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ASYMPTOTIC BEHAVIOR OF SOLUTIONS
OF THE HAMER EQUATION

A. A. SOLOV'EV

ABSTRACT. In a preceding paper the leading term was found for the asymptotics as
t — 4oo of the solution of the initial problem for the Hamer equation, which is a
simplest model for the motion of a radiating gas. Here, the second asymptotic term
is constructed. It is proved that this term is proportional to the second term of the
asymptotics of the solution of the initial problem for the Burgers equation.

§1. INTRODUCTION

The one-dimensional movement of a radiating gas is described by a system of the
Euler equations that takes the heat radiation into account; see [I]. As a simplest model
of that full system, the following system of Hamer’s equations (see [2]) is known:

(1.1) {ut—i—uamu—l—aquo,

—02q + q+ O,u =0,
where u(z,t) and ¢(z,t), x € R, t € Ry, are the velocity and the heat flow of the gas.
We consider system (L) with the initial condition

(1.2) u(z,0) = up(x).
Problem (1)), (T2) can be reduced to the form
{ut—i—u(?xu—i—u—Ku: 0,

(1.3) u(z,0) = ug(),

where
(Ku)(,t) = (K *u)(x,t) with K(z) = %e_‘”l.

Kawashima proved (see [3]) that, even for smooth initial data, the solution of sys-
tem (L3) can become discontinuous in finite time. Therefore, one cannot expect the
existence of a global solution.

However, later, Kawashima and Tanaka proved in [I] that a global smooth solution
exists indeed under the assumption that the initial function is sufficiently small.

Before stating this results, we introduce some notation.

As usual, the symbol F[f] denotes the Fourier transform of a function f, given by

oo

A =FO = [ e p@n
The inverse Fourier transformation is denoted by F~1. Next, L? = LP(R), 1 < p < oo,
is the usual Lebesgue space of functions on R, with the norm | - ||z».
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For a nonnegative integer s, the symbol H® = H*(R) denotes the Sobolev space of
L?-functions equipped with the norm

5 1/2
1l = (Z ||3'£f|2m> |
k=0

Here 0% stands for the derivative of order k with respect to the variable z € R. By
C*(H*(R),I) we denote the space of k times continuously differentiable functions defined
on I and taking values in H*(R).

Throughout, we denote various positive constants by C' (possibly, with indices).

Now we formulate the theorem proved in [I] and claiming the existence of a global
solution.

Theorem 1 (S. Kawashima and Y. Tanaka). There exist two positive constants oy and
C such that if

luoll £+ (r) < do,
then problem (LI), (L2) has a unique global solution (u(z,t), q(x,t)), satisfying the
conditions

ue C(H*(R),[0,00)) NC(H*Y(R),[0,00)),
q € C(H**Y(R),[0,00)).

Also, this solution (u,q) obeys the following energy estimate uniform in t:

¢
()] +/O (lu()Fre s + la(r)l7gesn) dr < CO5.
The behavior of the solution (u(z,t),q(x,t)) as t — oo of system (LI with initial
data belonging to H*(R) N L'(R) was studied in [4].

Theorem 2 (S. Kawashima and Y. Liu). Suppose that ug € H*(R) N L*(R) with s > 3.
There exists a small positive constant 61 such that if

Ey = |uollas + [luollr < 61,
then the global solution delivered by Theorem [l obeys the estimate
(1.4) [0Fu(t)|| gre—n < CEy(1+t)~H/A7k/2
for0<k<s—1, and
105 q(1)]| prasa-rn < CEy(1 4 )~ H/A- (kD2
for0<k<s-—2.

In what follows we work under the assumptions of Theorem
Also, we mention the following results on the behavior of the global solution, published
in [5] and [6]:

lu)llzr < lluollzr,  [[u(®)llze < fuollz=,
(1.5) llug |1\ /2
Dll~ < C(H2E)
el < € (2

We say that a function f is exponentially localized if for every s > 0 there exists a
positive constant Cy and a number a; > 0 such that

0F f(2)] < Cee™lol 2z e R, 0<k<s.

In what follows, we restrict ourselves to considering only exponentially localized boundary
functions.
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In [7] it was proved that the leading term of the asymptotics for the solution of the
initial problem (3] coincides with that for the initial problem for the Burgers equation:

(1.6) v + v0,v = O3,
v(x,0) =up(z), x€R.

This leading term has the form

- 2@0(%, t)
(1.7) ug(z,t) = - fjoo o0 ds
where
(1.8) Co(,t) = Mo(ho) ! e AL

Vart

with ho(z) = (1/2)uo(x) exp{—(1/2) [*_ uo(s)ds} and Mo(ho) = [ ho(s)ds. In the
same paper it was proved that

(1.9) 0% (u(t) — uo(¥)) ]|, < Ct=H/A=kED/2 | >0,
which implies the estimate
(1.10) (0% (u(t) — uo(t))|| oo < CETHAH2 k> 0.

In the present paper, we find the second term of the asymptoties for the solution of
the Hamer equation; the result looks like this:

Li 2(0(1‘,0
VEOz [1— [T Co(s,t)ds)’

where the factor A(ug) depends on the initial function ug.

(1.11) up(z,t) = A(ug)

§2. ESTIMATES OF THE SOLUTION OF BURGERS’ EQUATION

It is well known that the Burgers equation can be linearized via the Cole-Hopf trans-
formation

0.0 1 [
v=—-2—/, 6(zx,t) =exp ——/ v(s,t)ds|.
0 2 J_»
The function 6(x,t) solves the heat equation and satisfies the inequality
(2.1) A= e—%HuoHLl S 9(33, t) S e%““o”m_
Instead of 8, we shall consider a function {, { = —0,6, which solves the initial problem
((2,0) = (1/2)ug(z) exp [ — (1/2) [T uo(s) ds] = ho(x),

with exponentially localized initial data. The function 6(z,t) and the solution v(x,t) of
problem (L6l can be recovered by the solution ((x,t) via the relations

0(z,1) = 1 —[ (s, ) ds, v(w,t) = 2%

The asymptotic expansion of the solution ¢ of problem (ZZ) in the powers of t~1/2
can be obtained from the formula

((2,t) = i/ ho(€)e™ el de.

27 J_ o

ds.
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The Taylor expansion of 713 is of the form

—~(n+1)

(O) gj + ho (c) §n+1
(n+1)! ’

GED L

k=0

g!

where c¢ lies between 0 and £. Substituting this in the above integral, we get

(2.3) FICI(E, ) = ho(©)e 6 = FIC) (&, 1) + Flyn] (£, 1).
Here,
(2.4) FlCa)(€,t) = zn: (_i)jngje—s%

=0 '

with M;(ho) = [ s7ho(s) ds, and for F[y,](¢,t) we have

(2.5) €5 Fla(€,8)] < Cplé[mHrH1e¢,
We put
2 (z, 1)
1-— ffoo Cu(s,t)ds’

The next theorem is auxiliary and is well known.

vp(z,t) =

Theorem 3. The solution v(x,t) of equation ([LH) with exponentially localized initial
data satisfies the estimate

k —1—(k 2
|8m(’l)(.’[,t)—’l1n(.’[,t))‘ SCnvkt (kn)/ , t>21, kkn=0,1,...,
where Cy, 1, is independent of x and t.
§3. CONSTRUCTION OF THE SECOND TERM OF THE ASYMPTOTICS
FOR THE SOLUTION OF HAMER’S EQUATION

We return to problem (L[3). The Fourier transform of K(z) = 1exp(—|z|) is the
function

Therefore, for the convolution (K *u)(z,t) = [ K(z — s)u(s,t)ds we have
P T 2
u— Kxu(&t) = 7 +£2u(§,t).
We rewrite (L3]) in the form
(3.1) up + udpu — 0%u = K + 02u — 0%u = K * .

Applying the Cole—Hopf transformation v = —20,¢/¢, we obtain the equation

(ﬁ) — (wm) = K * 0tu.
Pl p
Integration with respect to z yields

pr — 070 = (K * u) + c(t)p,
o) =ep{ =3 [ (s ds} = o).

— 00

(3.2)

After multiplication by exp{ [ ¢(t) dt}, the equation takes the form
Py — Oy = (K x02u), where ®(z,t) = el Wty 1),

Therefore, we assume that ¢(t) = 0.
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To make the initial data exponentially localized, we introduce the new function ¢ =
—pg. Problem ([B2) takes the form

(,0) = guo(x) exp { = § [* uo(s) ds} = ho().

The solution of the Cauchy problem

{wt = 92 + g(a,1),
u(z,0) = ho(x)

(3.3)

can be written via the Poisson formula:

W(z,t) = (Go * ho)(z,t) + /0 (Go * g)(x, T) dr,

where the function
1

Go(z,t) = e = (e (p
o(z,t) VAt ( )(2)
is the fundamental solution of the initial problem for the heat equation. We denote
(3.4) ((z,t) = (Go * ho)(z,1)
and
t
(3.5) F(p)(z,t) = / Go(t — 1) * [p(T) (K * 83u)(7)} dr.
0

As in Theorem Bl {o(x,t) will denote the leading term of the asymptotic expansion of
the function ((z,t).
The next lemma will serve us for estimating the function ¥ (z,t) (see []).

Lemma 1. If ¢ € H*(R) N LY(R) and 0 < k < s, then
(3.6) [25Go(t) * 8[|}, < C1+ )72 F|lE + Ce|10k6 ..
(3.7) |95Go() * ][, < Ot EHlIg] 1.
Proof. We reproduce the proof of ([3:6). We have
920 = 6(0)] < C< / + / >§|2k6_2’52t‘$(§,t)‘2 d¢

€<t [¢>1

<C / g%e—2£2<t+1>e252‘g(g,t)fdg+C / g2ke—2t|$(§,t)y2d§
[€1<1 le|>1

< Ct+1)72Hp(@)]2 + Ce 2 |0Es 1)

Inequality (B.7) is proved in a similar way. a

In Lemmas Pland [l we estimate the derivatives of the functions u and 1 in the spaces
L and L2, respectively. We assume that ug € H*(R) N L'(R) with s > 3.

Lemma 2. For any k, 0 < k <s—1, we have

k41
2 .

(3.8) |O5u(t)]| . <CA+1)
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Proof. We represent (8’;u(t))2 as an integral with variable upper limit and apply the
Cauchy—Bunyakovskii inequality and estimates of Theorem 2 obtaining

1/2
Jokutoll,~ = | [ on(@kutn)’es
Loo
< C||0ku(t Hl/zuaggﬂ 32 < ca+nF O

Lemma 3. For any k, 0 < k <s—1, we have
050l < O+ 4H

Proof. We use induction on k. Recall that the functions ¢ and w are related to each
other by the Cole-Hopf transformation and that ¢» = —39,p. Therefore,

21 = uep.
Differentiating this with respect to =, we get
r—1
2000 = pdyu+ »_ Crofud, * 1.
k=0
For r = 1, Theorem [ and inequality (L5l imply
102912 < C([10pull 2 + lJull o< [9]|22) < C(1 +8)~H472,
Suppose that for all £ with 1 < k < r we have
|05 . < C(1L+)71 /AR,

Then, by Lemma [2]
r—1
ol < 0 (ol + 3 ol o 1wl ) <0+t 0
k=0

Now we use the fact that the leading term of the asymptotics for problem (L3) is
known.

Lemma 4. The function zu(x,t) is integrable with respect to x over R, and
/ lzu(z, )| de < C(1+1)3.

Proof. We write the solution u(z,t) of Hamer’s equation in the form
u(x,t) = (u — ug)(x,t) + ugp(z, t),
where ug(z,t) is the leading term of the asymptotics for the solution of problem (I3)).

It is easily seen that

(3.9 /OO lzug(x,t)| de < OVt

—o0
Putting w(zx,t) = u(z,t) — uo(z,t), we have
WWy = U0zU + U0zt — Oz (uow).
Since ug(z,t) satisfies the Burgers equation
(3.10) uot + uolios = Jatig,
we can subtract (8] from BI0) to get
wy + ww, = (K *w —w) + K % 0%ug — 0, (uow).
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We employ the inequality
1
|wl|: + 5(102 sgn(w))m < (K * |w] — |w|) + (K * (aiuo)) sgn(w) — 9, (upw) sgn(w)

(see [8]), which is valid a.e. Put L(v) = (K *v) —v. We multiply the inequality above
by |z| and integrate in :

% O; lzw(z, t)| de < /O:O |w(z, )| L(|x]) dz
n % /z w(z, t) sgn (zw(w,t)) dz + /C: (K * Oyuo) (z,1)|7] sgn (w(z, 1)) ds

_ /00 9z (uo(z, yw(z, 1)) x| sgn (w(z, t)) dz.

— 00

Observe that L(|z|) = e~1*|. Integrating by parts in the last two integrals and applying
the Cauchy—Bunyakovskii inequality, we obtain the estimate

d o0
7 jzw (e, t)| de < C([Jwllzz + [lwlZ + [|07uol| 1 + lluoll 2 llwl| =)
Since
lw(t)||z < Ct=3/* (see [7]) and ||03uo(t))],, < Ct=3/2,
we have
d (o]
yr lzw(z, )| de < Ct=3/4, > 1.
Therefore,
| lwnlde< [ oo lde et e
Combining this and (39, we get the required claim. |

Now we state our main theorem.

Theorem 4. Suppose that, as in Theorem B, uo(x) € H*(R) N L'(R) with s > 5,
and that this function is exponentially localized. Let u(x,t) be the solution of the initial

problem ([L3). Then
(3.11) |0 (u(w, t) — uo (@, t) —ur(z,1))| < Ot 5 log(1+1), ¢>1,

for all k with 0 < k < s — 4, with a constant C' independent of x and t. Here ug(z,t)
and uy(z,t) are the functions (L) and (L), respectively.

Proof. We start with estimating the function F'(¢)(x,t) (see (3.3])), then find the second
asymptotic term for the solution of Hamer’s equation, and finally, prove estimate (ZIT).
I. We write F(p)(z,t) as a sum:

o, /O dr /_ Golw = &t =) (6,7 (K = O2u) 6, 7)] e

(312) _/O dr /_OO Go(ﬂf—§7t _T) ['(/)(E’T)(K*&?U)(g;T)] df

= azFl((p)(xvt) + F2(¢)(x7t)'
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For m > 2, the L?-norm of 97 F} () is dominated by

t/2
/0 HGQ(T)*8;”[30(1‘,—T)(K*ag’u,)(t—T)]HLQ dr
(3.13)

t/2
+ /0 H('?;nGo(t —T) % [(p(T)(K * 8£u) (T)] ||L2 dr =1, + L.

We estimate I, applying Lemmas 1-3 and estimate ([4]):
t)2 ,
I SC[/ HGO(T)* [(p(t—T)agTJr (K*u)(t—r)”|L2 dr
0
m t/2
—1—2051/ ’ 8m+2 k(K*u)(t—T HL1 dr
k=1 0
3.14 t/2
(3.14) sc/ (K % a2 (¢ — 7)., dr
0

mooet/2
+cz/0 e R0t — )| 0TI )t — )| dr
k=1
< O(1 +t)"Va-m/2,

Now we treat the second term I» in (BI3). Integrating by parts and using (L4) and
Lemma 1-3, we get

12<cz/ |07 Gt — 7) * [82Fip(r) (K * u)(7)] | .

2

t/2
Z(1+t)_1/4_(m+k)/2/0 1025 (r) (K 5 u)(r)]| ., d

|
k=0

2 t/2
+30e [ ot o2 H o) ) ()] d
(3.15) k=0 0

t/2
gc{(1+t)—1/4—<m+2>/2/ (K % w)(7)|| 11 dr
0
1 t/2
£3 (14 gy a2 / 1027 ()| | (K 0) (7) | 2
k=0 0

/2
et [Ty 2} < C(14) A 2 l0g(1 4 1)
0

Relations 3I3), 3I4), and BI5) imply the inequality

[0mFi ()], SCA+1) T Flog(l+1), m=23,...

I
Denoting
p(&s T) = ’(/}(67 T)(K * 8.52”)(67 T)

we put

Fo(y)(,t) = Go(w,t)/o /700 p(p, 7)dpdr
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and represent the function F3(¢)(z,t) = Fo(¢)(z,t) — Fo(¢)(z,t) (see (B12)) in the form

/t/Q/ Gol(¢, )(x—ﬁt—T)dﬁdT—Goxt/t/Q/ p(p,t —7)dpdr

/ dT/ [Golz — &t — 7) — Go(a, B)] p(€, 7) de
= Ji(x,t) + Jo(z, t) + J3(x, t).

(3.16)

Suppose m > 1. To estimate the L?-norm of 97 F5(v))(x,t), we start with applying
Lemma 1 to 97" Jy (z,t):

(3.17) 1O T2 ()12 < c/ Hlom [t — m)02(K *u)(t — )], dr

Since

[0 [t = 1)K+ u)(t = 7)]|| 12 < C D |0kt = )| 07T F(K *w)(t — 7
k=0

<O+t

Mz

we see that

/Ot/2 7O [t — )P (K *u)(t —7)] ||, dr < Ot E
Thus, we arrive at the inequality
|02 I (8) ()] - < CEH755, t>1, m> 1.
We estimate Ja(x,t). Since
|07 Go(t —7)||;» < C(t—7)" %77 and /Oo p(€,t —T)|de < C(t—T7)7F,

it follows that the second summand on the right in (317)) satisfies the estimate

m+1

t/2 poo
Ha;"Go(t—T)HLz/ / p(unt — )| dpdr < O3 £ 1,
0 —00

which is proved with the help of (4.
Passing to J3(x,t), we write the difference Go(z — £,t — 7) — Go(z,t) in the form

1 1
/ iGo(ac—fu,t—7'1/)d1/:/ [—ﬁamGo(x—fu,t—Tu) —TatGo(l‘—fl/,t—Tl/)}dl/.
o dv 0

By Lemmas 2] and @], we have

t/2 0o
/ dr / €0 (€. 7) (K % 02u) (€, 7)| de
0 —00

t/2

t/2 .
S/ (1+T)7§||§U(€,T)||leT§/ (1+7)"tdr < Clog(1+t).
0 0
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Then, by Lemma, [T,

t/2 1 o
HA ddédfﬁw%”WM%{%FWW@@JW€

t/2 1
< / dT/ dv
0 0

t/2 1 1 mdl
<cC / dr / dv(t — Tv) "3 |ep(€, 7)o dr
0 0

L2

/ T 0 Gyl — vt — T)Ep(E, ) de

L2

m+1

t/2
gmﬁ—2/|m®ﬂmgmﬁ"¥muﬁxt>L
0

Next we apply Lemma [2] to obtain the inequality

t/2 1 o0
/ TdT/ dV/ a;;natGO(x - fyvt - Ty)p(§7 T) dg
0 0 —00

L2

S ’

t/2 1 )
/ TdT/ dV/ a;n+2GO(x_§V7t_Ty)p(§vT) df
0 0 —o0

t/2 1
< / TdT/ dv
0 0

t/2 1 1 ma2
g()/ Tdf/ du(t — )~ 5252 |p(e, 7)1 dr
0 0

L2

/ T O Gy (e — vt — T)plE, ) de

L2

m+2 m+1

t/2
<Ct i 2/ Tl47) 2dr<Ct i ™, t>1.
0

As a result, for t > 1 we get an estimate for 97" F3(v), m > 1:

m

3
|07 Bs@)|] 12 < D 08 k(@) 12 < CH737 75 log(1 +1).
k=1

Thus, the function F(¢) (see (B3)) has the form

(3.18) O F1(0) (2, 1) + F3(¢) (2, t) + Fo(¥) (2, 1),

and for ¢ > 1 we have

m+1

2 log(l+1t), m>1.

(3.19) 07 Fy ()| o + (|0 ()| o <737

IT. The solutions of the initial Hamer problem and of problem (B3] are related to each
other by the formula

(3.20) u(z,t) = 2M

We write the formal asymptotic expansion of the solution of (B.3)):

e8] 1 k+1 x
¢($at)= (0 ( ) s ’ =
2 Uity (ﬁ) TV
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Substituting this in (20) yields

(3.21)
u(x,t) =2 Zk 0 V(Y (%
L= [Y to(s)ds = 232, ()" J° wk(sms
_ Yo (y) 1 o 1 (y) 1+2 v) [Y ¢1 )ds 1

1_fi1001/)0(5)d3% 1—fu Yo(s)dst (1_f?/ Yo(s )
_ Yo(y) 1 Yo(y) [ wa(s)ds+ i (y)(1— [ wo ds)
2 (L= 7 tols) d)° =)

To avoid introducing new notation, we assume that

= 3 u i i rH an u U k+1.
(3.22) u(x,t)—’; ’“(\/g)(\/g> d u(y, 1) Z N ( )

Comparing (3:21I) and [B.22)), we see that

-+
t

7 Yo(y) and w S, (s
(3.23) “0(9)—21_f300¢0(5)ds d u(y) = 2dyL—fy Yo ) ]

In the automodel variables (y,t), the second term of the formal asymptotics for the
solution of Hamer’s equation satisfies
1

(3.24) —0(y) = 5yvy(y) + v(y)uoy (y) + wo(y)vy(y) = vyy(y)-
A direct calculation shows that the function u(y) = %uo(y) is a solution of equation
B.29).

Another linearly independent solution of ([B.24)) can be sought in the form v(y) =
u1(y)w(y). Plugging v(y) in (B24) and putting w, = s, we arrive at the equation

1 ~ ~ ~

(3.25) (= v ) +uwo(y)in(y) — 2, () ) (y) = W (y) 2, (v).
The following function solves ([B.28]) (up to a factor):

2

1
— e T Juo(y) dy
»(y) =e *+ = e .
(y) 20
Since ]
1 2
woly) = 07w T
1— Ao (%)
where ol
Ag=—7"""— and @ is the Laplace function,
O T Mo (ho) and ®(y) is the Laplace function
we have ,
/ Uo(S) ds = —210g (1 —Ao(bo(%))
Finally,
_y- 1 Y -2
= e~ 1—Ag®Py( ==
) = e g (1= A0t (7))
Since

mwﬁﬁﬁﬂm@rm—mmﬁwwﬂw~§ ly] = oo,
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the second linearly independent solution of (324 behaves at infinity as a power function.
Thus, up to a factor, the exponentially localized formal solution of equation ([B:24]) looks
like this:

o Yo(y)
(3.26) T ly) = Zdy[l_fy e }

Comparing of ([3:23) with (B:26]), we see that

0(y) (Byo(y) — ¥1(9)) + () <w0<y> -/

— 00

Y

01 (s) ds> = 0.

Put x(y) = vo(y) — [¥_¥1(s) ds. Since 1o(y) = —dyp0(y), we have

9y (x/e0)(y) =0, y € (—o0,00).
so that the function x/¢q is a constant. Since (x/po)(—o00) = 0, it follows that ¥y (y) =
J? . ¥1(s)ds. Hence, ui(y) in B23) coincides with @y (y) in (B:20).
ITI. Recall that the leading term o(x,t) of the solution v (x,t) of problem ([B.3]) coin-
cides with the function (o(x,t) (see ([LF])).

We write ¢(z,t) (see 23), (Z4), and BI8)) in the form
(1) = ((2,t) + 0. F () (1)

= Go(@, 1) +70(z, 1) + o Fi() (2, 8) + 0 F(¢) (2, 8) + O Fo(¢)

=o(z,t) + 1z, t) + 61(x, t),
where e
(327) et = ( otk + [ bl dr) 2,Golx 1),
and d1(z,t) has the form .

O a.0) + 0, Fa(0)(a.0) + 0sGoort) [ [ ) dar

(see ([Z0) and ([BI9)) and satisfies the estimates

(3.28) 10m81 (2, 8) ||z < Ct 5~ "2 log(1+1t), m >0,

(3.29) H [ ; niw )|

We represent the difference u(x,t) — uo(x,t) with ug(z,t) as in (I7) in the form
u(z,t) — ug(z, t)
211)0(15,3:) J5 do(s,t)ds + 0o(x,t) (1 — [ tho(s,t)ds)
oz, t)(1— [* s7t)d)
Yo(z,t) [T bi(s,t)ds 4+ 1(z, 1) (1= [T wo(s,t)ds)
o(z,t (l—fac o ( s,t)ds)
+21/)0(3:,t) [F0u(s,t)ds+ 01 (z,t) (1 — [7__ to(s,t)ds)
o(,t) (1 - f_oo Po(s,t) ds)
o) [ JE (s, t)ds } 1— [% wo(s,t)ds
(

< Ct ilog(l+1).

Oz [ (1— [7_wo(s,t)ds) o(,t)
9 ffoo 01(s,t)ds 1-— ffoo Yo(s,t)ds
* 28_50 {(1 — 7 wo(s, t) dS)] o(z,t)
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Here 6o (z,t) = ¥(x,t) — o(z,t). Put

o ffoo (s, t)ds
wle )_Z_{U—IZJM&ﬂ%)’

Ox
where ¢ (z,t) is as in (827). Then
’U,(I7 t) - Uo(.I, t) - ul(x7 t)

9 [( Jo di(s, t)ds }1—]’””00%(3,75)013

(3.30) T T0x (1= [T do(s,t) ds) o(z,t)
0 Jlotr(stids 1JZ do(st)ds
+2%[(1—ff001/)0(8,t) ds)] o(x,t) = Ji(z, 1) + Loz, 1).
Since N
/_Oo Yo(s,t) ds = My(ho) n \/me_i_t ds < Mo (ho)
and
Mo(hg) =1 — e~ 2Mo(0)  (see (3.3)),
we have

1- / wo(s,t) ds>1— MO(hO) = e_%MD(UD) > 0.

Combining this with (2I]), we see that the denominator in ([330) is bounded from below.

To estimate the function 9% (u(t) —ug(t)—u1(t)) in L?(R), we start with considering the
derivative of the first summand Ji(z,t) in B30). Estimates (828)) and ([3:29) obtained
earlier allow us to conclude that

T k xT
ok {%/10(95,15) / 51(s,t)d ] <CY 0ol )05 [ 6i(s,t) ds
—00 L2 .70 —00 L2
k k
<> |93 (@, )] - |0 / 51(s,t) <CY tTaTETETE log(14 1)
=0 L =0
=t i log(1 +1t)
and
’8 {61:101%(1—/ Yo(s,t)d )}
k
SCZ 8]51(£Et <1—/ wost )
=0 L?
< Ct_Z_Tlog(l—i—t —|—ZH8351 x,t) HL2 ok 3/ Yo(s,t)ds
§=0 Lee
k +2
<ON i F log(l+ 0t < Ot i log(1 + 1),
7=0
Thus,
ot o)1= [ wnlsyas) +unten) [ ais0ds
(3.31) —00 —o0 L2

< Ct i log(1 + t).
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The first summand Jy (z,t) in (830) can be written as u(x,t)/v(x,t), where u(x,t) is
the expression in the square brackets in [B31]), and v(z,t) is the product of p(z,t) and
(1- ffoo Yo(s,t)ds). Differentiating the relation

w(x,t) = Jy(z, t)v(z,t)
with respect to x, we get
0k A0,

(3.32) . ol o
< Haxﬂ(x’t)HLQ+Z’|69chl(xvt)”L2||ax Jz/(x,t)HLoo Hl/V(‘T’t)HLoc'

j=0
In B32), for all j =0,...,k — 1 we have
J05in(e. o)) < 01
and
189 (e, 1) Lo < CEE77F log(1 +1).
Assuming that
18371 (2,8)|| o < CE T~ F log(1+18), j=0,....k—1,
for j = k we arrive at the inequality
(3.33) |88 Ty (2, 0)|| o < CEHF log(1+1), t2>1.
The second summand Jo(z,t) can be written in the form of the product of

Wi (2, t) (1= [ tbo(s,t)ds) + vo(z,t) [F_wi(s,t)ds

(339 0 7 b0, ds) () = Sl
and
(3.35) Jooodols,ds Joa (2, 1).

(1 — ffoo Po(s,t) ds)

The derivative of the first summand in the numerator of the ratio Jo;(x,t) has the form

ok <1/)1(x, t) <1 - /; Yo(s,t) ds>)
k—1

= (1= [ ntesnyds )obstet) — 3 obn(e. 00k ol

ok {wl(a:,t)(l — /; Yo(s,t) ds)]

Therefore,

Loc
k—1
< C||okypi(z, b)) +OZ 0201 (2, 1) ||, o |05 0o (2, 1) || o
7=0
k—1
<Ot 3 4 CZt—a—%t—ﬁ — ot
j=0

It is easy to check that

‘ o (wow) [ OO (s, 1) ds>

Lo
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Next, using induction as before, for the first ratio Jo1 (2, t) in (3:34) we obtain the estimate
|0% J21 (t)
The numerator of the second ratio Joo(x,t) in ([B:35) satisfies the inequality

+

o < O

o [ asnas| corih
—o0 L2
Using induction, we prove that
xT
‘6’“{ J= . do(s,t)ds } it
(1 - f o (s, t) ds) -
As a result,
~ j —j .
(3.36) 08 Ta(x,0)]| . < CY 1 E AT <ot
§=0

Thus, estimates (333)) and ([B3.30]) imply
95 (u(t) — uo(t) — us (1)) | ;. < Ct45" log(1 +1).

Now, as in Lemma [} it remains to write the function (9% (u(t) — uo(t) — ul(t)))2 in
the form of an integral with variable upper limit and apply the Cauchy-Bunyakovskil
inequality:

(0% (u(t) — uo(t) — ua(t)) ||L°°

(3.37) < C’H@k(u £) = uo(t) — wr (1) |22 05 (u(t) = wo () — wr (8)]| 3
< Ct~ log(l +1t), t>1.
The theorem is proved. O
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