[μ] for μ with respect to ρ(r) consists of only one

measure ν with dν(x) = xρ−1dx.

Proof. Let ϕ ∈ Φ. Using Theorem 5, we obtain

(ϕ, μt) =

∫ ∞

0

ϕ(x) dμt(x) =
1

V (t)

∫ ∞

0

ϕ(x)
V (xt)

x
dx,

lim
t→∞

(ϕ, μt) =

∫ ∞

0

ϕ(x)xρ−1 dx = (ϕ, ν). �

Lemma 5. Let ρ(r) be a proximate order, and let μ be a measure on (0,∞) with the

density xiλ0 V (x)
x . Then

Fr[μ] =
{
ν : dν(u) = eiλ0cuiλ0+ρ−1 du : c ∈ (−∞,∞)

}
.
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Proof. Let ϕ ∈ Φ. We have

(ϕ, μr) =
1

V (r)

∫ ∞

0

ϕ
(x

r

)
xiλ0

V (x)

x
dx = riλ0

∫ ∞

0

ϕ(u)uiλ0
V (ur)

V (r)

1

u
du.

and the claim easily follows by Theorem 5. �
A measure μ is said to be periodic of order ρ with period T > 1 if for this T and an

arbitrary Borel set E we have

(3.36) μ(TE) = T ρμ(E).

Lemma 6. Let μ be a locally finite periodic measure of order ρ and with period T > 1.
Then μ ∈ M∞(ρ) and Fr[μ] = {μt : 1 ≤ t < T}.
Proof. The relation μ ∈ M∞(ρ) is obvious. Let t ∈ [1, T ), and let tn = tTn. Then
μtn = μt by (3.36). Consequently, μtn = μt. Thus, we have proved the inclusion
{μt : t ∈ [1, T )} ⊂ Fr[μ].

Now, if tn be a sequence with μtn → ν, then there is an integer m(n) such that
tn = τnT

m(n) and τn ∈ [1, T ). By (3.36), we have μtn = μτn . By the Bolzano–Weierstrass
theorem, there is a convergent subsequence τnk

with limk→∞ τnk
= τ and τ ∈ [1, T ].

Surely, μτnk
→ μτ . Then ν = limk→∞ μtnk

= limk→∞ μτnk
= μτ . Together with the

relations μ = μ1 = μT , this yields Fr[μ] ⊂ {μt : t ∈ [1, T )}. �
Remark 4. Let α be an arbitrary strictly positive number, and let n be an integer. Under
the assumptions of Lemma 6, we have

Fr[μ] =
{
μt : t ∈ [αTn, αTn+1)

}
.

The case of α = 1, n = 0 corresponds to the claim of Lemma 6.

Lemma 7. Suppose that ρ > 0 and Rn is a strictly monotone increasing sequence such
that R1 ≥ 1 and limn→∞

Rn

Rn−1
= ∞. Define a measure μ by the formula

μ =
∞∑

n=1

Rρ
nδ(x−Rn).

Then the cluster set of μ with respect to the proximate order Fr[μ] has the form

(3.37) Fr[μ] =
{
tρδ(x− t) : t ∈ (0,∞)

}
∪ {0}.

Proof. By the Stolz theorem, from the condition Rn−1 = o(Rn) we easily deduce that
n∑

k=1

Rρ
k ∼ Rρ

n (n → ∞).

Let r ≥ R1 be arbitrary, and let n be the maximal number with Rn ≤ r. Then

μ((0, r]) =
n∑

k=1

Rρ
k = (1 + o(1))Rρ

n ≤ (1 + o(1))rρ (r → ∞).

Consequently, μ ∈ M∞(ρ).
Now, let t > 0 be arbitrary, and let tn = 1

tRn. Let ϕ be an arbitrary function in Φ.
Then for all n sufficiently large we have

(μtn , ϕ) =
tρ

Rρ
n

∫ ∞

0

ϕ
( ut

Rn

)
dμ(u) = tρϕ(t) = (tρδ(x− t), ϕ(x)).

It follows that μtn → tρδ(x − t). Similarly, we prove that if tn = 1
τn
Rn, where τn is a

sequence satisfying τn → ∞, τnRn−1

Rn
→ 0, then μtn → 0.

We denote by H the right-hand side of (3.37). We have proved that H ⊂ Fr[μ].
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Now, let ν be an arbitrary measure in Fr[μ]. Then ν = limμtn , where tn → ∞. We
may assume that, moreover, every segment [Rk−1, Rk+1] contains at most one point tn.
We find a number m(n) such that lnRm(n) is the closest point to ln tn in the sequence
lnRk (if there are two points with this property, we take the smaller index for m(n)).
The additional restriction on the sequence tn ensures that m(n1) 	= m(n2) for n1 	= n2.
Thus, there is a unique representation of tn in the form

(3.38) tn =
1

τn
Rm(n).

In addition, we may assume that the sequence τn converges either to a finite limit or to
infinity. Suppose that

(3.39) lim
n→∞

τn = ∞.

We have

ln tn − lnRm(n)−1 ≥ lnRm(n) − ln tn, tn ≥
√

Rm(n)

Rm(n)−1
,

τn ≤
√
Rm(n)−1Rm(n),

τnRm(n)−1

Rm(n)
≤

√
Rm(n)−1

Rm(n)
, lim

n→∞

τnRm(n)−1

Rm(n)
= 0.

(3.40)

By (3.38)–(3.40), we see that μtn → 0. Hence, ν = 0 in the case in question.
Similarly, we prove that if τn → 0, then also μtn → 0. This follows from the easy

relation

(3.41) lim
n→∞

τnRm(n)+1

Rm(n)
= ∞.

Now, let τn → τ ∈ (0,∞). We have already proved that μ
rtn

→ τρδ(x − τ ), where
rtn = 1

τRm(n). Applying Theorem 21 to the sequence rtn, we obtain μtn → τρδ(x − τ ).
Consequently, ν = τρδ(x− τ ) in this case. Thus, we have proved that always ν ∈ H. So,
the inclusion Fr[μ] ⊂ H is established and the lemma follows. �

Note that the proof of this lemma can be extracted from [17].
From a cluster set theory viewpoint, the simplest measures μ ∈ M∞(ρ(r)) are those

for which Fr[μ] consists of only one measure ν. Such measures are said to be regular
(or regular in the sense of Azarin). We study possible forms of the limit measure for a
regular measure μ.

Theorem 27. Let ρ(r) be a proximate order, let ρ = limn→∞ ρ(r), and let μ ∈ M∞(ρ(r)).
Suppose that μ is regular and {ν} = Fr[μ]. Then there exists a complex number c such
that dν(r) = crρ−1dr.

Proof. If a complex Radon measure μ = μ1 + iμ2 is regular, then μ1 and μ2 are also
regular. So, it suffices to prove the theorem for real Radon measures. Since Fr[μ] is
invariant under Ft, we have ν = Ftν. Let 0 < a < b < ∞. In particular, then ν((a, b]) =
(Ftν)((a, b]) = t−ρν((at, bt]). Taking t = 1

a , we obtain ν((a, b]) = aρν((1, b
a ]). Denote

N(s) = ν((1, 1 + s]), s > 0. Then

N(s1 + s2) = ν((1, 1 + s1]) + ν((1 + s1, 1 + s1 + s2]) = N(s1) + (1 + s1)
ρN

( s2
1 + s1

)
.

The functions N satisfying this identity were called ρ-additive in [16]. Since ν is a locally
finite measure on (0,∞), we see that N is bounded on (0, 1]. By [16, Theorem 4], there
exists a unique real number c such that

N(s) =
c

ρ
((1 + s)ρ − 1) , ρ 	= 0, N(s) = c ln(1 + s), ρ = 0.



ABEL AND TAUBERIAN THEOREMS FOR INTEGRALS 383

We have proved that

ν((1, b]) =
c

ρ
(bρ − 1), ρ 	= 0, ν((1, b]) = c ln b, ρ = 0,

for b > 1. There identities easily imply the claim. �
The next property of regular measures is an easy consequence of definitions.
We shall say that a net μR (R ∈ (0,∞)) of measures converges coarsely to μ as R → ∞

if for every ϕ ∈ Φ we have limR→∞(μR, ϕ) = (μ, ϕ).

Theorem 28. Let ρ(r) be a proximate order, and let μ ∈ M∞(ρ(r)) be a regular measure
with {ν} = Fr[μ]. Then

(3.42) ν = lim
R→∞

μR.

Proof. We start with proving that the limit

(3.43) lim
R→∞

∫ ∞

0

ϕ(x) dμR(x) = a(ϕ)

exists for every ϕ ∈ Φ. If this is not the case, there exists a function ϕ ∈ Φ and two
sequences rn → ∞ and Rn → ∞ such that

(3.44) lim
n→∞

∫ ∞

0

ϕ(x) dμrn(x) 	= lim
n→∞

∫ ∞

0

ϕ(x) dμRn
(x).

Since the family of measures μR, R ≥ 1, is compact, without loss of generality we may
assume that the sequences μrn and μRn

converge coarsely. Since there is only one measure
ν in the cluster set, we have μrn → ν and μRn

→ ν. The definition of coarse convergence
shows that

lim
n→∞

∫ ∞

0

ϕ(x) dμrn(x) =

∫ ∞

0

ϕ(x) dν(x),

lim
n→∞

∫ ∞

0

ϕ(x) dμRn
(x) =

∫ ∞

0

ϕ(x) dν(x).

(3.45)

This contradicts (3.44). Thus, (3.43) is proved, implying that a(ϕ) =
∫ ∞
0

ϕ(x) dν(x). �
In the following theorem, the positive regular measures are described.

Theorem 29. Let ρ(r) be an arbitrary proximate order, and let μ be a positive measure
on the semiaxis (0,∞) with μ ∈ M∞(ρ(r)). Then μ is regular with respect to ρ(r) if and
only if one of the following conditions (depending on the sign of ρ) is fulfilled:

lim
R→∞

μ((1, R])

V (R)
= c, ρ > 0;(3.46)

lim
R→∞

μ([R,∞))

V (R)
= c, ρ < 0;(3.47)

lim
R→∞

μ((aR, bR])

V (R)
= c ln

b

a
, ρ = 0,(3.48)

for every a and b, 0 < a < b < ∞.

Writing the corresponding Riemann–Stiltjes integral sums, it is easy to check that
identities (3.46)–(3.48) imply the identity

(3.49) lim
R→∞

∫ ∞

0

ϕ(x) dμR(x) =

∫ ∞

0

ϕ(x) dν(x),

where dν(x) = c|ρ|xρ−1 dx if ρ 	= 0, and dν(x) = c
x dx if ρ = 0. Clearly, (3.49) implies

the regularity of μ.
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Conversely, let μ be a regular measure. Then by Theorem 28 we have limR→∞ μR = ν.
By Theorem 26, ν is a continuous measure. Theorem 12 shows that limR→∞ μR([a, b]) =
ν([a, b]). This is equivalent to (3.46)–(3.48).

Theorem 29 fails for real Radon measures. By Theorem 27 and Lemma 6, in order to
describe the real regular measures, it suffices to describe the real regular measures with
zero cluster set. This is done in the following theorem.

Theorem 30. Let μ ∈ M∞(ρ(r)). Then Fr[μ] = {0} if and only if there exists a
monotone increasing sequence rn tending to infinity and such that

lim
n→∞

rn+1

rn
= 1, lim

R→∞

1

V (R)

∑
(rn,rn+1]∩[R,2R] 
=∅

|μ((rn, rn+1])| = 0.

We know the proof, but it is much harder than that of Theorem 30 and falls out the
scope of the present paper. (However, it should be noted that the “if” part is fairly easy.)
We have presented the statement for completeness only.

§4. Abel theorems for integrals

We proceed to the exposition of results that can be called Abel theorems for integrals.
The main objects of our study are the functions Ψ(r), J(r), the measure s, and the set
L(J,∞) (see formula (1.2) and the text after it).

Our goal in this section is to describe how the properties of J(r) depend on restrictions
on the kernel K and the measure μ.

We start with a simple statement involving nevertheless the main idea of the method:
to use the cluster set Fr[μ] in the study of the properties of J(r).

Theorem 31. Let ρ(r) be a proximate order, let μ ∈ M∞(ρ(r)), and let K be a contin-
uous compactly supported kernel on (0,∞). Then

(4.50) L(J,∞) =

{∫ ∞

0

K(u) dν(u) : ν ∈ Fr[μ]

}
.

Proof. Let H denote the right-hand side of (4.50), and let ν be an arbitrary measure
in Fr[μ]. There exists a sequence rn → ∞ such that μrn → ν. By the definition of
coarse convergence, we have J(rn) →

∫ ∞
0

K(u) dν(u). We have proved the inclusion
H ⊂ L(J,∞).

Now, let rn → ∞ be such that the sequence J(rn) converges (in a proper or an
improper sense; the latter means that it converges to infinity). By Lemma 3, the semi-
trajectory μr, r ≥ 1, is compact, so we may assume without loss of generality that the
sequence μrn converges coarsely to a measure ν. Now, ν ∈ Fr[μ] by the definition of Fr[μ].
By the above, J(rn) →

∫ ∞
0

K(u) dν(u). We have proved the inclusion L(J,∞) ⊂ H and,
with it, the theorem. �

Many further results in this section will be certain versions of Theorem 31. We shall
consider various restrictions on the kernel K and the measure μ. To begin with, we
understand what happens if we renounce the continuity of K. In this case, the set Fr[μ]
does not determine L(J,∞) any longer.

Let μ ∈ M∞(ρ(r)). The extended cluster set pFr[μ] for μ is defined to be the set of pairs
(ν1, ν2) of measures such that there exists a sequence rn → ∞ with μrn → ν, μ1

rn → ν1,

and μ2
rn → ν2, where μ1

rn is the restriction of μrn to (0, 1], and μ2
rn is the restriction of

μrn to (1,∞).



ABEL AND TAUBERIAN THEOREMS FOR INTEGRALS 385

Theorem 32. Let ρ(r) be an arbitrary proximate order, let μ ∈ M∞(ρ(r)), and let
K be a compactly supported function on (0,∞) continuous everywhere except the point 1.
Moreover, suppose that K(t) has a jump and is continuous from the left at 1. Then

L(J,∞) =

{∫
(0,1]

K(t) dν1(t) +

∫
[1,∞)

rK(t) dν2(t) : (ν1, ν2) ∈ pFr[μ]

}
,

where rK is the continuous extension of K(t) from (1,∞) to [1,∞).

Note that, though the measure μ2
rn

has no mass at 1, the measure ν2 may have some

mass at this point. This is why rK(t) cannot be replaced by K(t) in this statement.

Proof. We argue as in Theorem 32. The difference is that we must use identities of the
following kind. Let K1(t) be a continuous compactly supported extension of K(t) from
(0, 1] to (0,∞). Then∫ 1

0

K(t)dν1(t) =

∫ 1

0

K1(t) dν1(t) =

∫ ∞

0

K1(t) dν1(t) = lim
n→∞

∫ ∞

0

K1(t) dμ
1
rn
(t).

Under some restrictions on μ, the requirement of continuity for K becomes redundant.
If K is discontinuous and μ is absolutely continuous, the integral

∫ ∞
0

K(t) dμ(t) should

be understood as
∫ ∞
0

K(t)μ′(t) dt. �
Theorem 33. Suppose that ρ(r) is an arbitrary proximate order, μ is a Radon measure

on (0,∞) with density μ′(r) such that |μ′(r)| ≤ M V (r)
r , r ∈ [1,∞), and K is a compactly

supported kernel belonging to L1(0,∞). Then

(4.51) L(J,∞) =

{∫ ∞

0

K(u) dν(u) : ν ∈ Fr[μ]

}
.

Proof. Let N1(t) be the upper density for |μ|. We have

N1(α) = lim sup
r→∞

|μ|((r, (1 + α)r])

V (r)
≤ lim

r→∞
M

∫ (1+α)r

r

1

t

V (t)

V (r)
dt

= M lim
r→∞

∫ 1+α

1

1

u

V (ur)

V (r)
du = M

(1 + α)ρ − 1

ρ
.

By Theorem 25, all measures in the set Fr[|μ|] are continuous. All measures in Fr[μ] are
also continuous. By Theorem 12, it follows that if ν = limn→∞ μtn , then

ν([a, b]) = lim
n→∞

μtn([a, b])

for every segment [a, b] ⊂ (0,∞). Therefore,

|ν([a, b])| < lim sup
r→∞

∫ b

a

d|μ|tn(t) ≤ M lim
n→∞

∫ b

a

1

t

V (tnt)

V (tn)
dt = M

bρ − aρ

ρ
.

This shows that every measure ν belonging to Fr[μ] is absolutely continuous and |ν′(x)| ≤
Mxρ−1. Let rn → ∞ be a sequence with μrn → ν. Let ε be a strictly positive number
and K1 and compactly supported function on (0,∞) such that∫ ∞

0

|K(t)−K1(t)| dt < ε.

Then ∣∣∣∣
∫ ∞

0

K(t) dμrn(t)−
∫ ∞

0

K(t) dν(t)

∣∣∣∣ ≤
∣∣∣∣
∫ ∞

0

(K(t)−K1(t)) dμrn(t)

∣∣∣∣
+

∣∣∣∣
∫ ∞

0

(K(t)−K1(t)) dν(t)

∣∣∣∣ +
∣∣∣∣
∫ ∞

0

K1(t) dμrn(t)−
∫ ∞

0

K1(t) dν(t)

∣∣∣∣.
(4.52)
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We have ∣∣∣∣
∫ ∞

0

(K(t)−K1(t)) dμrn(t)

∣∣∣∣ ≤ M

∫ ∞

0

∣∣K(t)−K1(t)
∣∣V (rnt)

tV (rn)
dt

≤ 2M

∫ ∞

0

|K(t)−K1(t)|tρ−1 dt ≤ 2M max
{
tρ−1 : t ∈ [a, b]

}
ε,

where [a, b] ⊂ (0,∞) is a segment such that suppK, suppK1 ⊂ [a, b]. The second
summand on the right in (4.52) admits a similar estimate. The third summand tends to
zero as n → ∞. If follows that

lim
n→∞

J(rn) =

∫ ∞

0

K(u) dν(u).

Thus, we have proved the inclusionH ⊂ L(J,∞), whereH is the right-hand side of (4.51).
The proof is finished by an argument similar to that in the proof of Theorem 31. �

In what follows, we replace the assumption that K is compactly supported in Theorem
31–33 by a weaker restriction onK, which will not influence the claims. However, stronger
restrictions should be imposed on μ for this.

We start with some definitions.
A triple (K, ρ(r), μ) is said to admit neutralization of zero if

lim
ε→+0

lim sup
r→∞

∣∣∣∣
∫ ε

0

K(t) dμr(t)

∣∣∣∣ = 0.

This triple is said to admit neutralization of infinity if

lim
N→∞

lim sup
r→∞

∣∣∣∣
∫ ∞

N

K(t) dμr(t)

∣∣∣∣ = 0.

Note that if K is a compactly supported kernel, then the triple (K, ρ(r), μ) admits
neutralization both of zero and of infinity for every proximate order ρ(r) and every
Radon measure μ on (0,∞).

These definitions make it possible to simplify many statements because they permit
us not to detalize conditions on K and μ that ensure neutralization of zero or of infinity.
Detalization of such conditions can be described in separate statements.

Lemma 8. If a triple (K, ρ(r), μ) admits neutralization of zero, then

lim
ε1→+0
ε2→+0

lim sup
r→∞

∣∣∣∣
∫ ε2

ε1

K(t) dμr(t)

∣∣∣∣ = 0.

Lemma 9. If a triple (K, ρ(r), μ) admits neutralization of infinity, then

lim
N1→∞
N2→∞

lim sup
r→∞

∣∣∣∣
∫ N2

N1

K(t) dμr(t)

∣∣∣∣ = 0.

Lemmas 8 and 9 are obvious.

Theorem 34. Let ρ(r) be an arbitrary proximate order, let μ ∈ M(ρ(r)), and let K be
a continuous kernel on (0,∞). If the triple (K, ρ(r), μ) admits neutralization of zero and
of infinity, then for every measure ν the integral

∫ ∞
0

K(t) dν(t) exists as an improper
integral with singular points 0 and ∞.

Proof. Let ν be an arbitrary measure belonging to Fr[μ]. There is a sequence rn → ∞
such that μrn → ν. We may assume that, moreover, |μ|rn → pν. Since the triple
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(K, ρ(r), μ) admits neutralization of zero, Lemma 8 shows that for every δ > 0 there
exists ε0 > 0 such that

lim sup
r→∞

∣∣∣∣
∫ ε2

ε1

K(t) dμr(t)

∣∣∣∣ ≤ δ

whenever 0 < ε1 < ε2 ≤ ε0. In particular,

(4.53) lim sup
n→∞

∣∣∣∣
∫ ε2

ε1

K(t) dμrn(t)

∣∣∣∣ ≤ δ.

Let E be the set of points that carry a mass of pν. Then E is at most countable. We may
assume that ε1, ε2 /∈ E. Using Theorem 12, we can rewrite (4.53) as follows:

(4.54)

∣∣∣∣
∫ ε2

ε1

K(t) dν(t)

∣∣∣∣ ≤ δ.

Here we assume that ε1, ε2 /∈ E. But the relation∣∣∣∣
∫ ε2

ε1

K(t) dν(t)

∣∣∣∣ = lim
h→+0

∣∣∣∣
∫ ε2+h

ε1−h

K(t) dν(t)

∣∣∣∣
shows that this restriction can be dropped. Then (4.54) means that the Cauchy con-
vergence condition at the singular point zero is fulfilled for the integral

∫ ∞
0

K(t) dν(t).
Consequently, this integral converges at zero. The proof of convergence at infinity is
similar. �

Now, we can prove a version of Theorem 31 for a not necessarily compactly supported
kernel K.

Theorem 35. Let ρ(r) be an arbitrary proximate order, let μ ∈ M∞(ρ(r)), and let K be
a continuous kernel on (0,∞). If the triple (K, ρ(r), μ) admits neutralization of zero and
of infinity, then

(4.55) L(J,∞) =

{∫ ∞

0

K(u) dν(u) : ν ∈ Fr[μ]

}
.

Proof. Let ν be an arbitrary measure belonging to the cluster set Fr[μ]. There exists
a sequence rn → ∞ such that μrn → ν and |μ|rn → pν. Let δ be an arbitrary positive
number. The assumption about neutralization and Theorem 34 imply that there exist
numbers ε0 > 0 and N0 > 0 such that for ε ∈ (0, ε0) and N > N0 we have

lim sup
r→∞

∣∣∣∣
∫ ε

0

K(t) dμr(t)

∣∣∣∣ < δ, lim sup
r→∞

∣∣∣∣
∫ ∞

N

K(t) dμr(t)

∣∣∣∣ < δ,∣∣∣∣
∫ ε

0

K(t) dν(t)

∣∣∣∣ < δ,

∣∣∣∣
∫ ∞

N

K(t) dν(t)

∣∣∣∣ < δ.

(4.56)

We assume that, moreover, the points ε and N do not carry a mass of pν. Then∣∣∣∣
∫ ∞

0

K(t) dμrn(t)−
∫ ∞

0

K(t) dν(t)

∣∣∣∣ ≤
∣∣∣∣
∫ ε

0

K(t) dμrn(t)

∣∣∣∣ +
∣∣∣∣
∫ ε

0

K(t) dν(t)

∣∣∣∣
+

∣∣∣∣
∫ ∞

N

K(t) dμrn(t)

∣∣∣∣ +
∣∣∣∣
∫ ∞

N

K(t) dν(t)

∣∣∣∣ +
∣∣∣∣
∫ N

ε

K(t) dμrn(t)−
∫ N

ε

K(t) dν(t)

∣∣∣∣.
(4.57)

By Theorem 12, the very last summand tends to zero as n → ∞. Combining this with
(4.56) and (4.57), we see that

lim sup
n→∞

∣∣∣∣
∫ ∞

0

K(t) dμrn(t)−
∫ ∞

0

K(t) dν(t)

∣∣∣∣ ≤ 4δ.

In its turn, this relation implies the inclusion H ⊂ L(J,∞), where H is the right-hand
side of (4.55). The rest of the proof is the same as for Theorem 31. �
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Next, we present versions of Theorems 32 and 33 for K not necessarily having compact
support. The proofs fit into the same pattern as that of Theorem 35.

Theorem 36. Let ρ(r) be an arbitrary proximate order, and let μ ∈ M∞(ρ(r)). Suppose
that K(t) is a kernel on (0,∞) continuous everywhere except the point 1 at which it has
a jump and is continuous from the left. Suppose also that the triple (K, ρ(r), μ) admits
neutralization of zero and of infinity. Then

L(J,∞) =

{∫ 1

0

K(t) dν1(t) +

∫ ∞

1

rK(t) dν2(t) : (ν1, ν2) ∈ pFr[μ]

}
,

where rK(t) is the continuous extension of K from (1,∞) to [1,∞).

Theorem 37. Let ρ(r) be an arbitrary proximate order, and let μ be a Radon mea-

sure on (0,∞) with density μ′(r) that satisfies the inequality |μ′(r)| ≤ M V (r)
r . Suppose

that K(t) is a locally integrable kernel on (0,∞) and that the triple (K, ρ(r), μ) admits
neutralization of zero and of infinity. Then

L(J,∞) =

{∫ ∞

0

K(t) dν(t) : ν ∈ Fr[μ]

}
.

In connection with Theorems 35–37, it becomes important to know under what re-
strictions on K and μ the triple (K, ρ(r), μ) admits neutralization of zero or of infinity.
We shall prove two results on this subject. Recall that the function γ(t) occurring in the
next statements was defined by formula (1.1).

Lemma 10. Suppose that ρ(r) is an arbitrary proximate order, μ is a Radon measure

on (0,∞) with a density μ′(r) such that |μ′(r)| ≤ M V (r)
r (r ∈ (0,∞)). Suppose also that

tρ−1γ(t)K(t) ∈ L1(0,∞). Then the triple (K, ρ(r), μ) admits neutralization of zero and
of infinity.

Proof. Using inequality (2.18), we obtain∣∣∣∣
∫ ε

0

K(t) dμr(t)

∣∣∣∣ ≤ M

∫ ε

0

|K(t)|V (rt)

tV (r)
dt ≤ M

∫ ε

0

tρ−1γ(t)|K(t)| dt.

Since tρ−1γ(t)|K(t)| ∈ L1(0,∞), it follows that the triple (K, ρ(r), μ) admits neutraliza-
tion of zero. Neutralization of infinity is ensured similarly. �

Remark 5. In the statement of Lemma 10 the function γ(t) occurred, the study of which

presents some difficulties. However, this study becomes redundant if tρ−1 1+t2ε

tε K(t) ∈
L1(0,∞) for some ε > 0. Combined with Theorem 9, this relation implies that

tρ−1γ(t)K(t) ∈ L1(0,∞).

The next result goes back to Wiener.
Let K(t) be a kernel on (0,∞). Put

Kn = sup
{
|K(t)| : t ∈ (en, en+1]

}
, n ∈ (−∞,∞).

The set M(ρ(r)) occurring in the following statement was defined in the Preface.

Lemma 11. Suppose that ρ(r) is an arbitrary proximate order and μ ∈ M(ρ(r)). Let
K(t) be a Borel function on (0,∞) such that the series

(4.58)

∞∑
n=−∞

enργ(en)Kn, ρ = ρ(∞),

converges. Then the triple (K, ρ(r), μ) admits neutralization of zero and of infinity.
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Proof. Since μ ∈ M(ρ(r)), there exists A > 0 such that |μ|((r, er]) ≤ AV (r) for every
A > 0. Next, we have

∣∣∣∣ 1

V (r)

∫ εr

0

K
( t

r

)
dμ(t)

∣∣∣∣ ≤ 1

V (r)

n0∑
n=−∞

∫ en+1r

enr

∣∣∣K(u

r

)∣∣∣ d|μ|(u)
≤ 1

V (r)

n0∑
n=−∞

Kn|μ|((enr, en+1r]) ≤ A

V (r)

n0∑
n=−∞

KnV (enr) ≤ A

n0∑
n=−∞

Kne
nργ(en),

where n0 = [ln ε]. Combined with the convergence of the series (4.58), this implies
neutralization of zero for the triple (K, ρ(r), μ). Neutralization of infinity is ensured
similarly. �

Remark 6. The convergence of the series (4.58) can be replaced by a stronger restriction,
namely, by the requirement that the series

∞∑
n=−∞

1 + e2εn

eεn
enρKn

converge for some γ(t). Then there will be no need in the study of the function γ(t).

Consider the function

v(z) =

∫ ∞

0

ln
∣∣∣1− z

t

∣∣∣ dμ(t),
where μ is a positive measure on (0,∞) that belongs to M∞(ρ(r)) with ρ = ρ(∞) ∈ (0, 1)
and μ is such that the above integral converges at zero. This function is well known in
the growth theory for subharmonic functions and has been the subject of numerous
investigations. If the measure μ is regular, v(z) belongs to a special class of subharmonic
functions of completely regular growth (with respect to the proximate order ρ(r)) in the
sense of Levin and Pfluger. In this case, the limit of v(r)/V (r) as r → ∞ may fail to
exist, but the limit

(4.59) lim
r→∞

1

rV (r)

∫ r

0

v(t) dt

exists. The proofs of the above statements about v(z) can be found in [18].
The existence of the limit (4.59) does not follow from the theorems proved above, but

will be a consequence of the statement below. Consequently, we shall obtain a result as
strong as those in the theory of subharmonic functions, but valid for kernels much more
general than the kernel ln

∣∣1 − r
t

∣∣ involved in the definition of v(r). It should also be
noted that, as is seen from Theorem 32 and the properties of v(r) mentioned above, in
the case of discontinuous kernels the cluster set Fr[μ] does not determine the asymptotic
behavior of the function Ψ. However, as we shall see, this set determines the cluster set
of the measure s. In the Preface we already characterized the next theorem as a principal
result of the paper.

Theorem 38. Let ρ(r) be an arbitrary proximate order, and let μ ∈ M(ρ(r)). Suppose
that K(t) is a Borel function on (0,∞) such that tρ−1γ(t)K(t) ∈ L1(0,∞) (ρ = ρ(∞)).
Then the measure s, ds(u) = Ψ(u) du, where Ψ was defined by (1.2), belongs to the class
M(ρ(r)+ 1), and its cluster set Fr[ρ(r)+ 1, s] consists of absolutely continuous measures
whose densities constitute the set{∫ ∞

0

K

(
t

u

)
dν(t) : ν ∈ Fr[μ]

}
.
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Proof. First, we prove this theorem under the additional assumption ρ > 0. Let μ(t) and
pμ(t) be the distribution functions for μ and |μ| normalized by the conditions μ(+0) =
pμ(+0) = 0. Since μ ∈ M(ρ(r)), there exists a constant A1 such that |μ|([r, er]) ≤ A1V (r)
on (0,∞). If ρ > 0, it follows that

|μ|((0, r]) =
0∑

n=−∞
|μ|((en−1r, enr]) ≤ A1

0∑
n=−∞

V (en−1r)

= A1

0∑
n=−∞

∫ enr

en−1r

V (en−1r)

V (t)

V (t)

t
dt ≤ A1 max

[ 1e ,1]
γ(t)

0∑
n=−∞

∫ enr

en−1r

V (t)

t
dt

= A2

∫ r

0

V (t)

t
dt = A2

∫ 1

0

V (ur)

u
du ≤ A2

∫ 1

0

uργ(u)V (r)

u
du = AV (r).

(4.60)

We have used (2.18) in these estimates. Next, we have

|s|([R, eR]) =

∫ eR

R

|Ψ(r)| dr ≤
∫ eR

R

∫ ∞

0

∣∣∣K( t

r

)∣∣∣ d|μ|(t) dr
=

∫ ∞

0

∫ eR

R

∣∣∣K( t

r

)∣∣∣ dr dpμ(t) =

∫ ∞

0

t

∫ t
R

t
eR

1

u2
|K(u)| du dpμ(t).

Integration by parts yields

|s|([R, eR]) ≤
{
t

∫ t
R

t
eR

1

u2
|K(u)| dupμ(t)

}∣∣∣∣
∞

0

−
∫ ∞

0

∫ t
R

t
eR

1

u2
|K(u)| dupμ(t) dt

−R

∫ ∞

0

1

t

∣∣∣K( t

R

)∣∣∣pμ(t) dt+ eR

∫ ∞

0

1

t

∣∣∣K( t

eR

)∣∣∣pμ(t) dt.
(4.61)

We need to estimate the positive summands on the right in (4.61). We shall use inequality
(2.18). Observe that∫ t

R

t
eR

1

u2
|K(u)| du =

1
t
RV

(
t
R

) ∫ t
R

t
eR

t
RV

(
t
R

)
uV (u)

|K(u)|V (u)

u
du

≤ 1
t
RV

(
t
R

) ∫ t
R

t
eR

( t

Ru

)ρ+1

γ
( t

Ru

)
|K(u)|V (u)

u
du ≤ eρ+1

t
RV

(
t
R

)
pγ

∫ t
R

t
eR

|K(u)|V (u)

u
du,

(4.62)

where pγ = max{γ(x) : x ∈ [1, e]}. Since V (t) ≤ tργ(t) and tρ−1γ(t)K(t) ∈ L1(0,∞), it

follows that V (t)
t K(t) ∈ L1(0,∞). Now (4.62) implies that the integrated term in (4.61)

vanishes.
We estimate the fourth term on the right in (4.61):

eR

∫ ∞

0

1

t

∣∣∣K( t

eR

)∣∣∣pμ(t) dt ≤ AeR

∫ ∞

0

1

t

∣∣∣K( t

eR

)∣∣∣V (t) dt

= AeR

∫ ∞

0

1

u
|K(u)|V (eRu) du ≤ AeRV (eR)

∫ ∞

0

uρ−1γ(u)|K(u)| du.

Thus, we have proved that

|s|([R, eR]) ≤ A

∫ ∞

0

uρ−1γ(u)|K(u)| du eRV (eR)

for R > 0. This means that s ∈ M(ρ(r) + 1).
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Let ϕ ∈ Φ. We have

1

rV (r)

∫ ∞

0

ϕ
(u

r

)
ds(u) =

1

rV (r)

∫ ∞

0

ϕ
(u

r

)
Ψ(u) du

=
1

rV (r)

∫ ∞

0

∫ ∞

0

ϕ
(u

r

)
K

( t

u

)
dμ(t) du

=
1

rV (r)

∫ ∞

0

∫ ∞

0

ϕ
(u

r

)
K

( t

u

)
du dμ(t)

=
1

rV (r)

∫ ∞

0

∫ ∞

0

1

x2
ϕ
( t

xr

)
K(x) dx dμ(t)

=
1

rV (r)

∫ ∞

0

1

x2
K(x)

∫ ∞

0

tϕ
( t

xr

)
dμ(t) dx.

(4.63)

From the above arguments it easily follows that all integrals in (4.63) converge abso-
lutely. This justifies the interchanges of the order of integration done in the course of
the proof of (4.63).

Now, let rn → ∞ be a sequence such that μrn → ν. We have

lim
n→∞

1

rnV (rn)

∫ ∞

0

tϕ
( t

xrn

)
dμ(t) = lim

n→∞

∫ ∞

0

uϕ
(u

x

)
dμrn(u) =

∫ ∞

0

uϕ
(u

x

)
dν(u).

Suppose that suppϕ ⊂ [a, b] ⊂ (0,∞). Then∣∣∣∣ 1

rnV (rn)

∫ ∞

0

tϕ
( t

xrn

)
dμ(t)

∣∣∣∣ ≤ bx

V (rn)
‖ϕ‖pμ(bxrn) ≤

Ab‖ϕ‖x
V (rn)

V (bxrn)

≤ A‖ϕ‖(bx)ρ+1γ(bx) ≤ A‖ϕ‖bρ+1γ(b)xρ+1γ(x).

We have used the estimate γ(bx) ≤ γ(b)γ(x). It follows that∣∣∣∣ 1

x2
K(x)

1

rnV (rn)

∫ ∞

0

tϕ
( t

xrn

)
dμ(t)

∣∣∣∣ ≤ A‖ϕ‖bρ+1γ(b)xρ−1γ(x)|K(x)|.

Now, the Lebesgue dominated convergence theorem implies

lim
n→∞

1

rnV (rn)

∫ ∞

0

1

x2
K(x)

∫ ∞

0

tϕ
( t

xrn

)
dμ(t) dx

=

∫ ∞

0

1

x2
K(x)

∫ ∞

0

uϕ
(u

x

)
dν(u) dx =

∫ ∞

0

u

∫ ∞

0

1

x2
ϕ
(u

x

)
K(x) dx dν(u)

=

∫ ∞

0

∫ ∞

0

K
(u

t

)
ϕ(t) dt dν(u) =

∫ ∞

0

∫ ∞

0

K
(u

t

)
dν(u)ϕ(t) dt.

Putting r = rn in (4.63) and passing to the limit as n → ∞, we obtain

lim
n→∞

∫ ∞

0

ϕ(t) dsrn(t) =

∫ ∞

0

∫ ∞

0

K
(u

t

)
dν(u)ϕ(t) dt.

This means that the sequence srn of measures converges and its limit is the absolutely
continuous measure with the density

∫ ∞
0

K
(
u
t

)
dν(u). So, we have proved that Fr[s]

contains all absolutely continuous measures with densities of the form
∫ ∞
0

K
(
u
t

)
dν(u),

where ν ∈ Fr[μ].
Now, let ν1 be an arbitrary measure in Fr[s], and let Rn → ∞ be a sequence such

that sRn
→ ν1. We put r = Rn in (4.63). There is no loss of generality in assuming that

μRn
→ ν ∈ Fr[μ]. Then the above proof shows that ν1 is absolutely continuous and its

density is
∫ ∞
0

K
(
u
t

)
dν(u). This proves the theorem for ρ > 0.
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Let ρ(r) be an arbitrary proximate order, and let ρ = ρ(∞). We take a real number
p such that ρ1 = ρ+ p > 0 and put ρ1(r) = ρ(r) + p. Along with the formula

Ψ(r) =

∫ ∞

0

K
( t

r

)
dμ(t),

we also have the formula

Ψ1(r) = rpΨ(r) =

∫ ∞

0

(r

t

)p

K
( t

r

)
tp dμ(t) =

∫ ∞

0

K1

( t

r

)
dμ1(t),

where K1(t) = t−pK(t), dμ1(t) = tpdμ(t). Next,

tρ1−1γ(t)K1(t) = tρ+p−1γ(t)t−pK(t) = tρ−1γ(t)K(t).

Applying Theorem 19, it is easy to show that the proximate order ρ1(r), the kernel K1,
and the measures μ1 and s1, ds1(t) = Ψ1(t)dt, satisfy the assumptions of Theorem 38
and, furthermore, ρ1 > 0. By what has already been proved, the set Fr[s1] consists of
absolutely continuous measures whose densities are of the form{∫ ∞

0

K1

(u

t

)
dν1(t) : ν1 ∈ Fr[μ1]

}
.

Now, it remains to apply Theorem 19. �

In Theorem 35, the behavior of the function

(4.64) Ψ(r) =

∫ ∞

0

K
( t

r

)
dμ(t)

was described in terms of the cluster set Fr[μ]. The applicability of that theorem is
restricted by the possibility to verify neutralization of zero and of infinity for the triple
(K, ρ(r), μ).

However, there are other obstructions to the study of Ψ(r). We shall consider the case
of an infinitely differentiable compactly supported kernel K on (0,∞) in detail. This
restriction on K is very strong. In particular, for such K the triple (K, ρ(r), μ) admits
neutralization of zero and of infinity for every proximate order ρ(r) and every Radon
measure μ on (0,∞).

Suppose that K is an infinitely differentiable kernel on the semiaxis (0,∞) and μ is a
Radon measure on this semiaxis. Then we have infinitely many identities

(4.65) (−1)n+1rn+1Ψ(r) =

∫ ∞

0

K(n+1)
( t

r

)
Fn(t) dt, n = 0, 1, . . . ,

where F0(t) = μ(t) is the distribution function for μ and F ′
n+1(t) = Fn(t), n = 0, 1, . . . .

The question arises as to whether identities (4.65) and Theorem 31 allow us to deter-
mine the order of growth for Ψ(r) at infinity. The answer given below is: “Yes in many
cases, but there are some exceptions”.

Consider a Radon measure μ1 on (0,∞) supported on (0, 1] and a compactly supported
kernel K on (0,∞). We put

u(r) =

∫ ∞

0

K
( t

r

)
dμ1(t).

Then u(r) vanishes in a neighborhood of infinity. So, if we are interested in the behavior of
the function Ψ(r) given by (4.64) near infinity, we may assume without loss of generality
that the measure μ in (4.64) is supported on (1,∞). In the sequel, we assume this
tacitly. Then the function F0(t) is bounded on every interval (0, N), and all functions
Fk(t), k ≥ 1, can be taken continuous on [0,∞). At least, we may assume that the Fk(t)

are locally integrable on (0,∞) and the integral
∫ 1

0
Fk(t) dt exists for every k ≥ 0.
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Suppose that a function f(t) is locally integrable on (0,∞) and the integral
∫ 1

0
f(t) dt

exists, at least as an improper integral. The function F (t) defined by F (t) = −
∫ ∞
t

f(x) dx

if this integral converges and by F (t) =
∫ t

0
f(x) dx otherwise will be called the canonical

primitive for f on (0,∞). The canonical primitive is determined by f uniquely. Every lo-
cally integrable function f on (0,∞) possesses a primitive F , but the canonical primitive
may fail to exist. For example, the canonical primitive does not exist for the function
f(t) = 1

t on (0,∞).
The function F0(t) in formula (4.65) will be defined uniquely in the following way.

We put F0(t) = −μ((t,∞)) if F0(t) is finite (we remind the reader that μ is a Radon
measure on (0,∞), so the quantity μ(E) may fail to exist for some Borel sets E), and
F0(t) = μ((0, t]) otherwise. This definition always makes sense because μ is supported
on (1,∞). After that, we define Fn+1(t) to be the canonical primitive for Fn(t). Then
the sequence Fn(t) in (4.65) is defined uniquely.

In §2, an order and a proximate order were introduced for positive functions. Now we
extend these definitions to complex-valued functions.

Let f(t) be a complex-valued function on (0,∞). The order ρ of f is defined by the
formula

ρ = lim sup
r→∞

ln |f(r)|
ln r

.

If ρ is a real number, then f is called a function of finite order ρ.
We shall say that a proximate order ρ(r) is a proximate order for the function f(r) if

lim sup
r→∞

|f(r)|
V (r)

= σ ∈ (0,∞).

If ρ(r) is a proximate order for the function f(r), we say that f(r) grows at infinity
as V (r).

Theorem 6 implies that if f(r) is of finite order, then it also possesses a proximate
order ρ(r) (surely, there are infinitely many such orders).

In many problems (in particular, in connection with formula (4.65)) the question about
estimates of a primitive F for f arises. We dwell on some details of this.

Lemma 12. Let f be a locally integrable function of finite order on (0,∞) such that the

integral
∫ 1

0
f(t) dt exists. Let ρ(r) be a proximate order for f , and let F be the canonical

primitive for F . Then there exist constants Mk and r0 such that
1) |F (r + αr)− F (r)| ≤ M1αrV (r), r ≥ r0, α ∈ [0, 1];
2) |F (r)| ≤ M2

(
1 +

∫ r

1
V (t) dt

)
, r ≥ 1;

3) |F (r)| ≤ M3

∫ ∞
r

V (t) dt, r ≥ 1;
4) |F (r)| ≤ M4rV (r), r ≥ 1, if ρ = ρ(∞) 	= −1;
5) the orders ρ(f) and ρ(F ) for f and F satisfy the inequality ρ(F ) ≤ ρ(f) + 1.

Note that if the integral
∫ ∞
1

V (t) dt diverges, then 3) is the trivial inequality |F (r)|≤∞.

Proof. Let σ be the type of f with respect to the proximate order ρ(r). Then for all
sufficiently large r and α ∈ [0, 1] we have

|F (r + αr)− F (r)| =
∣∣∣∣
∫ (1+α)r

r

f(t) dt

∣∣∣∣ ≤ 2σ

∫ (1+α)r

r

V (t) dt = 2σr

∫ 1+α

1

V (ur) du

≤ 2σrV (r)

∫ 1+α

1

uργ(u) du ≤ 2σγ1αrV (r),

where γ1 = max{uργ(u) : u ∈ [1, 2]}. This proves statement 1). Statements 2)–4) are
easy consequences of 1) and the properties of a proximate order. Indeed, let us verify 2)
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for instance. Let r ≥ 2r0. We define n0 by the condition 2−n0r ∈ [r0, 2r0) and put
r1 = 2−n0r. Then

|F (r)| =
∣∣∣F (r1) +

n0∑
n=1

(
F (2nr1)− F (2n−1r1)

)∣∣∣
≤ |F (r1)|+M1

n0∑
n=1

2n−1r1V (2n−1r1) = |F (r1)|+M1

n0∑
n=1

∫ 2nr1

2n−1r1

V (2n−1r1) dt

≤ |F (r1)|+M5

n0∑
n=1

∫ 2nr1

2n−1r1

V (t) dt = |F (r1)|+M5

∫ r

r1

V (t) dt.

This implies 2) immediately. The inequality ρ(F ) ≤ ρ(f) + 1 is an easy consequence of
statement 4) if ρ 	= −1 and of statement 2 if ρ = −1. �

Lemma 12 motivates the following definition.
Let f(r) be a locally integrable function of finite order on (0,∞). Suppose that the

integral
∫ 1

0
f(t) dt exists, and let F (r) be the canonical primitive for f on (0,∞).

A proximate order ρ(r) for f is said to be stable if ρ = ρ(∞) 	= −1 and

lim sup
r→∞

|F (r)|
rV (r)

> 0.

We observe that the functions cos r, sin r, and eir do not possess a stable proximate
order.

Theorem 39. Let f(r) be a locally integrable function of finite order on (0,∞). Suppose

that the integral
∫ 1

0
f(t) dt exists, and let F (r) be the canonical primitive for f on (0,∞).

Let ρ(r), ρ(∞) 	= −1, −2, be a stable proximate order for f . Then ρ(r) + 1 is a stable
proximate order for F .

Proof. The fact that ρ(r) + 1 is a proximate order for F follows from the definition and
statement 4) in Lemma 12. It remains to prove that this proximate order is stable for F .
But if not, then, by Lemma 12 and the definition of a stable proximate order, we have

(4.66) lim
r→∞

F1(r)

r2V (r)
= 0,

where F1(r) is the canonical primitive for F (r) on (0,∞).
Suppose first that ρ(∞) > −2. We show that then the integral

∫ ∞
r

F (t) dt diverges.
Since ρ(r) + 1 is a proximate order for F , we may assume that there exists a number
m > 0 and a sequence rn → ∞ such that ReF (rn) ≥ 2mrnV (rn). This can be ensured
by replacement of f with −f or ±if if necessary. Statement 1) of Lemma 12 implies
that there exists α0 > 0 such that ReF (r) ≥ mrnV (rn) for all n sufficiently large and
all r ∈ [rn, (1 + α0)rn]. Then∣∣∣∣

∫ (1+α0)rn

rn

F (t) dt

∣∣∣∣ ≥
∣∣∣∣
∫ (1+α0)rn

rn

ReF (t) dt

∣∣∣∣ =
∫ (1+α0)rn

rn

ReF (t) dt ≥ mα0r
2
nV (rn).

Since limr→∞ r2V (r) = ∞, the Cauchy criterion shows that the integral
∫ ∞
r

F (t) dt
diverges. Thus, by the definition of a canonical primitive, formula (4.66) takes the form

(4.67) lim
r→∞

1

r2V (r)

∫ r

0

F (t) dt = 0.

A function g(r) is said to be of slow variation relative to a proximate order ρ(r) if

lim
r→∞
α→0

g(r + αr)− g(r)

V (r)
= 0.
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Statement 1) of Lemma 12 implies that F (r) is of slow variation relative to ρ(r) + 1.
The following statement is a consequence of [19, Theorem 2].
Let g be of show variation relative to a proximate order ρ(r) with ρ(∞) > −1. If

lim
r→∞

1

rV (r)

∫ r

0

g(t) dt = a,

then

lim
r→∞

g(r)

V (r)
= a(ρ+ 1).

Together with (4.66), this statement yields

(4.68) lim
r→∞

F (r)

rV (r)
= 0.

This contradicts the fact that ρ(r) is a proximate order for f .
Thus, (4.66) leads to a contradiction, which proves the theorem for ρ(∞) > −2. Now,

assume that ρ(∞) < −2. Then (4.66) takes the form

lim
r→∞

1

r2V (r)

∫ ∞

r

F (t) dt = 0.

Now, the additional statement for the justification of (4.68) looks like this.
Let g be a function of slow variation relative to a proximate order ρ(r) with ρ(∞) < −1.

If

lim
r→∞

1

rV (r)

∫ ∞

r

g(t) dt = a,

then

lim
r→∞

g(r)

V (r)
= −a(ρ+ 1).

This is also a consequence of the results of [19]. So, we have proved that, also for
ρ(∞) < −2, formula (4.66) implies (4.68), which contradicts the assumption of the
theorem. In any case, the assumption that ρ(r) + 1 is not a stable proximate order for
F (r) leads to a contradiction. �

The theorem proved above is fairly peculiar. It can be viewed as a statement about the
stabilization under consecutive integration for the property to have a stable proximate
order. Let Fk(r) be the consecutive canonical primitives on (0,∞) for f(r). The theorem
shows that if Fk(r) has a stable proximate order ρk(r) and ρk(∞) is not a negative integer,
then the proximate order ρk(r) +m is stable for Fk+m(r) for every m ≥ 1.

Theorem 40. Suppose that f is a locally integrable function of finite order on (0,∞)

and the integral
∫ 1

0
f(t) dt exists. Suppose that f does not possess a stable proximate

order, and let ρ(r) be a proximate order for f with ρ(∞) 	= −1. Let λ be the measure
whose density is f . Then λ ∈ M∞(ρ(r) + 1) and Fr[ρ(r) + 1, λ] = {0}.

Proof. Since ρ(r) is a proximate order for f(r), it follows that λ ∈ M∞(ρ(r) + 1). Let
F be the canonical primitive for f on (0,∞). Since f has no stable proximate order, we
have

(4.69) lim
r→∞

F (r)

rV (r)
= 0.
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Let ϕ be an arbitrary infinitely differentiable compactly supported function on (0,∞)
with suppϕ ⊂ [a, b] ⊂ (0,∞). Then

1

rV (r)

∫ ∞

0

ϕ
( t

r

)
dλ(t) =

1

rV (r)

∫ ∞

0

ϕ
( t

r

)
f(t) dt

= − 1

r2V (r)

∫ ∞

0

ϕ′
( t

r

)
F (t) dt = − 1

rV (r)

∫ b

a

ϕ′(u)F (ur) du.

Together with (4.69), this yields

(4.70) lim
r→∞

1

rV (r)

∫ ∞

0

ϕ
( t

r

)
dλ(t) = 0.

Let ν be an arbitrary measure in Fr[λ]. There is a sequence rn → ∞ such that
λrn → ν. Taking r = rn in (4.70), we obtain

∫ ∞
0

ϕ(u) dν(u) = 0. Therefore, ν = 0 by
Theorem 17. Thus, Fr[λ] = {0}. �

Theorem 41. Suppose that f is a locally integrable function of finite order on (0,∞) and

the integral
∫ 1

0
f(t) dt exists. Let F be the canonical primitive for f on (0,∞). Suppose

that f does not possess a stable proximate order. Let ρ(r) be some proximate order for
f with ρ(∞) 	= −1. If the order of F is not equal to −∞, then there exists a proximate
order ρ1 for F with

lim
r→∞

V1(r)

rV (r)
= 0.

Proof. The claim is obvious if the order of F satisfies ρ1 < ρ(∞) + 1, so we assume
that ρ1 = ρ(∞) + 1. Since there is no stable proximate order for f , (4.69) is true. In
combination with [9, Theorem 5], this yields a proximate order ρ2(r) with

lim
r→∞

F (r)

V2(r)
= 0, lim

r→∞

V2(r)

rV (r)
= 0.

The function F1(r) = F (r)
V2(r)

is of zero order and it tends to zero at infinity. By

Theorem 5, it has a proximate order ρ3(r) that grows monotonically on (1,∞) and
satisfies ρ3(∞) = 0 (the case of ρ3(r) ≡ 0 is not excluded). The proximate order
ρ1(r) = ρ2(r) + ρ3(r) is a proximate order for F (r). We have

lim
r→∞

V2(r)V3(r)

rV (r)
= 0.

Thus, ρ1(r) is a required proximate order. �

Now, we return to determining the order of growth of a function Ψ(r) defined as in
(4.64). If μ ∈ M∞(ρ(r)), then L(J,∞) has the form

L(J,∞) =

{∫ ∞

0

K(u) dν(u) : ν ∈ Fr[μ]

}
by Theorem 31. If L(J,∞) 	= {0}, then Ψ grows as V (r) at infinity. But if L(J,∞) = {0},
we have Ψ(r) = o(V (r)), which does not determine the order of growth of Ψ(r) at infinity.

The relation L(J,∞) = {0} may be fulfilled for various reasons. First, we consider the
case where Fr[μ] 	= {0}, but K is such that

∫ ∞
0

K(u) dν(u) = 0 for every ν ∈ Fr[μ]. In this
case, Theorem 31 does not allow us to determine the order of growth for Ψ(r) at infinity.
For example, it may happen that Fr[μ] = {uρ−1du},

∫ ∞
0

K(u)uρ−1 du = 0. In the case
in question, not merely our method fails, but in general the available information about
K and μ (we know that

∫ ∞
0

K(u) dν(u) = 0 for ν ∈ Fr[μ]) is insufficient for determining
the order of growth of Ψ at infinity. Some additional information is required, and the
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complexity of the problem depends on this information. In the particular case where
dμ(t) = tρ−1 dt, we have Ψ(r) ≡ 0.

Now, consider the case where Fr[μ] = {0}. Then we can use (4.65) to improve the
estimate Ψ(r) = o(V (r)).

Let Fm(t) have a proximate order ρm(r). Then the measure λm, dλm(t) = Fm(t) dt,
belongs to M∞(ρm(r) + 1). Put

Hm =

{ ∫ ∞

0

K(m+1)(u) dν(u) : u ∈ Fr[ρm(r) + 1, λm]

}
.

By Theorem 31, the cluster set for the function (−1)m+1rm+1Ψ(r)/rVm(r) in the direc-
tion r → ∞ coincides with Hm. If Hm 	= {0}, if follows that Ψ(r) grows at infinity as
Vm(r)
rm . But if Hm = {0}, we obtain Ψ(r) = o

(Vm(r)
rm

)
.

If Hm = {0} and Fr[λm] 	= {0}, we again obtain a case where Theorem 31 does not
answer the question about the order of growth of Ψ(r) at infinity.

Now, suppose that Fm(r) does not possess a stable proximate order. Then, application
of Theorems 31 and 40 to function Fm+1(r) and the proximate order ρm(r) + 1 shows
that

Ψ(r) = o

(
Vm(r)

rm

)
.

By Theorem 41, there exists a proximate order ρm+1(r) for Fm+1(r) with Vm+1(r) =
o(rVm(r)). Applying Theorem 31 to Fm+1(r) and ρm+1(r), we obtain the relation Ψ(r) =
O(r−m−1Vm+1(r)), which is stronger than the relation Ψ(r) = o(r−mVm(r)).

Denote by ρn a proximate order for Fn(r). The following theorem holds.

Theorem 42. Let K(t) be a compactly supported infinitely differentiable kernel, and let
μ be a Radon measure on (0,∞) having no mass on (0, 1]. We define Ψ(r) by (4.64) and
define uniquely the functions Fn(t) in (4.65) by the algorithm described above. Let ρn be
the order of Fn. If

lim inf
m→∞

(ρm −m) = −∞,

then Ψ(r) decays at infinity faster than an arbitrary power of r.

Proof. When applied to Fm(r) and ρm(r), Theorem 31 yields

Ψ(r) = O

(
Vm(r)

rm

)
.

This proves the claim. �

It is possible that ρn = −∞ for some n (for example, this is so if dμ(t) = Teie
t

dt).
Then (4.65) and Theorem 31 imply that Ψ(r) decays at infinity faster than an arbitrary
power of r.

Now, we consider the case where

(4.71) lim inf
m→∞

(ρm −m) > −∞.

Since ρn+1 ≤ ρn + 1 by Lemma 12, it follows that ρn+1 = ρn + 1 − εn, where εn ≥ 0.
Inequality (4.71) shows that the series

∑∞
n=0 εn converges. In its turn, this implies the

convergence of the sequence ρn − n. Then ρn = n + p + δn, where δn → 0, ρn > 0 for
n > n0. If Fm(r) has a stable proximate order ρm(r) for some m > n0, then Theorem 39
shows that for every k ≥ 0 the function ρm+k(r) = ρm(r) + k is a stable proximate

order for Vm(r)
rm if Em 	= {0}, but otherwise the method gives nothing beyond the relation

Ψ(r) = o
(Vm(r)

rm

)
.

But if for allm > n0 there is no stable proximate order for Fm(r), then, by Theorem 41,

the functions Fm(r) possess some proximate orders ρm(r) such that Ψ(r) = o
(Vm+1(r)

rm+1

)
,
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which is a refinement of the preceding relation Ψ(r) = o
(Vm(r)

rm

)
. The method gives

nothing beyond this in the case in question.
We have discussed the possibilities of our method for a compactly supported infinitely

differentiable kernel K. Under some conditions, these results can be extended to not
necessarily compactly supported kernels.

In Theorem 35, it was required that the triple (K, ρ(r), μ) admit neutralization of zero
and of infinity. There are also results about the asymptotic behavior of Ψ in which this
assumption is violated.

Theorem 43. Let ρ(r) be a zero proximate order, and let μ ∈ M(ρ(r)) be such that the
limit limε→0 μ([ε, 1]) = μ((0, 1]) exists. Let K(t) be a continuous function on [0,∞). Put
K1(t) = K(t)−K(0)χ[0,1](t) and suppose that the triple (K1, ρ(r), μ) admits neutraliza-
tion of zero and of infinity. Then∫ ∞

0

K
( t

r

)
dμ(t) = K(0)μ((0, r]) + ϕ(r);

moreover, the cluster set of the function ϕ(r)
V (r) as r → ∞ has the form{∫ 1

0

(
K(t)−K(0)

)
dν1(t) +

∫ ∞

1

K(t) dν2(t) : (ν1, ν2) ∈ pFr(μ)

}
.

Proof. We have ∫ ∞

0

K
( t

r

)
dμ(t) = K(0)μ([0, r]) +

∫ ∞

0

K1

( t

r

)
dμ(t).

The function K1 and the measure μ obey all assumptions of Theorem 36. Applying
it, we complete the proof. �

Many theorems involve the following assumption:

(4.72) Ψ(r) =

∫ ∞

0

K
( t

r

)
dμ(t) ∼ MV (r), r → ∞.

Under some restrictions on K and μ, we have Ψ(r) = rρ1(r), where ρ1(r) is a proximate
order.

Theorem 44. Let ρ(r) be a zero proximate order, μ a positive locally finite measure
on (0,∞), and K(t) a continuously differentiable function strictly monotone decreasing
on (0,∞) and such that the triple (tK ′(t), ρ(t), μ) admits neutralization of zero and of
infinity. Assume that (4.72) holds true and that the derivative Ψ′(r) can be calculated by
the Leibnitz rule:

Ψ′(r) = − 1

r2

∫ ∞

0

tK ′
( t

r

)
dμ(t).

If we define ρ1(r) by the formulas rρ1(r) = Ψ(r) for r ≥ 1 and ρ1
(
1
r

)
= −ρ1(r), then

ρ1(r) is a zero proximate order.

Proof. We remind the reader that the relation ρ1
(
1
r

)
= −ρ1(r) is a part of our definition

of a zero proximate order (see §2). We have

Ψ(2r)−Ψ(r) =

∫ ∞

0

(
K

( t

2r

)
−K

( t

r

))
dμ(t)

≥
∫ 2r

r

(
K

( t

2r

)
−K

( t

r

))
dμ(t) ≥ mμ([r, 2r]),

(4.73)

where m = min
{
K

(
u
2

)
−K(u) : u ∈ [1, 2]

}
> 0. By (4.72), it follows that Fr[ρ(r), μ] =

{0}.
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Now, by assumption and by Theorem 35 we obtain

lim
r→∞

rΨ′(r)

V (r)
= 0, lim

r→∞

rΨ′(r)

Ψ(r)
= 0.

This argument shows also that the function ρ1(r) defined in the theorem is a zero
proximate order. �
Remark 7. Let us dwell on Theorem 108 in Hardy’s book [6]. It claims that if ρ(r) is
a zero proximate order and μ is a positive locally finite measure on [0,∞), then the
relations

Ψ(r) =

∫ ∞

0

e−
t
r dμ(t) ∼ V (r), μ([0, r]) ∼ V (r) (r → ∞)

are equivalent.

We want to apply our theorems to this case and to look at the results. Theorem 44
implies that Ψ(r) is representable in the form Ψ(r) = rρ1(r) = V1(r), where ρ1(r) is a
zero proximate order. There exists a zero proximate order ρ2(r) such that

lim sup
r→∞

V1(2r)− V1(r)

V2(r)
< ∞, lim

r→∞

V2(r)

V1(r)
= 0.

The simplest choice is to define ρ2(r) by the relation rρ2(r) = V1(2r) − V1(r), provided
this function is a proximate order.

We have

V1(2r)− V1(r) =

∫ ∞

0

e−
t
2r

(
1− e−

t
2r

)
dμ(t)

≥
∫ 2r

r

e−
t
2r

(
1− e−

t
2r

)
dμ(t) ≥ e−1

(
1− e−

1
2

)
μ((r, 2r]).

It follows that μ ∈ M∞(ρ2(r)). Now, applying Theorem 36 to the second summand on
the right in the formula

Ψ(r) = μ([0, r]) +

∫ ∞

0

(
e−

t
r − χ[0,r](t)

)
dμ(t),

we obtain
μ([0, r]) = Ψ(r) +O(V2(r)).

This is stronger than Theorem 108.

§5. Tauberian theorems for integrals

We start with a definition.
Let μ be a Radon measure on the real axis satisfying the condition |μ|([−t, t]) ≤

M(1 + tα) with some α ≥ 0. The Carleman transform of μ is defined to be the pair
G(z) = (G+(z), G−(z)) of functions given by

G+(z) =
′∫ ∞

0

eitz dμ(t), Im z > 0,

G−(z) = −
′∫ 0

−∞
eitz dμ(t), Im z < 0.

Primes near the integral signs means that we integrate against the measure μ −
1
2μ({0})δ (δ is the Dirac unit point mass at zero) rather than against μ. If μ({0}) = 0,
the primes can be omitted.

Clearly, G(z) is a locally holomorphic function on C \ R (C is the complex plane and
R is the real axis).
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Our exposition of Tauberian theorems depends rather essentially on the following
statement about analytic continuation.

Theorem 45. Let M > 0 be a fixed number and μ a Radon measure on the real axis
such that |μ|([α, β]) ≤ M if β − α ≤ 1. Suppose that a Borel function K(t) belongs to

L1(−∞,∞) and pK(λ) =
∫ ∞
−∞ K(t)e−iλt dt 	= 0 for λ ∈ (a, b). Suppose also that

(5.74)

∫ ∞

−∞
K(t− u) dμ(t) = 0, u ∈ (−∞,∞),

and let G(z) = (G+(z), G−(z)) be the Carleman transform of μ. Then the following is
true:

1)

(5.75)
∣∣G(z)

∣∣ ≤ M
(
1 +

1

|y|
)
, z = x+ iy;

2) G+(z) admits analytic continuation through (a, b) to G−(z).

Proof. First, we show that if d− c = 1, then there exists M1 such that

(5.76) I(c, d) =

∫ d

c

∫ ∞

−∞
|K(t− u)| d|μ|(t) du ≤ M1

for every c ∈ (−∞,∞). We have

I(c, d) =

∫ ∞

−∞

∫ d

c

|K(t− u)| du d|μ|(t) =
∫ ∞

−∞

∫ t−c

t−d

|K(τ )| dτ d|μ|(t)

=

∞∑
n=−∞

∫ n+1

n

∫ t−c

t−d

|K(τ )| dτ d|μ|(t).

By the mean value theorem, there exist points tn ∈ [n, n+ 1] with

I(c, d) =

∞∑
n=−∞

∫ tn−c

tn−d

|K(τ )| dτ
∫ n+1

n

d|μ|(t).

By the restrictions on μ, we obtain

I(c, d) ≤ M

∞∑
n=−∞

∫ tn−c

tn−d

|K(τ )| dτ = M

∫ ∞

−∞
a(τ )|K(τ )| dτ,

where a(τ ) is the number of segments [tn − d, tn − c] that contain τ . Now, (5.76) follows
because a(τ ) ≤ 3.

Next, we estimate G(z). Let qμ(t) be the distribution function for |μ| normalized by
the condition qμ(0) = 0. By assumption, |qμ(t)| ≤ M(1 + |t|). Therefore,

∣∣G+(z)
∣∣ ≤ ∫ ∞

0

e−ty dqμ(t) = e−ty
qμ(t)

∣∣∣∞
0

+ y

∫ ∞

0

qμ(t)e−ty dt.

Using the estimate for qμ(t), we arrive at the inequality |G+(z)| ≤ M
(
1+ 1

y

)
. The function

G−(z) is estimated similarly. This proves statement 1).

We denote Tε(t) =
(
sin ε

2 t/
ε
2 t

)2
and define a measure με by dμε(t) = Tε(t)dμ(t). Let

Gε(z) be the Carleman transform of με. We observe that the measure με is finite and
that, by the inequality Tε(t) ≤ 1, the function G can be replaced by Gε in (5.75).

Assuming that ε is sufficiently small, let [a1, b1] be a segment such that a+ ε < a1 <
b1 < b − ε. Let ξ be an arbitrary point of the segment [a1, b1]. We find a function
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K1 ∈ L1(−∞,∞) such that

(5.77)

∫ ∞

−∞
K1(u)K(t− u) du = Tε(t)e

iξt.

If such a function exists, we have

(5.78)

∫ ∞

−∞

∫ ∞

−∞
K1(u)K(t− u)e−itx du dt = pT (ξ, x),

where

pT (ξ, x) =

∫ ∞

−∞
Tε(t)e

iξte−ixt dt.

It is well known that the integral on the left in (5.78) converges absolutely, so we can
change the order of integration. This yields

pT (ξ, x) =

∫ ∞

−∞

∫ ∞

−∞
K(t− u)e−itx dtK1(u) du = pK(x) pK1(x),

pK1(x) =
pT (ε, x)

pK(x)
.

(5.79)

Now we forget the way in which (5.79) was deduced and consider the function pK1(x)

determined by this formula. The support of pT (ε, x) is included in [ξ − ε, ξ + ε], which is

a part of (a, b). The function pK(x) does not vanish on (a, b). So, pK1(x) is well defined

on [ξ − ε, ξ + ε]. We agree that pK1(x) vanishes outside this segment. Thus, pK1(x) is a
continuous compactly supported function.

By the Wiener division theorem, it follows that if pK1(x) is defined by (5.79), then

there exists a function K1 ∈ L1(−∞,∞) whose Fourier transform coincides with pK1(x).

Now, (5.77) follows from the identity pK1(x) pK(x) = pT (ε, x) by taking inverse Fourier
transforms. The existence of K1 is proved.

We multiply the two sides of (5.74) by K1(u) and then integrate over (−∞,∞), ob-
taining

(5.80)

∫ ∞

−∞

∫ ∞

−∞
K1(u)K(t− u) dμ(t) du = 0.

We want to estimate the integral

I =

∫ ∞

−∞

∫ ∞

−∞
|K1(u)||K(t− u)| du d|μ|(t).

We have

I =

∞∑
n=−∞

∫ ∞

−∞

∫ n+1

n

|K1(u)||K(t− u)| du d|μ|(t)

≤
∞∑

n=−∞
max

{
|K1(u)| : u ∈ [n, n+ 1]

} ∫ ∞

−∞

∫ n+1

n

|K(t− u)| du d|μ|(t).

Applying (5.76), we arrive at the inequality

I ≤ M1

∞∑
n=−∞

max
{
|K1(u)| : u ∈ [n, n+ 1]

}
.

The function K1 ∈ L1(−∞,∞) is the Fourier transform of a continuous compactly
supported function. By Lemma 67 in [20, Chapter 2, §11], the above series converges for
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such functions. Thus, I < ∞. Now by the Tonelli and Fubini theorems, we see that the
order of integration on the left in (5.80) can be interchanged. By (5.77), this yields

(5.81)

∫ ∞

−∞
eiξtTε(t) dμ(t) = 0, ξ ∈ [a1, b1].

Since με is finite, we see that Gε
+(z) is holomorphic in the upper half-plane and is

continuous up to the boundary. Then (5.81) can be rewritten in the form Gε
+(ξ) = Gε

−(ξ),
ξ ∈ [a1, b1]. By the theorem of the elimination of singularities (see [21, Theorem 2.2,
Chapter 4]), the functions Gε

+(z) and Gε
−(z) are analytic continuation for one another

through (a1, b1).
Next, in the complex plane, we consider the square Q1 for which the segment [a1, b1]

is a diagonal. Consider also the family of functions

Fη(z) = (z − a1)(z − b1)G
η(z), η ∈ (0, ε],

in this square. Some edge of Q1 has the parametrization z = a1 + te
iπ
4 , t ∈

[
0, b1−a1√

2

]
.

On this edge, we have

|Fη(z(t))| ≤ Mt
∣∣a1 − b1 + te

iπ
4

∣∣∣∣∣∣1 +
√
2

t

∣∣∣∣ ≤ M2.

Clearly, |Fη(z)| ≤ M2 on the boundary of the square.

Let δ ∈
(
0, b1−a1

4

)
, and let Q2 be the square whose diagonal is [a1 + δ, b1 − δ]. On the

boundary of Q2, we have |Gη(z)| ≤ M3(δ) with some quantity M3 depending on δ.
By the Montel theorem, the family Gη(z) is compact inside Q2. So, there exists a

function H(z) holomorphic in Q2 and a sequence ηn → 0 such that the sequence Gηn(z)
converges to H(z) uniformly on compact sets inside Q2. For Im z > 0, the sequence
Gηn(z) converges to G+(z), and for Im z < 0 it converges to G−(z). It follows that
G−(z) is an analytic continuation for G+(z) through (a1 + δ, b1 − δ), and, consequently,
through (a, b) because ε and δ are arbitrary. �

Remark 8. Theorem 45 is a refinement of Carleman’s analytic continuation lemma. In
Carleman’s original statement (Carleman’s proof can also be found in [23]), measures
with bounded density were considered. The above proof of Theorem 45 involves some
arguments of Carleman.

Let μ be a Radon measure of finite order on the real axis, and letG(z)=(G+(z), G−(z))
be the Carleman transform of μ. We remove from the real axis all intervals (a, b) such
that G+(z) continues analytically into G−(z) through (a, b). The remaining part of the
real axis is called the Carleman spectrum of μ.

It should be noted that it may happen that G+(z) is continuable analytically through
(a, b), but the result is notG−(z). In this case, (a, b) is included in the Carleman spectrum
of μ.

In connection with Theorem 45 and the definition of the Carleman spectrum, it is
interesting to mention the following statement pertaining to harmonic synthesis (see [24,
23] for the discussion of this subject).

Theorem 46. Let μ be a Radon measure on the real axis with bounded Carleman spec-
trum. Then μ is absolutely continuous and its density g(t) is the restriction of an entire
function of exponential type to the real axis.

Proof. Let G(z) = (G+(z), G−(z)) be the Carleman transform of μ. Since μ is of finite
order, there exist numbers M > 0 and α > 0 such that qμ(r) (the distribution function
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for |μ|) satisfies |qμ(r)| ≤ M(1 + rα). Assuming that qμ(r) is normalized by the condition
qμ(+0) = 0, we obtain

|G+(z)| ≤
1

2
|μ({0})|+

∫
(0,∞)

e−ty dqμ(t) =
1

2
|μ({0})|+ y

∫ ∞

0

qμ(t)e−ty dt

≤ 1

2
|μ|({0}) +My

∫ ∞

0

(1 + tα)e−ty dt ≤ M1

(
1 +

Γ(1 + α)

yα

)
.

The function G−(z) is estimated similarly. Therefore, G(z) satisfies the estimate

(5.82) |G(z)| ≤ M1

(
1 +

Γ(1 + α)

|y|α

)
.

Since the spectrum of μ is bounded, the point ∞ is an isolated singularity for G(z).
Arguing as in the proof of Theorem 45 (see the text involving the squares Q1 and Q2) for
the function (z − a1)

n(z − b1)
nG(z), we arrive at the conclusion that there exist α > 0,

β > 0, and M2 > 0 such that |G(z)| ≤ M2 on the set {z = x + iy : |x| ≥ α, |y| ≤ β}.
Together with (5.82), this implies that ∞ is a removable singularity for G(z).

It is easily seen that

lim
y→+∞

G+(iy) = lim
y→+∞

′∫ ∞

0

e−ty dμ(t) =
1

2
μ({0}),

lim
y→−∞

G−(iy) = − lim
y→−∞

′∫ 0

∞
ety dμ(t) = −1

2
μ({0}).

These identities allow us to conclude that the relation μ({0}) 	= 0 would contradict the
fact that ∞ is a removable singularity for G. Thus, μ({0}) = 0, and we have proved that
G(∞) = 0. Consequently, there exist numbers M3 > 0 and R1 > 0 such that

(5.83) |G(z)| < M3

|z|
for |z| > R1.

Now, we define the function

(5.84) g(t) = − 1

2π

∫
L

G(w)e−itw dw,

where L is a closed smooth positively oriented Jordan curve encompassing the spectrum
of μ. Note that G(w) is holomorphic in the closure of the unbounded domain whose
boundary is L and that g(t) is an entire function of exponential type.

Next, for Im z > 0 we introduce the function

G1(z) =

∫ ∞

0

g(t)eitz dt = − 1

2π

∫
L

∫ ∞

0

eit(z−w) dtG(w) dw.

Let Im z ≥ 2h, where h > 0 is arbitrary. Since the spectrum of μ lies on the real axis,
the contour L can be chosen in such a way that Imw < h for every w ∈ L. Then

G1(z) = − 1

2πi

∫
L

G(w)

w − z
dw.

Now, inequality (5.83) and the Cauchy theorem imply that G1(z) = G(z) for Im z ≥ 2h,
and, consequently, for Im z > 0.

We have proved that the Carleman transforms of the measures μ1, dμ1(t) = g(t) dt,
and μ coincide in the half-plane Im z > 0. In a similar way, it can be verified that they
coincide for Im z < 0. Thus, μ and μ1 have the same Carleman transforms, therefore
μ = μ1. �
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Theorem 47. Let μ be a Radon measure of order ρ on the real axis. Suppose that the
Carleman spectrum of μ is finite. Then there exist polynomials Pλ(t), λ ∈ Λ, degPλ(t) ≤
ρ− 1, such that

dμ(t) =
∑
λ∈Λ

Pλ(t)e
−iλt dt.

Proof. Let G(z) be the Carleman transform of μ. The spectrum of μ is finite and, conse-
quently, bounded. The proof of Theorem 46 shows that in this case G(z) is holomorphic
in a neighborhood of infinity and G(∞) = 0. It was also proved that dμ(t) = g(t) dt
in the case in question, where g is an entire function of exponential type. Denote

g1(t) =
∫ t

0
|g(u)| du. Integration by parts shows that

|G+(z)| =
∣∣∣∣
∫ ∞

0

eitzg(t) dt

∣∣∣∣ ≤
∫ ∞

0

e−ty|g(t)| dt = e−tyg1(t)
∣∣∣∞
0

+ y

∫ ∞

0

e−tyg1(t) dt.

If ρ < 0, we have |g1(t)| ≤ M . If ρ ≥ 0, for every ε > 0 we have |g1(t)| ≤ Mε|t|ρ+ε for

t ≥ 1. Thus, |G(z)| ≤ M if ρ < 0, and |G(z)| ≤ Mε

(
1
|y|

)ρ+ε
if |y| ≤ 1 and ρ ≥ 0.

Since the spectrum is finite, its points are proper isolated singularities forG(z), and the
estimates for G(z) obtained above show that for ρ < 1 these singularities are removable.
In this case, G(z) = 0 and μ = 0. But if ρ ≥ 1, then the points of the spectrum of G can
be poles of order at most ρ for G(z). Therefore,

G(z) =
∑
λ∈Λ

ρ∑
n=1

an,λ
(z − λ)n

.

Now, the theorem follows from (5.84) and the formula∫
L

1

(w − λ)n
e−itw dw = 2πi(−it)ne−iλt �

Theorem 48. Let M > 0 be a fixed number, and let μ be a Radon measure on the
real axis satisfying |μ|([α, β]) ≤ M whenever β − α ≤ 1. Let K be a Borel function in

L1(−∞,∞) such that the set Λ = {λ ∈ (−∞,∞) : pK(λ) = 0} is finite. Suppose that∫ ∞

−∞
K(t− u) dμ(t) = 0, u ∈ (−∞,∞).

Then there exist members cλ, λ ∈ Λ, such that dμ(t) =
∑

λ∈Λ cλe
−iλtdt.

Proof. By assumption and by Theorem 45, the Carleman spectrum of μ is included in
the finite set Λ. Now, Theorem 47 and the inequality ρ ≤ 1 for the order ρ of μ imply
the claim. �

Statements similar to theorems 46–48 were earlier proved by Korenblum, see [25].
Next, we state a multiplicative version of the last theorem.

Theorem 49. Let M > 0 be a fixed number, and let μ be a Radon measure on (0,∞)

satisfying |μ|([α, β]) ≤ M whenever β
α ≤ e. Let K be a Borel function on (0,∞) such that

1
tK(t) ∈ L1(0,∞). Suppose that the set Λ =

{
λ ∈ (−∞,∞) :

∫ ∞
0

1
tK(t)t−iλ dt = 0

}
is

finite. Suppose also that ∫ ∞

0

K
( t

r

)
dμ(t) = 0, r ∈ (0,∞).

Then there exist numbers cλ, λ ∈ Λ, with dμ(t) = 1
t

∑
λ∈Λ cλt

−iλ dt.
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Proof. We introduce a Radon measure ν on the real axis in the following way: ν([a, b]) =
μ
(
[ea, eb]

)
. If b ≤ a+ 1, we have

|ν|([a, b]) = |μ|
(
[ea, eb]

)
≤ |μ|

(
[ea, ea+1]

)
≤ M.

Put K1(x) = K(ex). Then K1 is a Borel function on the real axis belonging to the space
L1(−∞,∞). We have∫ ∞

0

1

t
K(t)t−iλ dt =

∫ ∞

−∞
K1(x)e

−ixλ dx,∫ ∞

0

K
( t

r

)
dμ(t) =

∫ ∞

−∞
K1(x− u) dν(x) = 0, u = ln r.

The kernel K1 and the measure ν enjoy all the assumptions of Theorem 48. Therefore,

dν(x) =
∑
λ∈Λ

cλe
−iλx dx, dμ(t) =

1

t

∑
λ∈Λ

cλt
−iλ dt. �

In the next statement, we describe the measures μ for which the function Ψ(r) defined
by (1.2) is the density of a regular measure. We remind the reader that γ(t) was defined
in (1.1).

Theorem 50. Let ρ(r) be an arbitrary proximate order, μ a Radon measure on (0,∞)
of class M(ρ(r)), and K a Borel function on (0,∞) such that tρ−1γ(t)K(t) ∈ L1(0,∞)
and c1 =

∫ ∞
0

K(t)tρ−1 dt 	= 0. Suppose that the set

Λ =

{
λ ∈ (−∞,∞) :

∫ ∞

0

K(t)tρ−1−iλ dt = 0

}

is finite. Define Ψ by (1.2). If the measure s, ds(t) = Ψ(t) dt, is regular with respect
to the proximate order ρ(r) + 1 and, moreover, Fr[s] = {σ}, where dσ(t) = ctρ dt, then
the cluster set Fr[μ] consists of absolutely continuous measures ν and the density h(t) of
every such measure is of the form

h(t) =

(
c

c1
+

∑
λ∈Λ

cλt
−iλ

)
tρ−1,

where the cλ are some complex numbers.

Proof. By Theorem 38, for every ν ∈ Fr[μ] we have

(5.85)

∫ ∞

0

K
( t

u

)
dν(t) = cuρ.

If ν2(t) = ν(t)− ν1(t), where dν1(t) =
c

c1ρ
tρ−1 dt for ρ 	= 0 and dν1(t) =

c
c1

1
t dt for ρ = 0,

then

(5.86)

∫ ∞

0

K
( t

u

)
dν2(t) = 0.

Let K1(t) = tρK(t), and let ν3 be the measure defined by dν3(t) = t−ρdν2(t). Then
formula (5.86) can be rewritten in the form∫ ∞

0

K1

( t

u

)
dν3(t) = 0.

Since μ ∈ M(ρ(r)), we see that the function

N(α) = lim sup
r→∞

qμ(r + αr)− qμ(r)

V (r)
,
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where qμ(r) is the distribution function for |μ|, is bounded on [0, e]. By Theorem 25, it
follows that for any ν ∈ Fr[μ], on the set (0,∞)× [1, e] we have |ν|([r, qr]) ≤ Mrρ with
some constant M . Clearly, a similar estimate (possibly, with a different M) is fulfilled
for ν2.

There exists ξ ∈ [α, β] such that∫ β

α

d|ν3|(t) =
∫ β

α

t−ρ d|ν2|(t) = ξ−ρ|ν2|([α, β]).

Now if β ≤ eα, then

|ν3|([α, β]) = ξ−ρ|ν2|([α, β]) ≤ M
(α

ξ

)ρ

≤ Me|ρ|.

Also, we have 1
tK1(t) ∈ L1(0,∞). Thus, the kernel K1 and the measure ν3 satisfy the

assumptions of Theorem 49. Therefore, dν3(t) =
1
t

∑
λ∈Λ cλt

−iλ dt, which is equivalent
to the claim of the theorem. �

There is also a version of Theorem 50 in which the restriction c1 	= 0 is absent.

Theorem 51. Let ρ(r) be an arbitrary proximate order, μ a Radon measure on (0,∞) of
class M(ρ(r)), and K a Borel function on (0,∞) with tρ−1γ(t)K(t) ∈ L1(0,∞). Suppose
that the set

Λ =

{
λ ∈ (−∞,∞) :

∫ ∞

0

K(t)tρ−1−iλ dt = 0

}
is finite and 0 ∈ Λ. Define Ψ by formula (1.2). If the measure s, ds(t) = Ψ(t) dt,
is regular with respect to the proximate order ρ(r) + 1, then Fr[s] = {0}, the set Fr[μ]
consists of absolutely continuous measures ν, and the density of every such measure is of
the form

h(t) =

( ∑
λ∈Λ

cλt
−iλ

)
tρ−1,

where the cλ are some complex numbers.

Proof. Since the measure s is regular, we obtain (5.85) as in the proof of the preceding
theorem. After that we argue as follows. Let ν and σ be two measures in Fr[μ], and let
ν3 = ν − σ. We have

∫ ∞
0

K
(
t
u

)
dν3(t) = 0. Repeating the arguments in the previous

theorem, we obtain dν3(t) =
( ∑

λ∈Λ cλt
−iλ

)
tρ−1 dt. We have proved that for every

ν ∈ Fr[μ] there exists a collection of complex numbers cλ (which, generally speaking,
depend on ν) such that dν = dσ+ dτ , where σ is an arbitrary fixed measure in Fr[μ] and
dτ (t) =

∑
λ∈Λ(cλt

−iλ)tρ−1 dt.
For every r > 0 we have dνr = dσr + dτr. Observe that

dτr(t) =

( ∑
λ∈Λ

cλr
−iλt−iλ

)
tρ−1 dt.

On the other hand, since νr ∈ Fr[μ], we have

dνr(t) = dσ(t) +

( ∑
λ∈Λ

cλ(r)t
−iλ

)
tρ−1 dt.

If Λ = {λ1, . . . , λn}, from the above it follows that

(5.87) dσr(t)− dσ(t) =

( n∑
k=1

(ck(r)− ckr
−iλk)t−iλk

)
tρ−1 dt.
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From (5.87) we deduce the formula

(5.88)

∫ ∞

0

f(t)(dσr(t)− dσ(t)) =

n∑
k=1

(
ck(r)− ckr

−iλk
) ∫ ∞

0

f(t)tρ−1−iλk dt.

The choice of f(t) will be specified later. Next, we have∫ ∞

0

f(t)tρ−1−iλk dt =

∫ ∞

−∞
eρxf(ex)e−iλkx dx.

Now, choose f(x) = fm(x) in such a way that the function ϕm(x) = eρxfm(ex) satisfy∫ ∞

−∞
ϕm(x)e−iλx dx =

∏
k 
=m

(λ− λk)
( sinαλ

λ

)p

,

where p is a sufficiently large integer, and the real number α is such that sinαλm 	= 0 if
λm 	= 0 and α = 1 if λm = 0. The definition of ϕm and the Paley–Wiener theorem show
that ϕm is compactly supported. The inversion formula for the Fourier transformation
easily shows that ϕm has p− n− 3 continuous derivatives. In its turn, this implies that
supp fm is a compact subset of (0,∞) and fm has continuous derivative up to the order
p− n− 3 (inclusive). Under this choice of f , formula (5.88) takes the form

1

rρ

∫ ∞

0

fm

( t

r

)
dσ(t)−

∫ ∞

0

fm(t) dσ(t) = Am

(
cm(r)− cmr−iλm

)
,

where Am 	= 0. This identity easily implies that every function ck(r) is infinitely dif-
ferentiable on (0,∞) and cm(1) = cm. In what follows, we assume for definiteness that
ρ > 0. We also agree to normalize the distribution function σ(t) for the measure σ by

the condition σ(0) = 0. Then σr(t) = σ(rt)
rρ . Next, integrating the two sides of (5.87)

over [0, 1], we arrive at the formula

σ(r)

rρ
− σ(1) =

n∑
k=1

(
ck(r)− ckr

−iλk
) 1

ρ− iλk
.

This shows that σ has an infinitely differentiable density, to be denoted by h(t). Then
(5.87) can be rewritten in the form

h(rt)

(rt)ρ−1
− h(t)

tρ−1
=

n∑
k=1

(
ck(r)− ckr

−iλk
)
t−iλk .

Denoting by H(r, t) the right-hand side of this identity, we deduce that H(r, t) satisfies
the differential equation

rH ′
r(r, t)− tH ′

t(r, t) = t

(
h(t)

tρ−1

)′
.

This yields
n∑

k=1

(
rc′k(r) + iλkck(r)

)
t−iλk = t

(
h(t)

tρ−1

)′
.

Since the functions t−iλk are linearly independent, it follows that there exist numbers

dk such that rc′k(r) + iλkck(r) = dk. Then
( h(t)
tρ−1

)′
=

∑n
k=1 dkt

−iλk−1. Assuming that

λ1 = 0, we obtain h(t) =
(
d1 ln t+

∑n
k=2

dk

−iλk
t−iλk + d

)
tρ−1. Since h(t) is the density of

a measure σ ∈ Fr[μ], Theorem 26 shows that the measure σ must satisfy the inequality
|σ([r, er])| ≤ αrρ with some constant α. Therefore, d1 = 0. We have proved that the
density h(t) of an arbitrary measure σ ∈ Fr[μ] has the form indicated in the theorem.
Next, Fr[s] = {0} by Theorem 38. �
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In connection with Theorem 51, we consider the following example. Let K be a kernel
on (0,∞) such that 1

tK(t), ln t
t K(t) ∈ L1(0,∞), and

∫ ∞
0

1
tK(t) dt = 0. We have

Ψ(r) =

∫ ∞

0

K

(
t

r

)
ln t

t
dt =

∫ ∞

0

K(u)
lnu+ ln r

u
du =

∫ ∞

0

K(u)
lnu

u
du.

Let ρ(r) = 0. The measure s, ds(t) = Ψ(t) dt, is regular with respect to the proximate
order identically equal to 1. The measure μ, dμ(t) = ln t

t dt, does not belong to M∞(0)
and, a fortiori, to M(0).

The particular case of Theorem 50 in which Λ = ∅ yields the following Tauberian
theorem.

Theorem 52. Let ρ(r) be an arbitrary proximate order, μ a Radon measure on (0,∞)
of class M(ρ(r)), and K a Borel function on (0,∞) such that tρ−1γ(t) K(t) ∈ L1(0,∞).
Suppose that the function

∫ ∞
0

K(t)tρ−1−iλ dt does not vanish on the real axis. Define
Ψ by (1.2). If the measure s, ds(t) = Ψ(t) dt, is regular with respect to the proximate
order ρ(r) + 1, then μ is regular with respect to ρ(r), and if Fr[s] consists of only one
measure with density ctρ, then Fr[μ] consists of only one measure with density c

c1
tρ−1,

where c1 =
∫ ∞
0

K(t)tρ−1 dt.

Proof. By Theorem 50, the set Fr[μ] consists of a unique measure. Therefore, this mea-
sure is regular. Its cluster set was described in Theorem 50. �

As was shown by Theorem 29, a positive measure μ is regular with respect to a
proximate order ρ(r) if and only if that

lim
r→∞

μ([ar, br])

V (r)
= c

bρ − aρ

ρ
, 0 < a < b < ∞,

with some constant c. Moreover, ρ can be an arbitrary real number (for ρ = 0, the right-
hand side is defined by continuity and is equal to c ln b

a ). If ρ > 0, the above identity

is equivalent to the identity limr→∞
μ((1,r])
V (r) = c

ρ , and if ρ < 0, it is equivalent to the

identity limr→∞
μ((r,∞))

V (r) = − c
ρ .

Regular signed measures were described in Theorem 30.
In Theorem 52, an arbitrary proximate order is considered. As was mentioned in the

Preface, already the particular case of Theorem 52 when ρ(r) ≡ 1 is a refinement of
Wiener’s second Tauberian theorems in various respects.
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