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CHARACTERIZATION OF THE INVERSE PROBLEM DATA

FOR ONE-DIMENSIONAL TWO-VELOCITY DYNAMICAL SYSTEM

M. I. BELISHEV AND A. L. PESTOV

To the 75th anniversary of A. S. Blagoveshchenskĭı

Abstract. The evolution of the dynamical system in question is described by the
wave equation ρutt−(γux)x+Aux+Bu = 0, x > 0, t > 0, with the zero Cauchy data
at t = 0 and the Dirichlet boundary control at x = 0. Here ρ, γ, A, B are smooth
real 2 × 2-matrix-valued functions of x; ρ = diag{ρ1, ρ2} and γ = diag{γ1, γ2} are
matrices with positive entries; and u = u(x, t) is a solution (an R2-valued function).

For x ≥ 0, it is assumed that
√

γ2
ρ2

<
√

γ1
ρ1

and Atr = −A, Ax = B − Btr. The

“input-output” correspondence is realized by the response operator R : u(0, t) �→
γ(0)ux(0, t), t ≥ 0, which plays the role of inverse problem data in applications. In
the paper, a constructive characterization is given for the response operators of the
systems of this type.

§1. Introduction

1.1. About this paper.

Dynamical system. The system under study is described by the initial-boundary value
problem

ρutt − (γux)x +Aux +Bu = 0, 0 < x < h, 0 < t < T,(1.1)

u
∣∣
t<τ1(x)

= 0,(1.2)

u
∣∣
x=0

= f, 0 ≤ t ≤ T.(1.3)

Here ρ, γ, A, and B are smooth1 (2 × 2-matrix-valued functions of x ∈ [0, h] satisfying
the following conditions:

1) positivity: ρ = diag{ρ1, ρ2}, ρi > 0, and γ = diag{γ1, γ2}, γi > 0,

2) separation of velocities: 0 <
√

γ2

ρ2
<

√
γ1

ρ1
,

3) selfadjointness: Atr = −A, Ax = B −Btr (tr stands for transposition);

The functions τi(x) :=
∫ x

0

√
ρi(s)
γi(s)

ds are called the eikonals; the numerical parameters

h and T are related by the formula T = τ1(h); f = f(t) is the boundary control and
u = uf (x, t) is a solution (R2-valued functions). This problem is hyperbolic, and, in the
above setting, it is well posed.
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Response operator. System (1.1)–(1.3) gives rise to the standard attributes of control
theory – spaces and operators. One of them is the extended response operator R2T , which
realizes the “input-output” correspondence. It is introduced via the problem 2

ρutt − (γux)x +Aux +Bu = 0, 0 < x < h, 0 < t < 2T − τ1(x),

u
∣∣
t<τ1(x)

= 0,

u
∣∣
x=0

= f, 0 ≤ t ≤ 2T,

by R2T : f �→ γ(0)uf
x

∣∣
x=0

and can be given by the formula

(1.4) (R2T f)(t) = −νft(t) + ωf(t) +

∫ t

0

r(t− s) f(s) ds, 0 ≤ t ≤ 2T,

with constant matrices ν = diag{ν1, ν2} and ω, and with a smooth matrix-valued function
r(t) = rtr(t), 0 ≤ t ≤ 2T . In the dynamical inverse problem, the operator R2T plays the
role of data.

The main result. The operator R2T is determined by the coefficients ρ, γ, A, and
B. The following question is natural when we deal with the inverse problem for (1.1)–
(1.3): to what extent are these coefficients determined by the response operator? Under
conditions 1–3, the parameters ρ, γ, A, and B are described by eight independent scalar
functions ρ1, ρ2, γ1, γ2, a12, b11, b12, b22, while the operator R

2T is given by the collection
ν, ω, r, which involves three functions r11, r12, and r22, and six numbers forming the
matrices ν and ω. Therefore, we can hardly expect that the inverse problem is uniquely
solvable, i.e., that the coefficients are determined uniquely, and the solvability question
arises: what conditions on ν, ω, r ensure the existence of at least one system with this
data?

Our main result answers this question. Theorem 1 (see Subsection 3.1) gives necessary
and sufficient conditions on the operator (1.4) (on the collection ν, ω, r) that guarantee
the existence of a system (1.1)–(1.3) with the prescribed data. Among these conditions,
the central one is the positive definiteness of the operator CT that acts in L2([0, T ];R

2)
by the rule

(1.5)
(
CT f

)
(t) := νf(t) +

∫ T

0

[
1

2

∫ 2T−t−s

|t−s|
r(η) dη

]
f(s) ds, 0 ≤ t ≤ 2T.

The proof of sufficiency is constructive: we provide a procedure that recovers system
(1.1)–(1.3) by ν, ω, r. This procedure involves free parameters, which makes it possible
to find all systems of this sort with given ν, ω, r.

1.2. Comments. The problems in question describe wave processes in systems for
which different wave modes propagate with different velocities and interact with each
other. Many-velocity systems occur in various applications: geophysics, acoustics, me-
chanics, elasticity theory, etc. As an example, we mention a well-known model of elas-
ticity theory, the Timoshenko beam [1, 2]. The corresponding inverse problems consist
of recovering the parameters of such systems by some information about the solution,
extracted from external observations (measurements), see [3, 4, 5, 6, 7, 8, 9, 11, 19].

The proof of Theorem 1 follows the lines of [6], but now the situation is more com-
plicated, involving a greater number of free parameters that determine the dynamical
system in question3. The principal difficulty was to choose these parameters consistently.
For analogs of the operator (1.5), the positive definiteness condition has been known in

2This problem is a natural extension of problem (1.1)–(1.3), which exists and is well posed because
the latter problem is hyperbolic.

3In particular, in contrast to [6], the mode velocities are not assumed to be constant.
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inverse problems since the classical work by M. G. Krĕın (see [12, 13, 14]), and its pres-
ence in the characterization of data can well be expected. In the authors’ opinion, the
basic achievement in the present paper consists of the procedure of construction of the
system starting with ν, ω, r. Given six numbers and three scalar functions, this proce-
dure extracts a fairly complicated object rich with properties: a two-velocity dynamical
system. The construction employs a nice physical phenomenon, the existence of slow
waves. Such a wave is a mixture of two modes, fast and slow, that propagates with the
velocity of the slow one.

The key fragment of our procedure is the so-called amplitude formula, which is the
main tool for solving inverse problems by the boundary control method.

Since the paper is large, we omit the proofs of some facts and results of auxiliary
nature; we refer to these statements as Propositions and restrict ourselves to some com-
mentaries on their proofs. Should we have presented these proofs, the paper would have
become twice as large: technical complexity is typical of many-velocity systems. The
same purpose – to unload the paper – is pursued by overstating the smoothness require-
ments. However, the following should be mentioned here. As to the data, it suffices to
deal with finite smoothness, but, in all statements known to us, the smoothness require-
ments in the necessary and the sufficient conditions are different. As far as we know, it
is an open question how the smoothness of the coefficients ρ, γ, A, B and that of the
function r should correspond to each other.

§2. Two-velocity system

2.1. Initial-boundary value problem.

Setting. We consider the problem

ρutt − (γux)x +Aux +Bu = 0, x > 0, 0 < t < T,(2.1)

u
∣∣
t=0

= ut

∣∣
t=0

= 0, x ≥ 0,(2.2)

u
∣∣
x=0

= f, 0 ≤ t ≤ T,(2.3)

in which ρ, γ, A, B are smooth real 2 × 2-matrix-valued functions of x ≥ 0; T < ∞ is
the final moment; ρ = diag{ρ1(x), ρ2(x)} and γ = diag{γ1(x), γ2(x)} are matrices with

positive entries; f = f(t) =
(

f1(t)
f2(t)

)
is the boundary control. A solution u = uf (x, t) =(

uf
1 (x,t)

uf
2 (x,t)

)
describes a wave initiated by the control f and propagating along the semiaxis

x ≥ 0. The functions ci :=
√

γi(x)
ρi(x

are referred to as velocities.

Throughout, we assume that

(2.4) 0 < c2(x) < c1(x), x ≥ 0;

∫ ∞

0

dx

c1(x)
= ∞,

and

(2.5) Atr(x) = −A(x), Ax(x) = B(x)−Btr(x), x ≥ 0,

where tr stands for transposition. Relations (2.5) are equivalent to

A(x) =

(
0 −a(x)

a(x) 0

)
, b21(x)− b12(x) = ax(x), x ≥ 0.

Since the integral in (2.4) diverges, problem (2.1)–(2.3) is well posed for any T > 0. By
(2.5), the operator y �→ (γyx)x − Ayx − By is Lagrange selfadjoint, i.e., it is symmetric
in L2

(
(0,∞);R2

)
on the functions with compact support.
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The functions τi(x) :=
∫ x

0
ds

ci(s)
, called the eikonals, are strictly monotone increasing.

By (2.4), we have τ1(x) < τ2(x), x ≥ 0; τi(∞) = ∞. The functions xi(τ ) inverse to the
eikonals are also strictly monotone increasing, and x1(τ ) > x2(τ ) for τ ≥ 0.

Generalized solutions. For us, the following agreement will be convenient.

Agreement 1. (a) All functions depending on time are assumed to be extended by zero
for t < 0.

(b) Let Π ⊂ R2 be a rectangle or a half-strip with sides parallel to coordinate axes. We
say that a function ϕ is smooth in Π outside of the curves S1, . . . , Sp ⊂ Π if it is smooth
in each connected component of the set Π \

⋃p
i=1 Si and extends up to a smooth function

in the vicinity of this component.

We denote θ := diag{θ1, θ2}, θi(x) :=
( ρi(0)γi(0)
ρi(x)γi(x)

) 1
4 and introduce the linear space

(2.6) MT :=
{
f ∈ C∞(

[0, T ];R2
) ∣∣ supp f ⊂ (0, T ]

}
of smooth controls vanishing near t = 0. Concerning the solution of problem (2.1)–(2.3),
we know the following.

Proposition 1. For controls f ∈ MT , problem (2.1)–(2.3) has a unique classical smooth
solution uf (x, t). This solution can be represented as

(2.7) uf (x, t) = θ(x)

(
f1
(
t− τ1(x)

)
f2
(
t− τ2(x)

))+

∫ t−τ1(x)

0

rw(x, t− s)f(s) ds

with a matrix kernel rw(x, t), which is smooth in [0,∞)× [0, T ] outside of the character-
istics t = τi(x) of equation (2.1) and satisfies rw

∣∣
t<τ1(x)

= 0, rw
∣∣
x=0

= 0.

The proof follows the standard lines: problem (2.1)–(2.3) reduces to an equivalent
system of integral Volterra equations of the second kind, whose solvability is established
in an adequate function class (see [3, 16, 17]). Note that if the velocity separation
condition (2.4) is violated, then the representation (2.7) fails.

For f ∈ L2

(
[0, T ];R2

)
, a (generalized) solution of our problem is defined as the ex-

pression on the right in (2.7). This definition implies that

(2.8) uf
∣∣
t<τ1(x)

= 0,

and that the dependence of the solution on the coefficients is local: the values taken by
uf for 0 ≤ t ≤ T are determined by the values of ρ, γ, A, and B for 0 ≤ x ≤ x1(T ) (not
depending on the behavior of the coefficients for x > x1(T )). This locality (causality) is
a consequence of the hyperbolicity of equation (2.1) and corresponds to the fact that the
velocity of the wave propagation is finite.

Since the coefficients in (2.1) are independent of time, we have the well-known relation

(2.9) uf ( · , s) = uT T
T−sf ( · , T ), 0 ≤ s ≤ T,

where T T
T−s is the delay operator, acting in L2

(
[0, T ];R2

)
and given by

(2.10) (T T
T−sf)(t) := f

(
t− (T − s)

)
(we have used Agreement 1a).
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2.2. System sT . Recalling the properties of uf mentioned above (see (2.8)), we can
rewrite problem (2.1)–(2.3) as follows:

ρutt − (γux)x +Aux +Bu = 0, 0 < x < x1(T ), 0 < t < T,(2.11)

u
∣∣
t<τ1(x)

= 0,(2.12)

u
∣∣
x=0

= f, 0 ≤ t ≤ T.(2.13)

This is optimal in the sense that it does not involve the coefficients {ρ, γ, A,B}
∣∣
x>x1(T )

,

on which the solution does not depend.
We treat problem (2.11)–(2.13) as a dynamical system. It is denoted by sT and is

endowed with the standard attributes of control theory.

Spaces and subspaces. The Hilbert space of controls FT := L2

(
[0, T ];R2

)
with the

scalar product
(f, g)FT :=

∫ T

0

f(t) · g(t) dt

(“ · ” denotes the standard product in R2) is called the external space of the system sT .
It includes the expanding (with the growth of ξ) chain of subspaces

FT, ξ :=
{
f ∈ FT

∣∣ supp f ⊂ [T − ξ, T ]
}
= T T

T−ξFT , 0 ≤ ξ ≤ T,

formed by delayed controls4. A delay in control implies that of the wave: we have the
relation

(2.14) uf
∣∣
t<τ1(x)+T−ξ

= 0, f ∈ FT,ξ,

which follows easily from (2.7) and refines (2.8).
The space Hx1(T ) := L2, ρ

(
[0, x1(T )];R

2
)
with the scalar product

(y, v)Hx1(T ) :=

∫ x1(T )

0

[ρ(x) y(x)] · v(x) dx

is referred to as internal. From (2.8) we see that the waves uf ( · , t) belong to this space
for any t ∈ [0, T ]. The space Hx1(T ) includes the following two chains of subspaces:

Hxi(ξ) :=
{
y ∈ Hx1(T )

∣∣ supp y ⊂ [0, xi(ξ)]
}
, 0 ≤ ξ ≤ T, i = 1, 2.

Control operator. In terms of control theory, the wave uf ( · , t) is the state of the sys-
tem sT at the moment t, and {ut( · , t) | 0 ≤ t ≤ T} is its trajectory. The correspondence
“input �→ state” is realized by the control operator WT : FT → Hx1(T ),

WT f := uf ( · , T ).
Formula (2.7) shows that

(2.15) (WT f)(x) = θ(x)

(
f1
(
T − τ1(x)

)
f2
(
T − τ2(x)

))+

∫ T−τ1(x)

0

wT (x, t)f(t) dt, x ≥ 0,

with a matrix kernel wT (x, t) := rw(x, T − t), which is smooth in [0, x1(T )] × [0, T ]
outside of the characteristics t = T − τi(x), and satisfies wT

∣∣
t>T−τ1(x)

= 0, wT
∣∣
x=0

= 0.

Obviously, the control operator is bounded. Observe the relations

(2.16) WTT T
T−ξf = uf ( · , ξ), WTFT,ξ ⊂ Hx1(ξ), 0 ≤ ξ ≤ T,

which are another form of (2.9) and (2.8). For the controls that give rise to smooth
solutions, we have

uftt = uf
tt

(2.1)
= Luf ,

4T − ξ is the delay; ξ is the control action time.
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where
Ly := ρ−1

(
(γyx)x −Ayx −By

)
.

It follows that

(2.17) LWT = WT d2

dt2
,

which is another form of equation (2.1).

Response operator. The “input-output” correspondence in the system sT is described
by the response operator RT : FT → FT , DomRT = MT ,

(RT f)(t) := γ(0) uf
x(0, t), 0 ≤ t ≤ T.

Since this action involves differentiation, this operator is unbounded.

Proposition 2. The following representation holds true:

(2.18) (RT f)(t) = −νft(t) + ωf(t) +

∫ t

0

r(t− s) f(s) ds, 0 ≤ t ≤ T,

with the constant matrices

ν =

(
ν1 0
0 ν2

)
, νi := ci(0)ρi(0),

ω :=

(
− c1(0)

2 (c1ρ1)x
∣∣
x=0

− c1(0)
c1(0)+c2(0)

a(0)
c2(0)

c1(0)+c2(0)
a(0) − c2(0)

2 (c2ρ2)x
∣∣
x=0

)(2.19)

(a(x) = A21(x)) and with the smooth matrix-valued function

r(t) := γ(0) rwx(0, t).

We have

(2.20) ν1, ν2 > 0; ω12 = −αω21, α > 1; r(t) = rtr(t)

and

α =
c1(0)

c2(0)
, ω21 − ω12 = a(0).

Formula (2.18) is established by differentiating (2.7) in x (see [17]). The symmetry of
the matrix-valued response function r(t) is deduced from conditions (2.5).

The operator R2T . The system sT gives rise to yet another operator, which is intro-
duced via the initial-boundary problem

ρutt − (γux)x +Aux +Bu = 0, (x, t) ∈ Δ2T ,(2.21)

u
∣∣
t<τ1(x)

= 0,(2.22)

u
∣∣
x=0

= f , 0 ≤ t ≤ 2T,(2.23)

where Δ2T =
{
(x, t) | 0 < x < x1(T ), 0 < t < 2T − τ1(x)

}
(see Figure 1). The fact that

this problem is well posed is established with the help of the same techniques as before,
by reduction to a system of integral Volterra equations of the 2nd kind. For the controls
f ∈ M2T (see (2.6)), the solution u = uf (x, t) is classical and smooth.

Problem (2.21)–(2.23) can be viewed as an extended version of problem (2.11)–(2.13),
existing due to the hyperbolicity of the latter. If the control f occurring in (2.23) is such
that f

∣∣
[0,T ]

coincides with f in (2.3), then the solutions of these two problems coincide for

0 ≤ t ≤ T . It should be noted that the solutions of the two problems are well determined
by the behavior of the coefficients ρ, γ, A, B for 0 ≤ x ≤ x1(T ) (they do not depend on
the behavior of these coefficients for x > x1(T )).
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Figure 1. The domain Δ2T .

With problem (2.21)–(2.23), we associate the operator R2T : F2T → F2T , DomR2T =
M2T ,

(R2T f)(t) := γ(0) uf
x(0, t), 0 ≤ t ≤ 2T,

called the extended response operator for sT .

Proposition 3. The operator R2T is determined by the coefficients

{ρ, γ, A,B}
∣∣
0≤x≤x1(T )

and admits the representation

(2.24) (R2T f)(t) = −νft(t) + ωf(t) +

∫ t

0

r(t− s)f(s) ds, 0 ≤ t ≤ 2T,

with matrices ν, ω as in (2.19) and with a smooth symmetric matrix-valued function r(t),
0 ≤ t ≤ 2T . The function r

∣∣
0≤t≤T

coincides with the function r occurring in (2.18).

It is easily seen that R2T coincides with the (nonextended) response operator of the
system s2T with the final moment t = 2T 5. Therefore, formula (2.24) does not require
any separate proof; it suffices to reproduce (2.18) with another final moment. The
coincidence of these two operators is a consequence of hyperbolicity (finiteness of the
impact domains).

The nature of the dependence on coefficients, mentioned in Proposition 3, makes
the extended operator an attribute of the two-velocity dynamical system with the final
moment t = T : like the other elements of the system sT , this operator is determined by
the coefficients {ρ, γ, A,B}

∣∣
0≤x≤x1(T )

.

Formula (2.24) shows that to define the operator R2T we must have two constant
matrices ν and ω and the symmetric matrix r

∣∣
0≤t≤2T

.

Connecting operator. The operator CT : FT → FT ,

CT := (WT )∗WT

5For that reason, we do not distinguish them notationally.
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is said to be connecting. The formula

(2.25) (CT f, g)FT =
(
WT f,WT g

)
Hx1(T ) =

(
uf ( · , T ), ug( · , T )

)
Hx1(T ) ,

which determines CT , relates the metrics of the external and internal spaces. The oper-
ator CT is bounded (because WT is), selfadjoint, and nonnegative.

For the boundary control method in inverse problems, a key fact is a simple and
explicit relationship between CT and the extended relation operator, see [18, 6, 15]. To
describe this relationship, we introduce the following auxiliary operators:

ST : FT → F2T , (ST f)(t) :=

{
f(t), 0 ≤ t ≤ T,

−f(2T − t), T < t ≤ 2T,

J2T : F2T → F2T , (J2T f)(t) :=

∫ t

0

f(η) dη,

P 2T
− : F2T → F2T , (P 2T

− f)(t) :=
1

2
[f(t)− f(2T − t)],

N2T : F2T → FT , (N2T f)(t) := f
∣∣
[0,T ]

.

It is easy to check that

(2.26) (ST )∗ = 2N2TP 2T
− .

Lemma 1. We have

CT = −1

2
(ST )∗R2TJ2TST ;

(CT f)(t) = νf(t) +

∫ T

0

cT (t, s)f(s) ds, 0 ≤ t ≤ T,

(2.27)

with the kernel

cT (t, s) :=
1

2

∫ 2T−t−s

|t−s|
r(η) dη,

smooth in [0, T ]× [0, T ] outside of the diagonal t = s and with r
∣∣
[0,2T ]

as in (2.24).

Proof. 1. Choosing controls f , g ∈ C∞
0 ((0, T );R2), we denote

f− := ST f ∈ C∞((0, 2T );R2).

Let ug and uf− be (classical) solutions of problems (2.1)–(2.3) and (2.21)–(2.23) with the
controls g and f−, respectively. Recall that the solution uf− is defined in the domain Δ2T .
Since the supports of f and g are separated away from t = 0, for s, t ≤ T we have

supp ug( · , t) ⊂ [0, x1(t)) ⊂ [0, x1(T )) and supp uf−( · , s) ⊂ [0, x1(s)) ⊂ [0, x1(T )]

by (2.8).
We denote

ΘT :=
{
(s, t)

∣∣ 0 < t < T, t < s < 2T − t
}
;

and fix (s, t) ∈ ΘT . If 0 ≤ t ≤ s ≤ T , then the solution uf−( · , s) is defined on the
segment 0 ≤ x ≤ x1(s) containing supp ug( · , t). On the other hand, if T < s ≤ 2T − t,
then uf−( · , s) is only defined for 0 ≤ x ≤ x1(2T − s) (is not defined for x > x1(2T − s)),
while supp ug( · , t) ⊂ [0, x1(t)) ⊂ [0, x1(2T − s)) ⊂ [0, x1(T )). In both cases, the support
of ug( · , t) is included in a segment on which the solution uf−( · , s) is defined, and ug( · , t)
vanishes near the right end of this segment.

Therefore, the product uf−(x, s)ug(x, t) extended by zero from the segment where the
first factor is defined to 0 ≤ x ≤ x1(T ), is well defined and yields a smooth function that
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vanishes near x = x1(T ). Together with the above product, the following Blagoveshchen-

skĭı function is well defined on ΘT :

b(s, t) :=
(
uf−( · , s), ug( · , t)

)
Hx1(T ) =

∫ x1(T )

0

[
ρ(x)uf−(x, s)

]
· ug(x, t) dx.

2. Now we differentiate with respect to s, t ∈ ΘT and integrate by parts, using (2.5)
and the information about the supports of solutions:

(∂2
t − ∂2

s )w(s, t)

=

∫ x1(T )

0

dx
{
uf−(x, s) ·

[
ρ(x)ug

tt(x, t)
]
−
[
ρ(x)uf−

ss (x, s)
]
· ug(x, t)

}
(2.1)
=

∫ x1(T )

0

uf−(x, s) ·
(
(γug

x)x −Aug
x −Bug

)
(x, t) dx

−
∫ x1(T )

0

(
(γuf−

x )x −Auf−
x −Buf−

)
(x, s) · ug(x, t) dx

= −
(
uf−(0, s) · γ(0)ug

x(0, t) + γ(0)uf−
x (0, s) · ug(0, t)

)
−Atr(0)uf−(0, s) · ug(0, t)

(2.5)
= f−(s) ·

[
A(0)g(t)− (RT g)(t)

]
+ (R2T f−)(s) · g(t) = F (s, t).

(2.28)

At the same time, (2.3) implies the relations

b(s, 0) =
(
uf−( · , s), ug( · , 0)

)
Hx1(T ) = 0,

bt(s, 0) =
(
uf−( · , s), ug

t ( · , 0)
)
Hx1(T ) = 0.

As a result, we get the system

btt − bss = F, (x, t) ∈ ΘT ,

b(s, 0) = bt(s, 0) = 0, 0 ≤ s ≤ 2T.

3. D’Alembert’s integration yields

b(s, t) =
1

2

∫ t

0

dη

∫ s+t−η

s−t+η

F (ξ, η) dξ.

Putting s = t = T , we obtain

b(T, T ) =
1

2

∫ T

0

dη

∫ 2T−η

η

F (ξ, η) dξ.

Since the first term in (2.28), which involves f−(s), is odd with respect to s relative to
s = T , integration shows that

b(T, T ) =

∫ T

0

dη

∫ 2T−η

η

(R2T f−)(ξ) · g(η) dξ

= −
∫ T

0

g(η) ·
[
(J2TR2T f−)(η)− (J2TR2T f−)(2T − η)

]
dη

= −1

2

(
g,N2T 2P 2T

− J2TR2TST f
)
FT

(2.26)
=

(
− 1

2
(ST )∗R2TJ2TST f, g

)
FT

(2.29)

(the operators J2T and R2T commute because the latter operator is of convolution nature;
see (2.24)).
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On the other hand, since, obviously, uf−( · , T ) = uf ( · , T ), we have

(2.30) b(T, T ) =
(
uf ( · , T ), uf ( · , T )

)
Hx1(T )

(2.25)
=

(
CT f, g

)
FT .

Comparing (2.29) and (2.30), and using the density of the controls g ∈ C∞
0 ((0, T );R2)

in FT , we see that

CT f = −1

2
(ST )∗R2TJ2TST f, f ∈ C∞(

(0, T );R2
)
.

This identity extends by continuity to all f ∈ FT , because the operator R2TJ2T is
bounded, which is an obvious consequence of (2.24).

This proves the first relation in (2.27). Plugging in it the right-hand side of (2.24) in
place of R2T , we get the second relation (in (2.27)) after easy transformations. �
2.3. Controllability.

Reachable sets. The linear sets of the form

Uξ :=
{
uf ( · , ξ)

∣∣ f ∈ FT
} (2.16)

= WTFT,ξ
(2.16)
⊂ Hx1(ξ) (0 ≤ ξ ≤ T )

are said to be reachable (at the moment t = ξ). The sets Uξ grow with the growth of
ξ. Their structure and properties constitute the subject of the boundary control theory.
The reachable sets are formed by all states (here, waves) of the system that can be
created by using controls of a given class. In the situation where these states exhaust all
the space that contains them, we say that the system in question is controllable.

Observe that a two-velocity system is not controllable: the set UT has a nontrivial
orthogonal complement in Hx1(T ) for any T > 0. As an example, consider system
(2.1)–(2.3) with constant ρ1 < ρ2, γ1 = γ2 = 1, and A = B = 0. In this case,

uf (x, T ) =

(
f1(T −√

ρ1 x)
f2(T −√

ρ2 x),

)

UT =

{
y =

(
y1
y2

) ∣∣∣ y1, y2 ∈ L2[0, c1T ], supp y2 ⊂ [0, c2T ]

}

and then, obviously, Hx1(T ) 
 UT = L2([0, c1T ];R
2)
 UT �= {0}.

The reachable sets of the system sT admit the following description.

Proposition 4. There exists a function KT (x, s), defined and smooth for x2(T ) ≤ x ≤
s ≤ x1(T ), such that the fact that y =

(
y1

y2

)
∈ UT is equivalent to the following relationship

between the components y1 and y2:

(2.31) y2(x) =

∫ x1(T )

x

KT (x, s)y1(s) ds, x2(T ) ≤ x ≤ x1(t).

We explain the origin of this relationship.
Calling off Agreement 1a for some time, consider the following auxiliary initial-boun-

dary value problem:

ρvtt − (γvx)x +Avx +Bv = 0, 0 < x < x1(T ),−∞ < t < T,(2.32)

v
∣∣
x=x1(T )

= vx
∣∣
x=x1(T )

= 0, −∞ < t ≤ T,(2.33)

v
∣∣
t=T

= y, 0 ≤ x ≤ x1(T ).(2.34)

It differs from problem (2.1)–(2.3) only by interchanging6 the roles of the variables,
and the proof that it is well posed can be done as before, by reduction to a system of
integral Volterra equations of the 2nd kind. For any y ∈ Hx1(T ), system (2.32)–(2.34)

6In this problem, it is natural to think of x as time and t as the coordinate.
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has a unique (adequately defined generalized) solution v = vy(x, t), for which we have a
formula similar to (2.7):

(2.35) vy(x, t) = λ(x, t)

(
y1
(
x1(τ1(x) + T − t)

)
y2
(
x2(τ2(x) + T − t)

))+

∫ x1(T )

x2

(
τ2(x)+T−t

) qT (x, t, s)y(s) ds
where

λ = diag{λ1, λ2} : λi(x, t) :=

(
ρi(xi(τi(x) + T − t))γi(xi(τi(x) + T − t))

ρi(x) γi(x)

) 1
4

.

For every s ∈ [0, x1(T )], the kernel qT is smooth in [0, x1(T )] × (−∞, T ] outside of the
characteristics t = τi(x)+T−τi(s), vanishes for t < τ2(x)+T−τ2(s), and qT (x, T, s) = 0.
Observe that

(2.36) vy
∣∣
x>x2(t−(T−ξ))

= 0 for y ∈ Hx2(ξ) (0 ≤ ξ ≤ T ),

which follows easily from the form of the right-hand side in (2.35) and is an analog of
relation (2.14) in problem (2.11)–(2.13).

Comparing problems (2.1)–(2.3) and (2.32)–(2.34), we easily find a relationship be-
tween their solutions: if y = uf ( · , T ), then
(2.37) uf (x, t) = vy(x, t), 0 ≤ x ≤ x1(T ), 0 ≤ t ≤ T,

and f = vy(0, · ). It follows that y ∈ UT if and only if vy(0, · ) ∈ FT . The latter relation
is equivalent to the condition vy(0, t)

∣∣
t<0

= 0. Imposing this condition and putting x = 0

in (2.35), we see that the components y1 and y2 are not independent. The further analysis
results in relation (2.31). In a more general form that takes (2.36) into account, for the
sets Uξ Proposition 4 looks like this.

Proposition 5. There exists a function Kξ(x, s), defined and smooth for x2(ξ) ≤ x ≤
s ≤ x1(ξ), such that y =

( y1
y2

)
∈ Uξ if and only if the components y1 and y2 are related

to each other in the following way:

y2(x) =

∫ x1(T )

x

Kξ(x, s)y1(s) ds, x2(ξ) ≤ x ≤ x1(ξ).

Now, the operator V T : Hx1(T ) → FT
ext := L2

(
[T −τ2(x1(T )), T ];R

2
)
⊃ FT arises that

solves problem (2.32)–(2.34):

V T y := vy(0, · ).
Formula (2.35) shows that this operator is bounded, and (2.37) implies the relation

(2.38) V TWT = IFT

(IFT is the identity operator on FT ). Consequently, the control operator has a bounded
left inverse. Since it is Fredholm, we arrive at the following statement7.

Proposition 6. The operator WT acts from FT into Hx1(T ) isomorphically onto its
range RanWT = UT , which is a closed subspace. The operator (WT )∗ : Hx1(T ) → FT

annihilates the defect subspace Hx1(T ) 
 UT and takes UT onto FT isomorphically. The
connecting operator CT is a positive isomorphism of the space FT .

The second claim is a consequence of the known decomposition Hx1(T ) = RanWT ⊕
Ker(WT )∗; the third follows from the first two: CT is the composition of the isomor-
phisms WT and (WT )∗

∣∣
RanWT .

7Throughout, by isomorphisms we mean operators that act surjectively and have bounded inverse.
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Slow waves. For any y ∈ Hx2(T ), relation (2.31) is fulfilled trivially, so Hx2(T ) ⊂ UT .
We describe the inverse image (WT )−1Hx2(T ) under the isomorphism WT : FT → UT .

Proposition 7. There exists a unique smooth function l = l(t), 0 ≤ t ≤ T − τ1(x2(T )),

such that f =
( f1
f2

)
∈ (WT )−1Hx2(T ) if and only if

(2.39) f1(t) =

∫ t

0

l(t− s) f2(s) ds, 0 ≤ t ≤ T − τ1(x2(T )).

We briefly describe the arguments leading to the relationship (2.39) between the con-
trol components. The condition f ∈ (WT )−1Hx2(T ) is equivalent to uf ( · , T )

∣∣
x>x2(T )

= 0.

Imposing this condition on the right-hand side of (2.7), we see that the control compo-
nents f1 and f2 are not fully independent of each other. The further analysis of this
dependence results in (2.39). A detailed deduction can be found in the paper [17], where
the following relations were also established:

(2.40) l(0) =

√
γ2(0)ρ2(0)

γ1(0)ρ2(0)− γ2(0)ρ1(0)
a(0) =

αω21

(α− 1)ν1

(recall that α := c1(0)
c2(0)

> 1). It is noteworthy that the function l does not depend on T 8.

Its values in the interval 0 ≤ t ≤ T − τ1(x2(T )), used for the given T , are determined by
the values taken by the coefficients ρ, γ, A, B for 0 ≤ x ≤ x2(T ) only.

Replacing Hx2(T ) with Hx2(ξ) and using (2.9), we easily get a relation generalizing
(2.39). Denote

πT
1 (ξ) := T − ξ, πT

2 (ξ) := T − τ1(x2(ξ)), 0 ≤ ξ ≤ T.

By (2.4), we have πT
1 (ξ) < πT

2 (ξ) for ξ > 0. We introduce the collection of subspaces

(2.41) FT,ξ
l := (WT )−1Hx2(ξ), 0 ≤ ξ ≤ T,

and denote FT
l := FT,T

l . Observe that FT,ξ
l ⊂ FT,ξ, because

WTFT,ξ
l = Hx2(ξ) ⊂ Uξ = WTFT,ξ.

Proposition 8. Suppose f =
( f1
f2

)
∈ FT,ξ; then f ∈ FT,ξ

l if and only if

(2.42) f1(t) =

∫ t

πT
1 (ξ)

l(t− s)f2(s) ds, πT
1 (ξ) ≤ t ≤ πT

2 (ξ).

Observe that this relation imposes no restriction on the control components for πT
2 (ξ) <

t ≤ T .
The solutions uf initiated by the controls belonging to FT,ξ

l will be called slow waves.
This name is motivated by the following. Identity (2.38) implies

FT,ξ
l = V THx2(ξ), 0 ≤ ξ ≤ T.

For f ∈ FT,ξ, put y := uf ( · , T ) ∈ Hx2(ξ). We have

uf
∣∣
x>x2(t−(T−ξ))

(2.37)
= vy

∣∣
x>x2(t−(T−ξ))

(2.36)
= 0,

which means that, for all t ∈ [0, T ], the support of the wave uf ( · , t) lies in the interval
[0, x2(t− (T − ξ))], which expands at the “slow” rate c2(x) =

dx2

dτ

∣∣
τ=τ2(x)

, and this is not

true if condition (2.42) fails.

8We may say that l
∣∣
t≥0

is an attribute of problem (2.1)–(2.3) with T = ∞.
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The response operator RT acts as convolution, see (2.18); the relationship (2.42) is
also of convolution nature. Since convolution is commutative, we have

(2.43) RT (DomRT ∩ FT,ξ
l ) ⊂ FT,ξ

l , 0 ≤ ξ ≤ T.

The subsystem sTl . In the system sT , the slow waves correspond to the subsystem sTl
described by the initial-boundary value problem

ρutt − (γux)x +Aux +Bu = 0, 0 < x < x2(T ), 0 < t < T,(2.44)

u
∣∣
t<τ2(x)

= 0,(2.45)

u
∣∣
x=0

= f, 0 ≤ t ≤ T,(2.46)

which is well posed for f ∈ FT
l . We list the following attributes of sTl :

• the external and internal spaces are FT
l and Hx2(T );

• the control operator WT
l : FT

l → Hx2(T ) acts by the rule WT
l := WT eTl , where

eTl : FT
l → FT in the natural embedding operator;

• the response operator RT
l : FT

l → FT
l is the part of the operator RT induced in

FT
l , see (2.43);

• the connecting operator CT
l := (WT

l )∗WT
l : FT

l → FT
l is the block of the

operator CT in the subspace FT
l , i.e., CT

l = (eTl )
∗CT eTl .

By (2.41) we haveWT
l FT

l = Hx2(T ), i.e., in contrast to the system itself, the subsystem
sTl is controllable9.

2.4. Amplitude formula. The representation of waves deduced in this subsection is
a principal tool for the solution of inverse problems by the boundary control method
(see [18, 6, 15]). The deduction of the formula employs the peculiarities of the propagation
of discontinuities in the system sT , and, in essence, the representation itself is a formula
from geometrical optics.

The projections XT, ξ
l . Fixing ξ ∈ (0, T ], we decompose the external space of the

system sT in the orthogonal sum

(2.47) FT = FT,ξ
l ⊕ (FT,ξ

l )⊥;

let XT, ξ
l be the projection onto the first summand. To describe its action, we introduce

the operator Λξ : L2[π
T
1 (ξ), π

T
2 (ξ)] → L2[π

T
1 (ξ), π

T
2 (ξ)] given by

(2.48) (Λξg)(t) :=

∫ t

πT
1 (ξ)

l(t− s)g(s) ds, πT
1 (ξ) ≤ t ≤ πT

2 (ξ).

Proposition 9. For f =
( f1
f2

)
∈ FT , we have

XT, ξ
l f

∣∣
0≤t<πT

1 (ξ)
= 0,(2.49)

XT, ξ
l f

∣∣
πT
1 (ξ)≤t<πT

2 (ξ)
=

(
Λξ

[
I+ (Λξ)∗Λξ

]−1[
(Λξ)∗f1 + f2

][
I+ (Λξ)∗Λξ

]−1[
(Λξ)∗f1 + f2

]
)

=

(
(Λξf2)(t)
f2(t)

)
+

∫ πT
2 (ξ)

πT
1 (ξ)

jT,ξ(t, s)f(s) ds,

(2.50)

XT, ξ
l f

∣∣
πT
2 (ξ)≤t≤T

= f(t),(2.51)

9We may say that the passage to slow waves restores controllability, but only on the “slow” segment
[0, x2(T )], captured by such waves by the final moment.
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where jT,ξ is a matrix kernel smooth in [πT
1 (ξ), π

T
2 (ξ)] × [πT

1 (ξ), π
T
2 (ξ)] outside of the

diagonal t = s and satisfying |jT,ξ(t, s)| ≤ const with a constant independent of ξ, t, s.

These formulas are a result of fairly lengthy calculations, which can be simplified

by using the form of the second term in the decomposition f = XT, ξ
l f + fT,ξ

⊥ that
corresponds to (2.47). This term looks like this:

fT,ξ
⊥

∣∣
0≤t<πT

1 (ξ)
= f(t),

fT,ξ
⊥

∣∣
πT
1 (ξ)≤t<πT

2 (ξ)
=

( [
I+ Λξ(Λξ)∗

]−1[
f1 − Λξf2

]
−(Λξ)∗

[
I+ Λξ(Λξ)∗

]−1[
f1 − Λξf2

]
)
,

fT,ξ
⊥

∣∣
πT
2 (ξ)≤t≤T

= 0,

and the proof of (2.49)–(2.51) reduces to the verification of the identities f = XT, ξ
l f+fT,ξ

⊥
and (XT, ξ

l f, fT,ξ
⊥ )FT = 0. The integral representation in (2.50) is deduced from the

preceding operator representation with the use of (2.48).

The projections PT, ξ
l . On the “controllable” part Hx2(T ) of the space Hx1(T ), we

define a family of orthogonal projections P x2(ξ) onto the subspaces Hx2(ξ). Their action
reduces to cutting: for y ∈ Hx2(T ) we put

(
P x2(ξ)y

)
(x) =

{
y(x), 0 ≤ x < x2(ξ),

0, x2(ξ) ≤ x ≤ x2(T ),
0 ≤ ξ ≤ T.

Recall the relationship (2.41) between the subspaces Hx2(ξ) and FT,ξ
l .

On the external space FT we define the family of operators

(2.52) PT, ξ
l := (WT )−1P x2(ξ)WT , 0 ≤ ξ ≤ T.

Observe the following relations, which follow easily from the definition:

(2.53) (PT, ξ
l )2 = PT, ξ

l , CTPT, ξ
l = (PT, ξ

l )∗CT , RanPT, ξ
l = FT,ξ

l .

As a consequence, we see that PT, ξ
l is an (oblique) projection from FT onto FT,ξ

l parallel

to the subspace (CT )−1[FT
FT,ξ
l ]. The properties (2.53) characterize this projection. In

order to describe the action of PT, ξ
l , we introduce the embedding operators eT, ξ

l : FT,ξ
l →

FT 10 and observe the known relations

(2.54) (eT, ξ
l )∗eT, ξ

l = IFT,ξ
l

, eT, ξ
l (eT, ξ

l )∗ = XT, ξ
l , 0 ≤ ξ ≤ T.

Since CT is a positive isomorphism, its blocks (eT, ξ
l )∗CT eT, ξ

l in the subspaces FT,ξ
l ⊂ FT

l

are isomorphisms of these subspaces.

Proposition 10. For 0 ≤ ξ ≤ T we have

PT, ξ
l = eT, ξ

l

[(
eT, ξ
l

)∗
CT eT, ξ

l

]−1
(eT, ξ

l )∗CT ;(2.55)

(PT, ξ
l f)(t) =

⎧⎪⎪⎨
⎪⎪⎩
0, 0 < t ≤ πT

1 (ξ),(
Λξf2
f2

)
(t) +

∫ πT
2 (ξ)

0
pT,ξ(t, s)f(s) ds, πT

1 (ξ) < t ≤ πT
2 (ξ),

f(t) +
∫ πT

2 (ξ)

0
pT,ξ(t, s)f(s) ds, πT

2 (ξ) < t ≤ T.

(2.56)

The kernel pT,ξ(t, s) is smooth in [πT
1 (ξ), T ] × [0, πT

2 (ξ)] outside of the diagonal t = s
and the lines t = πT

2 (ξ) and s = πT
1 (ξ), and satisfies |pT,ξ(t, s)| ≤ const with a constant

independent of ξ, t, s.

10Recall that the embedding eTl = eT,T
l : FT

l → FT was used in the description of the subsystem sTl .
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The operator representation is established by a direct verification of relations (2.53).
Then, using the integral representation in (2.27), we easily deduce the formula

PT, ξ
l = eT, ξ

l (eT, ξ
l )∗ +KT,ξ

l

(2.54)
= XT, ξ

l +KT,ξ
l

with an integral operator KT,ξ
l . The specific form of the latter and the properties of its

kernel pT,ξ are deduced from the formulas of Proposition 9 as a result of a bulky analysis
of compositions of the kernels involved. We present a relation that will be used below
for characterization of the data. The representations (2.49)–(2.51) and (2.56) show that,

for a smooth control f , the discontinuities of the projection PT, ξ
l f can only occur for

t = πT
i (ξ). The size of these discontinuities is found from the same representations, and

a simple analysis yields the following result. Denote

(2.57) a〈s〉 := a(s+ 0)− a(s− 0), si :=

{
2, i = 1,

1, i = 2.

Proposition 11. For smooth f ∈ FT , the components PT, ξ
l f satisfy

(2.58) lim
ξ→0

(PT, ξ
l f)i〈πT

si (ξ)〉 = fi(T ), i = 1, 2.

In the case where ρi and γi are constant, formulas (2.58) were established in [6].

Remark 1. The deduction of formulas (2.49)–(2.51), (2.55), (2.56), and (2.58) does not
employ the fact that the function l is related to slow waves; only the form (2.48) of
the operator Λξ is important. The formulas mentioned above are valid for an arbitrary
l ∈ C∞[0, πT

2 (T )].

Running ahead, we note that for any function of this sort there exists a system sT in
which this function will determine the slow waves (the subsystem sTl ).

The space ΦT . The following interpretation of the projections PT, ξ
l is useful. In the

external space FT , we introduce the new scalar product (metric)

(2.59) (f, g)ΦT := (CT f, g)FT

(2.25)
= (WT f,WT g)Hx1(T ) = (uf ( · , T ), ug( · , T ))Hx1(T ) .

The space emerging in this way will be denoted by ΦT . Since CT is an isomorphism
(Proposition 6), the new metric is equivalent to the initial one, and FT and ΦT consist
of the same elements. This fact will be used notationally: ΦT

l is FT
l viewed as a subspace

of ΦT . The subspaces ΦT,ξ
l ≡ FT,ξ

l are understood similarly.
Observe the following relationship between the conjugation operations: for a bounded

(in FT or, equivalently, in ΦT ) operator A we have

(2.60) CTA� = A∗CT ,

where ( )� denotes conjugation in ΦT .
Formulas (2.60) and (2.53) imply the relations

(PT, ξ
l )2 = PT, ξ

l , (PT, ξ
l )� = PT, ξ

l , RanPT, ξ
l = FT,ξ

l .

It follows that the projection PT, ξ
l viewed as an operator in ΦT is an orthogonal projection

of ΦT onto the subspace ΦT,ξ
l .

By (2.59), the control operator WT
l of the subsystem sTl , viewed as an operator from

ΦT
l to Hx2(T ), is unitary. Formula (2.52) shows that this operator plays the role of the

transformation that diagonalizes the family of projections {PT, ξ
l }0≤ξ≤T in the sense of

the spectral theorem.
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Representation of waves. By using (2.15), it is easy to show that the piecewise smooth
controls induce piecewise smooth waves. Moreover, the smoothness of the kernel wT (x, t)
in (2.15) ensures that the integral term is continuous (in x) for any f ∈ FT . For the same
reason, the converse is also true: wave discontinuities may arise only if the corresponding
controls are discontinuous. The sizes (amplitudes) of the discontinuities are related as
follows:

(2.61) (WT f)i〈x2(ξ)〉 = −θi(x2(ξ)) fi〈πT
si (ξ)〉, 0 < ξ < T, i = 1, 2

(see the notation (2.57)); this is an easy consequence of (2.15).
Fixing ξ ∈ (0, T ), we pick a control f that produces a smooth solution uf . The

identities

uPT, ξ
l f ( · , T ) = WTPT, ξ

l f
(2.52)
= P x2(ξ)WT f =

{
uf ( · , T ), 0 ≤ x < x2(ξ),

0, x ≥ x2(ξ),

show that the wave uPT, ξ
l f ( · , T ) is discontinuous at the point x = x2(ξ), and the corre-

sponding amplitude is

(2.62)
(
uPT, ξ

l f ( · , T )
)
〈x2(ξ)〉 = −uf (x2(ξ), T ).

We apply relations (2.61) to this wave (i.e., replace f by PT, ξ
l f and WT f byWTPT, ξ

l f

= uPT, ξ
l ( · , T )) and employ (2.62) to get(

uf (x2(ξ), T )
)
i
= θi(x2(ξ))

(
PT, ξ
l f

)
i
〈πT

si (ξ)〉, 0 < ξ < T,

or

uf
(
x2(ξ), T

)
= θ(x2(ξ))

(
(PT, ξ

l f)1〈πT
2 (ξ)〉

(PT, ξ
l f)2〈πT

1 (ξ)〉

)
, 0 < ξ < T.

Now, substituting x = x2(ξ) ∈ (0, x2(T )) and using the formulas πT
2 (ξ) = T − τ1(x2(ξ))

and πT
1 (ξ) = T − ξ = T − τ2(x2(ξ)), we arrive at the representation

(2.63) uf (x, T ) = θ(x)

(
(PT,τ2(x)

l f)1〈T − τ1(x)〉
(PT,τ2(x)

l f)2〈T − τ2(x)〉

)
, 0 < x < x2(T ),

called the amplitude formula (AF), because the waves in this formula are expressed in

terms of the amplitudes of the discontinuities arising when the projections PT, ξ
l act on

controls. Observe the following specific feature of the AF, which is used when solving
inverse problems. The column on the right-hand side involves only objects corresponding

to the exterior spaces – controls and the projections PT, ξ
l . To construct these projections,

it suffices to have the operator PT, ξ
l and the function l. Recalling (2.27) and (2.24), it is

easy to show that the column in the AF is determined by the extended response operator
R2T (i.e., by the matrices ν and ω, and by the response function r

∣∣
[0,2T ]

), and the function

l
∣∣
[0,πT

2 (T )]
. This fact will play a key role in what follows.

§3. Characterization of data

3.1. The main result. In the inverse problems, the response operator plays the role
of the data by which it is required to recover the parameters of the dynamical system
in question. A characteristic description of the data provides necessary and sufficient
conditions for the inverse problem to be solvable. Applied to the system sT 11, these
conditions look like this.

11Recall that the system sT is determined by the initial-boundary problem (2.11)–(2.13) with smooth
coefficients, and that conditions (2.4) and (2.5) are assumed throughout.
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Theorem 1. An operator R2T : L2

(
[0, 2T ];R2

)
→ L2

(
[0, 2T ];R2

)
, DomR2T = M2T , of

the form

(3.1)
(
R2T f

)
(t) = −νft(t) + ωf(t) +

∫ t

0

r(t− s)f(s) ds, 0 ≤ t ≤ 2T,

with constant matrices ν = diag{ν1, ν2} and ω and a smooth matrix-valued function
r
∣∣
0≤t≤2T

is the extended response operator for some system sT if and only if the following

conditions are satisfied:

1) ν1, ν2 > 0, ω12 = −αω21 with α > 1;
2) [r(t)]tr = r(t), 0 ≤ t ≤ 2T ;
3) the operator CT that acts in L2

(
[0, T ];R2

)
by the rule

(3.2)
(
CT f

)
(t) := νf(t) +

∫ T

0

[
1

2

∫ 2T−t−s

|t−s|
r(η) dη

]
f(s) ds, 0 ≤ t ≤ T,

is a positive isomorphism.

The “only if” part. If a system sT is such that R2T = R2T , then for its connecting
operator we have CT = CT , and conditions 1–3 are fulfilled, see Proposition 3, Lemma 1,
and Proposition 6.

The “if” part (about the proof). In the remaining part of the paper, we verify that
conditions 1–3 suffice. This verification is constructive: given R2T , we build a system sT

whose response operator coincides with R2T .
To construct a system of the form (2.11)–(2.13) means to produce the coefficients ρ, γ,

A, B that determine this system. Taking condition (2.5) into account, we see that there
coefficients are determined by the eight parameters (scalar functions) ρ1, ρ2, γ1, γ2, a12,
b11, b12, b22. At the same time, the operator R2T is determined by the three parameters
r11, r12(= r21), r22 (plus the constant matrices ν and ω). Therefore, the uniqueness of a
system sT with a given R2T cannot be expected, and the problem is to describe all such
systems. Roughly speaking, the construction will be reduced to a “self-consistent” choice
of free five (5 = 8 − 3) parameters, followed by the verification of the consistency and
validity of the choice. As a guideline for our choice, we use the properties and relations
of the objects of the system sT , established when we studied it in §2. In fact, starting
with the data (3.1), we shall construct a “slow” system sT

′

l of the form (2.44)–(2.46) with
T ′ > T , and the system sT will come as a subsystem of this “slow” system.

3.2. The system sT
′

l .

Choice of parameters. So, we start with a collection ν, ω, r
∣∣
[0,2T ]

satisfying conditions

1–3 of Theorem 1. Our considerations are illustrated in Figure 2.

Step 1. The matrix ω allows us to choose α = const > 1 so as to ensure condition 1.
Let a segment [0, h] be fixed on the semiaxis x ≥ 0; all the further considerations will go
within this segment.

Step 2. Let two functions c1, c2 ∈ C∞[0, h] be such that 0 < c2(x) < c1(x), 0 ≤ x ≤ h
(cf. (2.4)), and

(3.3) c1(0) = αc2(0)

(cf. (2.20)). We define

τi(x) :=

∫ x

0

ds

ci(s)
, T ′ := τ2(h).
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Figure 2. Choice of parameters

Let x1(τ ) and x2(τ ) be functions inverse to τ1(x) and τ2(x) and defined on the segments
[0, T ] and [0, T ′], respectively. The definitions imply that T ′ > T and x1(T ) = x2(T

′) =
h.

Step 3. We choose functions ρ1, ρ2 ∈ C∞[0, h], ρi > 0, so that

(3.4) ρi(0) =
νi

ci(0)
, −ci(0)

2
(ciρi)x

∣∣∣
x=0

= ωii.

Since these relations impose conditions only on ρi(0) and
dρi

dx (0), such a choice is obviously
possible. The above conditions are motivated by (2.19).

Put
γi(x) := ρi(x)c

2
i (x), 0 ≤ x ≤ h.

Step 4. We introduce the functions

πT ′

1 (ξ) := T ′ − τ2(x2(ξ)) = T ′ − ξ, πT ′

2 (ξ) := T ′ − τ1(x2(ξ)), 0 ≤ ξ ≤ T ′.

We choose a function l ∈ C∞[0, πT ′

2 (T ′)] such that

(3.5) l(0) =
αω21

(α− 1)ν1

(cf. (2.40)) and denote T0 := πT ′

2 (T ′) (see Figure 2).
At this point, the dynamical system that we construct is supplied with the coeffi-

cients (matrices) ρ, γ and the function l, which will give the relationship between the
components of the slow waves. Independently of the remaining coefficients A, B (to
be constructed in what follows), the response operator will be of the form (2.24) with
constant matrices ν and ω coinciding with the similar matrices in (3.1). This coincidence
is ensured by imposing conditions (3.3)–(3.5).
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Step 5. Here, we extend the matrix-valued function r occurring in (3.1), given for
0 ≤ t ≤ 2T , to the larger segment 0 ≤ t ≤ 2T ′. We say that a function r

∣∣
[0,2T ′]

is a

Hermite positive extension of the function r
∣∣
[0,2T ]

if the operator

(
CT ′

f
)
(t) := νf(t) +

∫ T ′

0

[
1

2

∫ 2T ′−t−s

|t−s|
r(η) dη

]
f(s) ds, 0 ≤ t ≤ T ′,

is a positive isomorphism in L2

(
[0, T ′];R2

)
(like CT in L2

(
[0, T ];R2

)
). The method

of extension presented below was suggested in [6]; it employs an auxiliary one-velocity
system.

A system of the form (2.1)–(2.3) is said to be one-velocity if ρi = γi = 1, A = 0,
and Btr = B =: Q. All its properties are determined by the matrix-valued function
(potential) Q

∣∣
0≤x≤T

. For such systems, characterization of the data is known: a smooth

symmetric function rr
∣∣
0≤t≤2T

is the response function of a one-velocity system if and only

if the operator

f �→ f(t) +

∫ T

0

[
1

2

∫ 2T−t−s

|t−s|
rr(η) dη

]
f(s) ds, 0 ≤ t ≤ T,

is a positive isomorphism in L2

(
[0, T ];R2

)
. The potential Q

∣∣
0≤x≤T

is uniquely recovered

by the response function with the help of classical tools such as the Gelfand–Levitan–
Krĕın type equation (see [18, 19]).

The required extension of the function r is constructed as follows.

• The operator rCT := ν−
1
2 CT ν−

1
2 has the form

( rCT f)(t)
(3.2)
= f(t) +

∫ T

0

[
1

2

∫ 2T−t−s

|t−s|
rr(η) dη

]
f(s) ds, 0 ≤ t ≤ T,

(here rr := ν−
1
2 rν−

1
2 ) and, obviously, is a positive isomorphism in L2

(
[0, T ];R2

)
.

Consequently, rr
∣∣
0≤x≤2T

is the response function for some one-velocity system,

and rCT is its connecting operator.
• We recover the potential Q

∣∣
0≤x≤T

by rr
∣∣
0≤t≤2T

and extend it to [0, T ′] keeping

smoothness and symmetry. The extension Q
∣∣
0≤x≤T ′ gives rise to an extended

one-velocity system with a response function rr
∣∣
0≤t≤2T ′ that extends rr

∣∣
0≤t≤2T

and with the connecting operator

( rCT ′
f)(t) = f(t) +

∫ T ′

0

[
1

2

∫ 2T ′−t−s

|t−s|
rr(η) dη

]
f(s) ds, 0 ≤ t ≤ T ′.

Like any connecting operator, rCT ′
is a positive isomorphism of L2

(
[0, T ′];R2

)
.

Together with it, such is the operator

(CT ′
f)(t) := (ν

1
2 rCT ′

ν
1
2 f)(t)

= νf(t) +

∫ T ′

0

[
1

2

∫ 2T ′−t−s

|t−s|
r(η) dη

]
f(s) ds, 0 ≤ t ≤ T ′,

(3.6)

where r(t) := ν
1
2

rr(t)ν
1
2 , 0 ≤ t ≤ 2T ′.

• By construction, the extension r
∣∣
0≤t≤2T ′ of the function r

∣∣
0≤t≤2T

is Hermite

positive.

It is easily seen that all smooth Hermite positive extensions of r can be obtained in
this way.
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We present an operator formula relating CT and CT ′
. These operators act in the spaces

L2

(
[0, T ];R2

)
and L2

(
[0, T ′];R2

)
, respectively. We agree to view the delay operation

introduced in (2.10) as the operator that acts from L2

(
[0, T ];R2

)
to L2

(
[0, T ′];R2

)
by

the rule

(3.7) (T T ′

T ′−T f)(t) =

{
0, 0 ≤ t < T ′ − T,

f(t− (T ′ − T )), T ′ − T ≤ t ≤ T ′.

The subspace Ran T T ′

T ′−T is formed by the controls that vanish for 0 ≤ t < T ′ − T . The
conjugate operator

(T T ′

T ′−T )
∗ : L2

(
[0, T ′];R2

)
→ L2

(
[0, T ];R2

)
acts by the rule

((T T ′

T ′−T )
∗f)(t) = f(t+ (T ′ − T )), 0 ≤ t ≤ T,

and Ran(T T ′

T ′−T )
∗ = L2

(
[0, T ];R2

)
.

Lemma 2. We have

(3.8) CT = (T T ′

T ′−T )
∗CT ′T T ′

T ′−T .

Proof. Let ĂWT and ĂWT ′
be the control operators of the one-velocity systems that were

used for the extension of r. These operators act in the spaces L2

(
[0, x1(T )];R

2
)
and

L2

(
[0, x1(T

′)];R2
)
, respectively; we view the former as a subspace of the latter. Un-

der this agreement, we have the identity ĂWT = ĂWT ′T T ′

T ′−T , which is another form of
relation (2.9) for a one-velocity system with the final moment T ′ and an intermediate
moment s = T . The above identity yields

rCT = (ĂWT )∗ĂWT = (T T ′

T ′−T )
∗(ĂWT ′

)∗ĂWT ′T T ′

T ′−T = (T T ′

T ′−T )
∗

rCT ′T T ′

T ′−T .

Comparing the beginning and the end, and multiplying by ν
1
2 from the right and from

the left, we arrive at (3.8). �

At this point, to construct the two-velocity system sT
′

l , we have chosen the matrix-
valued functions ρ, γ

∣∣
0≤x≤h

, the function l
∣∣
0≤t≤πT ′

2 (T ′)
, and the extension r

∣∣
0≤t≤2T ′ . This

collection is determined by the eight parameters (scalar functions) ρ1, ρ2, γ1, γ2, l and
{r11, r12, r22}

∣∣
2T≤t≤2T ′ . This allows us to expect that the freedom in the choice of pa-

rameters is exhausted, and the other elements of the system are determined uniquely.

Spaces, operators, waves.
Spaces. We denote FT ′

:= L2

(
[0, T ′];R2

)
. In that space, the function l gives rise to the

family of subspaces

FT ′,ξ
l :=

{
f ∈ FT ′

∣∣∣ f ∣∣[0,T ′−ξ]
= 0, f1(t) =

∫ t

πT ′
1 (ξ)

l(t−s)f2(s) ds, π
T ′

1 (ξ) ≤ t ≤ πT ′

2 (ξ)

}
,

0 < ξ < T ′; FT ′,0
l := {0}, FT ′,T ′

l =: FT ′

l

(cf. (2.41), (2.42)). The largest of this subspaces FT ′

l is said to be external and its
elements are controls.

The space L2,ρ

(
[0, h];R2

)
=: Hh is said to be internal (recall that h = x2(T

′) = x1(T )).
It includes the family of subspaces

Hs :=
{
y ∈ Hh | supp y ⊂ [0, s]

}
, 0 ≤ s ≤ h.
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Projections. We define PT ′, ξ
l as the (oblique) projection of FT ′

onto FT ′,ξ
l parallel to

the subspace (CT ′
)−1[FT ′ 
FT ′,ξ

l ]. Equivalently,

PT, ξ
l := eT

′,ξ
l

[(
eT

′,ξ
l

)∗CT ′
eT

′,ξ
l

]−1
(eT

′,ξ
l )∗CT ′

, 0 ≤ ξ ≤ T ′,

where eT
′,ξ

l : FT ′,ξ
l → FT ′

is the embedding operator (cf. (2.55)). This definition is consis-

tent, because the operator CT ′
and all its blocks

(
eT

′,ξ
l

)∗CT ′
eT

′,ξ
l are isomorphisms in the

corresponding FT ′,ξ
l . By Proposition 10 (see also Remark 1!) we have the representation

(3.9) (PT ′,ξ
l f)(t) =

⎧⎪⎪⎨
⎪⎪⎩
0, 0 < t ≤ πT ′

1 (ξ),(
Λξf2
f2

)
(t) +

∫ πT ′
2 (ξ)

0
pT

′,ξ(t, s)f(s) ds, πT ′

1 (ξ) < t ≤ πT ′

2 (ξ),

f(t) +
∫ πT ′

2 (ξ)

0
pT

′,ξ(t, s)f(s) ds, πT ′

2 (ξ) < t ≤ T ′,

in which the kernel pT
′,ξ(t, s) is smooth on [πT ′

1 (ξ), T ′]×[0, πT ′

2 (ξ)] outside of the diagonal

t = s and the lines t = πT ′

2 (ξ) and s = πT ′

1 (ξ), and satisfies the estimate |pT ′,ξ(t, s)| ≤
const with a constant independent of ξ, t, s. Also, we have

(3.10) lim
ξ→0

(PT ′, ξ
l f)i〈πT ′

si (ξ)〉 = fi(T
′), i = 1, 2,

(cf. (2.58)). For the proof, see [6, Lemma 8]; now we only note that a specific property

of the kernel of the integral part of the operator CT ′
should be used: this kernel vanishes

for t = T ′ or s = T ′ (see (3.2) for T = T ′).

Waves. We denote

θ := diag{θ1, θ2}, θi(x) :=

(
ρi(0)γi(0)

ρi(x)γi(x)

) 1
4

,

and introduce the following linear space of smooth controls, dense in FT ′

l :

MT ′

l := FT ′

l ∩
{
f ∈ C∞(

[0, T ′];R2
) ∣∣ supp f ⊂ (0, T ′]

}
;

these controls vanish in the vicinity of t = 0. We define an operator WT ′

l : FT ′

l →
Hh, DomWT ′

l = MT ′

l , by the rule

(3.11)
(
WT ′

l f
)
(x) := θ(x)

(
(PT ′,τ2(x)f)1〈T ′ − τ1(x)〉
(PT ′,τ2(x)f)2〈T ′ − τ2(x)〉

)
, 0 < x < h

(cf. (2.63)). The images uf ( · , T ′) := WT ′

l f will be called waves.
The next claim is a key result for what follows.

Proposition 12. For f ∈ MT ′

l , we have

uf (x, T ′) = (WT ′

l f)(x) = θ(x)

(
f1
(
T ′ − τ1(x)

)
f2
(
T ′ − τ2(x)

))+

∫ T ′−τ1(x)

0

wT ′
(x, t)f(t) dt,

0 ≤ x ≤ h,

(3.12)

with a kernel wT ′
smooth in [0, h]× [0, T ′] outside of the curves t = T ′ − τi(x), vanishing

for t > T ′ − τ1(x), and such that

(3.13) wT ′
(0, t) = 0, 0 ≤ t ≤ T ′.

The proof of the representation (3.12)12 can be outlined as follows. Formulas (3.9)
are plugged in the right-hand side of (3.11). The discontinuities are calculated by taking

12It makes sense to compare (3.12) with (2.15).
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into account the possible discontinuities and the position of supports for the kernels pT
′,ξ.

Simple but lengthy computations result in (3.12) with a kernel with the entries

w11(x, t) = θ1(x)
(
p
T ′,τ2(x)
11 ( · , t)

)
〈T ′ − τ1(x)〉,

w12(x, t) = θ1(x)
[(
p
T ′,τ2(x)
12 ( · , t)

)
〈T ′ − τ1(x)〉 − pl

(
T ′ − τ1(x)− t

)]
,

w21(x, t) = θ2(x) p
T ′,τ2(x)
21

(
T ′ − τ2(x), t

)
,

w22(x, t) = θ2(x) p
T ′,τ2(x)
22

(
T ′ − τ2(x), t

)
,

where the discontinuities of the entries of the kernel pT
′,ξ in the expressions for w11 and

w12 are taken with respect to the first variable, denoted by the dot, and

pl(s) :=

{
l(s), 0 < s < τ2(x)− τ1(x),

0, s > τ2(x)− τ1(x).

The smoothness nature of wT ′
, as indicated in Proposition 12, can be seen from the

above expressions. Property (3.13) is a consequence of identities (3.10), which, combined
with (3.11), show that

(3.14) uf (0, T ′) = f(T ′),

implying that wT ′
(0, t) = 0.

On the operator WT ′

l . Formula (3.12) shows that the operator WT ′

l is bounded. Its

extension by continuity from MT ′

l to FT ′

l is of the same form, and we keep the notation

WT ′

l for the extension. Also, the name waves will still be applied to the images under
the action of this extension.

Since the functions θi, τi involved in (3.12) are smooth, the smoothness nature of the

kernel wT ′
shows that the operator WT ′

l preserves smoothness:

WT ′

l MT ′

l ⊂ C∞([0, h];R2).

In what follows, this property will be refined.

Conjugate operator. For a scalar function g = g(x) defined for 0 ≤ x ≤ h, we denote

(3.15) rg(x1(T
′ − t)) :=

{
0, 0 ≤ t < πT ′

2 (T ′),

g(x1(T
′ − t)), πT ′

2 (T ′) ≤ t ≤ T ′,

and define

px1(T
′ − t) :=

{
h, 0 ≤ t < T ′ − τ1(h),

x1(T
′ − t), T ′ − τ1(h) ≤ t ≤ T ′.

Proposition 13. The operator (WT ′

l )∗ : Hh → FT ′

l acts on the elements y =
( y1
y2

)
by

the rule

(3.16)
(
(WT ′

l )∗y
)
(t) = ϕ(t)

(
ry1
(
x1(T

′ − t)
)

y2
(
x2(T

′ − t)
))+

∫
px1(T

′−t)

0

wT ′

∗ (t, x) y(x) dx, 0 ≤ t ≤ T ′,

where ϕ = diag{ϕ1, ϕ2}, ϕi(t) :=
(
ρi(0)γi(0)ρi

(
xi(T

′ − t)
)
γi
(
xi(T

′ − t)
)) 1

4 , and the

kernel wT ′

∗ is smooth in [0, T ′] × [0, h] outside of the curves t = T ′ − τi(x) and vanishes
for t > T ′ − τ1(x).

For the proof, the right-hand side of (3.12) is substituted in the product (WT ′

l f, y)Hh .

Then, by interchanging integrals, we bring this expression to the form (f, (WT ′

l )∗y)FT ′
l
.
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Intertwining property. In the exterior space Hh, we consider the projections P s onto
the subspaces Hs. The action of P s reduces to the cutting of y ∈ Hh to the segment
[0, s]. The next result should be compared with (2.52).

Lemma 3. We have

(3.17) WT ′

l PT ′, ξ
l = P x2(ξ)WT ′

l , 0 ≤ ξ ≤ T.

Proof. Take f ∈ MT ′

l ; let ξ, τ ∈ (0, T ′). Since the projections PT ′, ξ
l expand when ξ

grows, we have PT ′,ξ
l PT ′,τ

l = PT ′,τ
l for τ < ξ and PT ′,ξ

l PT ′,τ
l = PT ′,ξ

l for τ > ξ.
The definition (3.11) shows that, for τ < ξ and x = x2(τ ), we have

(WT ′

l PT ′,ξ
l f)(x2(τ )) = θ(x2(τ ))

(
(PT ′,τ

l PT ′,ξ
l f)1〈πT ′

2 (τ )〉
(PT ′,τ

l PT ′,ξ
l f)2〈πT ′

1 (τ )〉

)

= θ(x2(τ ))

(
(PT ′,τ

l f)1〈πT ′

2 (τ )〉
(PT ′,τ

l f)2〈πT ′

1 (τ )〉

)
= (WT ′

l f)(x2(τ )).

If τ > ξ, then

(WT ′

l PT ′,ξ
l f)(x2(τ )) = θ(x2(τ ))

(
(PT ′,τ

l PT ′,ξ
l f)1〈πT ′

2 (τ )〉
(PT ′,τ

l PT ′,ξ
2 f)2〈πT ′

1 (τ )〉

)

= θ(x2(τ ))

(
(PT ′,ξ

l f)1〈πT ′

2 (τ )〉
(PT ′,ξ

l f)2〈πT ′

1 (τ )〉

)
= 0,

because the control PT ′,ξ
l f has no discontinuities for t = πT ′

i (τ ) (it can have them for

t = πT ′

i (ξ)).
We conclude that

(WT ′

l PT ′,ξ
l f)(x) =

{
(WT ′

l f)(x), x < x2(ξ)

0, x > x2(ξ)
= (P x2(ξ)WT ′

l f)(x)

for 0 < x < x2(T
′) = h. Since the controls f ∈ MT ′

l used above are dense in FT ′

l , we
arrive at (3.17). �

Relationship with CT ′

l . Let eT
′

l : FT ′

l → FT ′
denote the corresponding embedding, so

that (eT
′

l )∗eT
′

l = IFT ′
l
. The operator CT ′

l : FT ′

l → FT ′

l given by

CT ′

l := (eT
′

l )∗CT ′
eT

′

l

(3.6)
= νIFT ′

l
+ IT

′

l

is the block of CT ′
in the (sub)space FT ′

l . Here IT
′

l is a compact integral operator. Since

CT ′
is an isomorphism, this block is an isomorphism in FT ′

l . The last-written identity
implies that we can write

(3.18) (CT ′

l )−1 = ν−1
IFT ′

l
+ JT ′

l

with an integral operator

(JT ′

l f)(t) =

∫ T ′

0

jT
′
(t, s)f(s) ds, 0 ≤ t ≤ T ′,

which is compact in FT ′

l and has a kernel jT
′
smooth in [0, T ′] × [0, T ′] outside of the

line t = s.

Lemma 4. We have

(3.19) CT ′

l = (WT ′

l )∗WT ′

l .
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Proof. 1. Denoting A := WT ′

l (CT ′

l )−1(WT ′

l )∗, we check the relation

(3.20) AP x = P xA, 0 < x < h.

The second identity in (2.53) (with T replaced by T ′) implies that (CT ′

l )−1(PT ′, ξ
l )∗ =

PT ′, ξ
l (CT ′

l )−1. Now we write

AP x = WT ′

l (CT ′

l )−1(WT ′

l )∗P x (3.17)
= WT ′

l (CT ′

l )−1(PT ′,τ2(x))∗(WT ′

l )∗

= WT ′

l PT ′, ξ
l (CT ′

l )−1(WT ′

l )∗
(3.17)
= P xWT ′

l (CT ′

l )−1(WT ′

l )∗ = P xA.

2. Relations (3.12), (3.16), and (3.18) imply the representation

A = IHh +B

with a compact integral operator B. By (3.20), we have BP x = P xB, 0 < x < h. An
operator that commutes with the cutting-projections acts as multiplication by a function.
For a compact operator, this is possible only if B = OHh , whence A = IHh .

3. The map

f �→ θ

(
f1(T

′ − τ1( · ))
f2(T

′ − τ2( · ))

)
related to the right-hand side of (3.12), is an isomorphism from FT ′

l onto Hh, and the

integral term in (3.12) corresponds to a compact operator. Therefore, the operator WT ′

l

is Fredholm, so that (WT ′

l )∗ is a Fredholm operator from Hh to FT ′

l .

The identity WT ′

l (CT ′

l )−1(WT ′

l )∗ = IHh shows that the operator (WT ′

l )∗ is injective.

Consequently, it is an isomorphism from Hh onto the entire space FT ′

l . Correspondingly,

WT ′

l turns out to be an isomorphism from FT ′

l onto Hh. Now, to get (3.19), it suffices
to pass to the inverse operators in the last-written identity. �

Since in the course of the proof we established that WT ′

l is an isomorphism, we can
use (3.17) to obtain the relation

(3.21) WT ′

l FT ′,ξ
l = Hx2(ξ), 0 ≤ ξ ≤ T.

The inverse operator. Now we can get a formula for (WT ′

l )−1. We shall use the
notation (3.15).

Proposition 14. The operator (WT ′

l )−1 : Hh → FT ′

l acts on the elements y =
( y1
y2

)
by

the rule

(3.22)
(
(WT ′

l )−1y
)
(t) = η(t)

(
ry1
(
x1(T

′ − t)
)

y2
(
x2(T

′ − t)
))+

∫ h

x2(T ′−t)

wT ′

−1(t, x) y(x) dx, 0 ≤ t ≤ T ′,

where η = diag{η1, η2}, ηi(t) :=
( ρi(0)γi(0)
ρi(xi(T ′−t))γi(xi(T ′−t))

)− 1
4 = θ−1

i (xi(T
′ − t)), and the

kernel wT ′

−1 is smooth in [0, h]× [0, T ′] outside of the curves t = T ′ − τi(x) and vanishes
for x < x2(T

′ − t).

As in [6], this representation is deduced from the identity

(WT ′

l )−1 (3.19)
= (CT ′

l )−1(WT ′

l )∗

by plugging formulas (3.18) and (3.16) in it. The smoothness nature of the kernel wT ′

−1

results from a thorough and bulky analysis, which we are forced to omit here.

The operator L. Here we introduce the operator that determines the evolution of the
dynamical system to be constructed.
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Linear spaces. We consider the following family of smooth linear subspaces in the
exterior space FT ′

l :

MT ′,ξ
l := MT ′

l ∩ FT ′,ξ
l , MT ′,ξ

l,0 :=
{
f ∈ MT ′,ξ

l

∣∣ f(T ′) = 0
}
, 0 ≤ ξ ≤ T ′.

Observe that MT ′,0
l = {0} and MT ′,T ′

l = MT ′

l = ∪0<ξ<T ′MT ′,ξ
l . Each of these sub-

spaces is dense in the subspace FT ′,ξ
l containing it.

A control belongs to FT ′,ξ
l if and only if a relation of convolutive nature is fulfilled

for its components; therefore, the linear spaces introduced above are invariant under
differentiation and integration, which easily shows that

(3.23)
dk

dtk
MT ′,ξ

l = MT ′,ξ
l , k = 1, 2, . . . .

For the same reason, we have

(3.24) T T ′

s FT ′,ξ
l ⊂ FT ′,ξ

l , T T ′

s MT ′,ξ
l ⊂ MT ′,ξ

l , 0 ≤ s < ξ ≤ T ′.

In the internal space Hh we define the smooth linear subspaces

N s :=
{
y ∈ C∞([0, h];R2)

∣∣ supp y ⊂ [0, s)
}
,

N s
0 :=

{
y ∈ N s

∣∣ y(0) = 0
}
, 0 ≤ s ≤ h,

observing that N h = ∪0<s<hN s. Each of these subspaces is dense in the corresponding
subspace Hs.

Lemma 5. We have

(3.25) WT ′

l MT ′,ξ
l = N x2(ξ), WT ′

l MT ′,ξ
l,0 = N x2(ξ)

0 , 0 ≤ ξ ≤ T ′.

Proof. 1. The inclusions WT ′

l MT ′,ξ
l ⊂ N x2(ξ) and WT ′

l MT ′,ξ
l,0 ⊂ N x2(ξ)

0 follow from the

form of the right-hand side of (3.12) and the smoothness nature of the kernel wT ′
in

(3.12).

2. Suppose y ∈ N x2(ξ), ξ ∈ (0, T ′]. By (3.21) there exists a unique f ∈ FT ′,ξ
l such that

WT ′

l f = Θf + If , where Θf and If are the summands in (3.12), so that I is an integral
operator. It is easily seen that ICk

(
[0, T ′];R2

)
⊂ Ck+1

(
[0, h];R2

)
, k = −1, 0, 1, 2, . . . ,

where C−1
(
[0, T ′];R2

)
:= L2

(
[0, T ′];R2

)
, C0

(
[0, T ′];R2

)
:= C

(
[0, T ′];R2

)
.

We write Θf = y − If . Since y is smooth and If ∈ C0
(
[0, h];R2

)
, we have Θf ∈

C0
(
[0, h];R2

)
. For the components of f this yields

f1
∣∣
[πT ′

2 (ξ),T ′]
∈ C[πT ′

2 (ξ), T ′], f2
∣∣
[πT ′

1 (ξ),T ′]
∈ C[πT ′

1 (ξ), T ′].

The relationship between the components for t ∈ [πT ′

1 (ξ), πT ′

2 (ξ)] shows that

f1
∣∣
[πT ′

1 (ξ), πT ′
2 (ξ)]

∈ C[πT ′

1 (ξ), πT ′

2 (ξ)].

Therefore, the discontinuities of f1 and f2 are possible only if t = πT ′

2 (ξ) or t = πT ′

1 (ξ),
respectively. However, from (3.12), we see that the presence of such discontinuities
would imply the loss of continuity of the components of y at the point x = x2(ξ), which
is impossible because y is smooth. So, there are no discontinuities. Thus, smoothness

improves: from the initial f ∈ FT ′,ξ
l it follows that f ∈ FT ′,ξ

l ∩ C0
(
[0, T ′];R2

)
.

Arguing much similarly, we can show that f is C1-smooth piecewise, and then ex-

clude the discontinuities of the derivatives for t = πT ′

i (ξ), concluding that f ∈ FT ′,ξ
l ∩

C1
(
[0, T ′];R2

)
.
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Continuing in an obvious way, we get f ∈ FT ′,ξ
l ∩Ck

(
[0, T ′];R2

)
with an arbitrary k,

which is equivalent to the fact that f ∈ MT ′,ξ
l .

3. The second relation in (3.25) is a consequence of the first by (3.14). �
Definition, properties, representation. Having formula (2.17) in mind, in the inter-
nal space we define an operator L : Hh → Hh, DomL = N h,

(3.26) L := WT ′

l

d2

dt2
(WT ′

l )−1.

It is easily seen that properties (3.23) and (3.25) ensure that the above definition is
consistent. The same properties imply the inclusions

(3.27) LN s ⊂ N s, 0 ≤ s ≤ h.

Lemma 6. The operator L acts locally: for y ∈ DomL we have

(3.28) suppLy ⊂ supp y.

The operator L0 := L
∣∣
Nh

0
is densely defined and symmetric: for v, y ∈ DomL0 = N h

0 we

have (L0v, y)Hh = (v, L0y)Hh .

Proof. Let y ∈ DomL be such that supp y ⊂ [α, β], where 0 < α < β < h. We show that
suppLy ⊂ [α, β].

1. The condition imposed on the support implies that y ∈ N β , whence Ly ⊂ N β

by (3.27), i.e., suppLy ⊂ [0, β]. Thus, L does not extend the support to the right.

2. Let f ∈ MT ′,τ2(α)
l be a control vanishing near t = T ′. Such controls are dense in

the subspace FT ′,τ2(α)
l . By (3.25) (with ξ = τ2(α)), the corresponding waves WT ′

l f lie
in the subspace Hα and are dense in it. Moreover, y ⊥ Hα because supp y ⊂ [α, β].

For y and f as above, we have

0 =
(
WT ′

l ftt, y
)
Hh

(3.19)
=

(
CT ′

l ftt, (WT ′

l )−1y
)
FT ′

l

�
=

(
CT ′

ftt, (WT ′

l )−1y
)
FT ′

∗
=

(
CT ′

f,
(
(WT ′

l )−1y
)
tt

)
FT ′

��
=

(
CT ′

f,
(
(WT ′

l )−1y
)
tt

)
FT ′

l

(3.19)
=

(
WT ′

l f,WT ′

l

d2

dt2
(WT ′

l )−1y

)
Hh

(3.26)
= (WT ′

l f, Ly)Hh .

For the simplicity of notation, in identities (�) and (��) we omitted the embedding oper-

ator eT
′

l . Identity (∗) is a result of integration by parts. When bringing the derivatives

through the operator CT ′
, we have used the vanishing of f near t = 0 and t = T ′ and

the relation (CT ′
f)(T ′) = νf(T ′) = 0, implied by the form of the kernel of the integral

part of CT ′
(see (3.2)). Next, comparing the beginning and the end and using the density

of the waves WT ′

l f in Hα, we see that Ly ⊥ Hα, which means that suppLy ⊂ [α, β].
Consequently, the action of L does not extend the support to the left.

Thus, we arrive at (3.28).

3. Let y, v ∈ N h
0 and denote f := (WT ′

l )−1y, g := (WT ′

l )−1v. Then f, g ∈ MT ′,T ′

l,0

(see (3.25)). We have

(L0v, y)Hh

(3.19)
=

(
CT ′

l gtt, f
)
FT ′

l

∗∗
=

(
CT ′

l g, ftt
)
FT ′

l

(3.19)
= (v, L0y)Hh .

Identity (∗∗) is deduced much as (∗): we integrate by parts, use the zero conditions for

f , g at t = 0, t = T ′, and recall the identities (CT ′
f)(T ′) = (CT ′

g)(T ′) = 0. �
Now we find the form of the operator introduced in (3.26).
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Lemma 7. We have

(3.29) Ly = ρ−1
[
(γyx)x −Ayx −By

]
with smooth A and B satisfying (2.5).

Proof. 1. By rather lengthy calculations, it can be shown that if we plug (3.22) and
(3.12) in the right-hand side of (3.26) and then integrate by parts, then we finish with
the expression

(Ly)(x) = ρ−1(x)
[
(γ(x)y′(x))′ − A(x)y′(x)−B(x)y(x)

]
+ C(x)y′(x2(τ1(x))) +D(x)y(x2(τ1(x))) + E(x)ry′(x1(τ2(x)))

+ F (x)ry(x1(τ2(x))) +

∫ h

x2(τ1(x))

G(x, s) y(s) ds,

(3.30)

where we have denoted

rv(x1(τ2(x))) :=

{
v(x1(τ2(x))), 0 ≤ x ≤ x2(τ1(h)),

0, x2(τ1(h)) < x ≤ h,

while A, B, C, D, E, and F stand for smooth matrix-valued functions, and G is a
piecewise smooth kernel13.

2. The operator L can be extended to distributions with the help of the right-hand
side of (3.30). Since the distributions admit approximation by smooth functions, the
extension of L inherits the locality (3.28). Acting by the right-hand side of (3.30) on the
distributions δs

(
1
0

)
, δs

(
0
1

)
(δs( · ) is the Dirac measure supported at x = s), it is easy to

check that the condition suppLy ⊂ supp y = {s} (which follows from locality) can be
fulfilled only if C(s) = D(s) = E(s) = F (s) = 0 and G( · , s) = 0. Consequently, (3.29)
is true.

3. By Lemma 6, the restriction L0 := L
∣∣
Nh

0
is a symmetric operator in Hh =

L2,ρ

(
[0, h];R2

)
. For a differential operator like (3.29), this is possible only if condi-

tions (2.5) are fulfilled. �

Evolution. With each f ∈ FT ′

l , we associate the function

(3.31) uf (x, t) := uT T ′
T ′−t

f ( · , T ′) = (WT ′

l T T ′

T ′−tf)(x), (x, t) ∈ [0, h]× [0, T ′],

(cf. (2.9)). Relations (3.24) and (3.25) show that this definition is consistent.

Lemma 8. For f ∈ MT ′

l , the function uf defined as in (3.31) is a solution of the
following problem:

ρutt − (γux)x +Aux +Bu = 0, 0 < x < h, 0 < t < T ′,(3.32)

u
∣∣
t<τ2(x)

= 0,(3.33)

u
∣∣
x=0

= f, 0 ≤ t ≤ T ′.(3.34)

Proof. We have

uf
tt = (WT ′

l T T ′

T ′−tf)tt = WT ′

l (T T ′

T ′−tf)tt

= WT ′

l ((WT ′

l )−1WT ′

l T T ′

T ′−tf)tt
(3.26)
= LWT ′

l T T ′

T ′−tf = Luf .

Multiplying by ρ, we get (3.32).

13All these can be expressed in terms of the functions ρi, γi, the matrix entries of the kernels wT ′
,

wT ′
−1, and their derivatives. The expressions are cumbersome, and their specific form plays no role in

what follows.
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By (3.24), we have T T ′

T ′−tf ∈ MT ′,t
l , whence uf ( · , t) ∈ N x2(t) ⊂ Hx2(t) by (3.25).

Therefore, supp uf ( · , t) ⊂ [0, x2(t)], which is equivalent to (3.33).
The relations

uf (0, t) = uT T ′
T ′−t

f (0, T ′)
(3.14)
= (T T ′

T ′−tf)(T
′) = f(t)

lead to (3.34). �
We summarize (preliminarily). In the course of constructions presented in Subsec-

tions 3.1 and 3.2, from the initial data (the operator (3.1)) we have extracted the matrix-
valued functions {ρ, γ, A,B}

∣∣
0≤x≤h

satisfying conditions (2.4) and (2.5). This collection

yields a system sT
′

l , via problem (2.44)–(2.46) with final moment t = T ′. This system has

a control operator WT ′

l of its own. On the other hand, the same collection gave rise to an

operator WT ′

l (see (3.11)), in terms of which the solutions (3.31) of problem (3.32)–(3.34)
were defined. Lemma 8 says that these two problems are identical, implying that

(3.35) WT ′

l = WT ′

l .

3.3. System sT . Recall that h = x1(T ) = x2(T
′) by the choice of parameters in Sub-

section 3.1.
The collection {ρ, γ, A,B}

∣∣
0≤x≤h

determines a system sT of the form

ρutt − (γux)x +Aux +Bu = 0, 0 < x < h, 0 < t < T,(3.36)

u
∣∣
t<τ1(x)

= 0,(3.37)

u
∣∣
x=0

= f, 0 ≤ t ≤ T,(3.38)

(see (2.11)–(2.13)). For the system sT we have:

• the external space FT = L2

(
[0, T ];R2

)
;

• the internal space Hx1(T ) = L2

(
[0, x1(T )];R

2
)
;

• the control operator WT : FT → Hx1(T );
• the extended response operator

(R2T f)(t) = −rνft(t) + rωf(t) +

∫ t

0

rr(t− s) f(s) ds, 0 ≤ t ≤ 2T,

of the form (2.24);
• the connecting operator CT : FT → FT , CT = (WT )∗WT ,

(CT f)(t)
(2.27)
= rνf(t) +

∫ T

0

[
1

2

∫ 2T−t−s

|t−s|
rr(η) dη

]
f(s) ds, 0 ≤ t ≤ T.

The next result establishes the sufficiency of the conditions of Theorem 1, thus com-
pleting its proof.

Lemma 9. We have R2T = R2T .

Proof. 1. The identities rν = ν and rω = ω are ensured by the choice of parameters in
Subsection 3.1 (see Remark at the end of step 4). It remains to verify that rr = r.

2. We establish a relationship between the systems sT and sT
′

l . By comparing the
solutions of problems (3.36)–(3.38) and (3.32)–(3.34), it is easy to check that

(3.39) WT = WT ′

l T T ′

T ′−T ,

where T T ′

T ′−T : FT → FT ′
is the operator introduced in (3.7). Note that Ran T T ′

T ′−T ⊂
FT ′

l , because the fact that a control belongs to FT ′

l imposes no restriction to the rela-
tionship between its components for T ′ − T ≤ t ≤ T ′. Therefore, the right-hand side of
(3.39) is well defined.
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Next, we have

CT = (WT )∗WT (3.39)
= (T T ′

T ′−T )
∗(WT ′

l )∗WT ′

l T T ′

T ′−T

(3.35)
= (T T ′

T ′−T )
∗(WT ′

l )∗WT ′

l T T ′

T ′−T

(3.19)
= (T T ′

T ′−T )
∗CT ′

l T T ′

T ′−T

�
= (T T ′

T ′−T )
∗CT ′T T ′

T ′−T

(3.8)
= CT .

We explain (�). Since the components of the controls in FT ′

l are independent for T ′−T ≤
t ≤ T ′ (see above), the blocks of CT ′

l and CT ′
in the subspace FT ′,T = Ran T T ′

T ′−T are
identical. Identity (�) expresses this fact.

3. Obviously, the identity CT = CT implies that the kernels of the integral parts of
these two operators also coincide:∫ 2T−t−s

|t−s|
rr(η) dη =

∫ 2T−t−s

|t−s|
r(η) dη, 0 ≤ s, t ≤ T.

Putting t = s = T − σ
2 and differentiating with respect to σ, we see that rr(σ) = r(σ) for

0 ≤ σ ≤ 2T . �
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