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A REMARK ON THE REPRODUCING KERNEL THESIS

FOR HANKEL OPERATORS

S. TREIL

Abstract. A simple proof is given of the so-called reproducing kernel thesis for
Hankel operators.

Notation

:= equal by definition;

C the complex plane;

D the unit disk, D := {z ∈ C : |z| < 1};
T the unit circle, T := ∂D = {z ∈ C : |z| = 1};
pf(n) Fourier coefficient of the function f , pf(n) := (2π)−1

∫
T
f(z)z−n |dz|;

Lp = Lp(T) Lebesgue spaces with respect to the normalized Lebesgue measure
(2π)−1|dz| on T;

Hp Hardy spaces, Hp := {f ∈ Lp(T) : pf(n) = 0 ∀n < 0};

H2
− H2

− := L2(T)�H2 = {f ∈ L2(T) : pf(n) = 0 ∀n ≥ 0};
Hp(E) vector-valued Hardy spaces with values in a separable Hilbert space E;

H2
−(E) vector-valued H2

−;

P+, P− orthogonal projections onto H2 and H2
−, respectively;

‖ · ‖, · norm; when dealing with vector-valued functions we use the symbol ‖ · ‖
(usually with a subscript) for the norm in a function space, while ·
is used for the norm in the underlying vector space. Thus, for a vector-
valued function f , the symbol ‖f‖2 denotes its L2-norm, but the symbol
f stands for the scalar-valued function whose value at a point z is the
norm of the vector f(z).

§1. Introduction and main results

A Hankel operator is a bounded linear operator Γ : H2 → H2
− such that its matrix

with respect to the standard bases {zn}n≥0 and {szn+1}n≥0 in H2 and H2
− (respectively)
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depends on the sum of indices, i.e., has the form {γj+k+1}∞j,k=0. If

ϕ− := Γ1 =

∞∑
k=1

γkszk, z ∈ T,

then the action of Γ on polynomials f is given by

(1.1) Γg = P−(ϕ−f).

The function ϕ− is called the antianalytic symbol of the operator Γ.
In this paper we shall also be dealing with the vectorial Hankel operators Γ: H2 →

H2
−(E), where E is an auxilary (separable) Hilbert space. In this case, the entries γk are

operators γk : C → E and are naturally identified with vectors in E. Then the symbol
ϕ− is a vector-valued function in H2

−(E).
Note that in (1.1) we can replace ϕ− by ϕ ∈ L2(T → E) such that ϕ − ϕ− ∈ H2(E)

(so pϕ(n) = γn for all n < 0). Such a function ϕ is called a symbol of the operator Γ.
Unlike the antianalytic symbol ϕ−, the symbol ϕ is not unique. Note also that for any
symbol ϕ of the Hankel operator Γ we have ‖Γ‖ ≤ ‖ϕ‖∞, and the famous Nehari theorem
states that one can find a symbol ϕ such that ‖Γ‖ = ‖ϕ‖∞.

In this paper we deal with the so-called (pre)Hankel operators (a non-standard term),
which are not assumed to be bounded, but only defined on polynomials (and have the
Hankel matrix {γj+k+1}∞j,k=0). In this case, the anianalytic symbol ϕ− is also in H2

−,

and the action of Γ on polynomials is still given by (1.1). Using uniform approximation
by polynomials, we can easily show that a (pre)Hankel operator Γ can be defined on
H2 ∩ C(T) and that its action on H2 ∩ C(T) is still given by (1.1).

We recall that the normalized reproducing kernel kλ, λ ∈ D, of H2 is given by

kλ(z) :=
(1− |λ|2)1/2

1− sλz
,(1.2)

and that ‖kλ‖2 = 1.
Our goal in this paper is to give an elementary proof of the following well-known

result.

Theorem 1.1 (Reproducing kernel thesis for Hankel operators). Let Γ be a possibly
vectorial (pre)Hankel operator such that

sup
λ∈D

‖Γkλ‖2 ≤ A < ∞.

Then Γ is bounded and ‖Γ‖ ≤ 2
√
eA.

This theorem for the scalar-valued case (with some constant C instead of 2
√
e) was

published in [1], and is widely used in the theory of Hankel operators.
The proof presented in this paper is quite elementary and involves only Green’s for-

mula: the standard proof employs the Nehari theorem, H1-BMO duality, and the fact
that the so-called Garsia norm is an equivalent norm in BMO.

While the Nehari theorem is a basic fact in the theory of Hankel operators, and the
other facts are standard and well-known results in harmonic analysis, it is still interesting
to know that none of these results is needed for the proof of the reproducing kernel thesis
for Hankel operators (Theorem 1.1).

Finally, let us emphasize that while the target space of our operator is a vector-valued
space H2

−(E), the domain is the usual scalar-valued H2 (more precisely, initially a dense
subset of H2). It is known that the reproducing kernel thesis fails for operator-valued
Hankel operators: while the thesis is true for Hankel operators acting from H2(Cd) to
H2

−(E), the constant grows logaritmically in d, see, e.g., [3].
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§2. Proof of the main result

We fix some notation. For f ∈ L1(T) and z ∈ D, let f(z) denote the Poisson (har-
monic) extension of f at the point z. Thus, for ϕ ∈ L2(T → E) the symbol ϕ(z) 2 is
the square of tne norm (in E) of the harmonic extension of ϕ at the point z ∈ D, and
ϕ 2(z) is the harmonic extension of ϕ 2

∣∣
T
at z.

2.1. Hankel operators and reproducing kernels. We recall that the reproducing
kernel Kλ, λ ∈ D, of the Hardy space H2 is given by

Kλ(z) =
1

1− sλz
.

It is called the reproducing kernel because

(f,Kλ) = f(λ)(2.1)

for all f ∈ H2. Note that, since for each λ ∈ D the function Kλ is bounded, a simple
approximation argument implies that the reproducing kernel identity (2.1) is valid for
all f ∈ H1.

Using the reproducing kernel property (2.1) with f = Kλ, we get

‖Kλ‖22 = (Kλ,Kλ) = (1− |λ|2)−1,

so the normalized reproducing kernel kλ := ‖Kλ‖−1
2 Kλ is given by (1.2).

The following lemma is well known, it can be found, for example, in [1] (in an implicit
form). We present it here only for the reader’s convenience.

Lemma 2.1. Let Γ be a (pre)Hankel operator, and let ϕ ∈ H2
−(E) be its antianlytic

symbol ϕ =
∑∞

k=1 γkszk (to simplify the notation we skip the subscript “ −” and use ϕ
instead of ϕ−). Then for all λ ∈ D we have

‖Γkλ‖22 = ϕ 2(λ)− ϕ(λ) 2.

To prove the lemma we need the following well-known fact.

Lemma 2.2. Let ϕ ∈ H2
−(E). Then, for all λ ∈ D,

P+(ϕkλ) = kλϕ(λ).

Proof. First, we prove this lemma for scalar-valued ϕ ∈ H2
−.

Let f := P+(ϕKλ), where Kλ is the reproducing kernel for H2. Any f ∈ H2 can be
decomposed as

f = cKλ + f0,

where f0(λ) = 0 and c = (1− |λ|2)f(λ); note that Kλ ⊥ f0.
First we show that f0 = 0 for f = P+(ϕKλ). Observe that sϕf0 ∈ H1 because

sϕ, f0 ∈ H2, so that we can use the reproducing kernel property (2.1) to show that

‖f0‖22 = (f0,P+(ϕKλ)) = (f0, ϕKλ) = (sϕf0,Kλ) = (sϕf0)(λ) = Ęϕ(λ)f0(λ) = 0.

On the other hand,

(Kλ, f) = (Kλ,P+(ϕKλ)) = (Kλ, ϕKλ) = (sϕKλ,Kλ) = Ęϕ(λ)Kλ(λ) = Ęϕ(λ)(1− |λ|2)−1.

Therefore,
(P+(ϕKλ),Kλ) = ϕ(λ)(1− |λ|2)−1 = ϕ(λ)‖Kλ‖22,

whence
P+(ϕKλ) = ϕ(λ)Kλ.

Multiplying this identity by (1− |λ|2)1/2, we get the conclusion of the lemma for scalar-
valued ϕ.
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The general vector-valued case can easily be obtained from the scalar-valued case by
fixing an orthonormal basis {ek}k and applying the scalar-valued result to the coordinate
functions ϕk, ϕk(z) = (ϕ(z), ek)E . �
Proof of Lemma 2.1. The function ϕkλ can be written as the orthogonal sum

ϕkλ = P+(ϕkλ) + P−(ϕkλ),

so
‖Γkλ‖22 = ‖P−(ϕkλ)‖22 = ‖ϕkλ‖22 − ‖P+(ϕkλ)‖22.

Observing that

|kλ(z)|2 =
1− |λ|2
|1− sλz|2

,

we can write

‖ϕkλ‖22 =
1

2π

∫
T

ϕ(z) 2|kλ(z)|2 |dz| = ϕ 2(λ).

By Lemma 2.2, we have P+(ϕkλ) = ϕ(λ)kλ, whence ‖P+(ϕkλ)‖22 = ϕ(λ) 2. �
2.2. Green’s formula and Littlewood–Paley identities. We need several well-
known facts.

The first is Green’s standard formula for the unit disk.

Lemma 2.3. Let U ∈ C2(D) ∩ C(sD). Then

1

2π

∫
T

U(z) |dz| − U(0) =
1

2π

∫
D

ΔU(z) ln
1

|z| dA(z).

Applying this lemma to U(z) = f(z) 2, f ∈ H2(E), and observing that ΔU =
4∂∂̄U = 4 f ′ 2, we get the following Littlewood–Paley identity.

Lemma 2.4. Let f ∈ H2(E). Then

‖f‖22 =
2

π

∫
D

f ′(z) 2 ln
1

|z| dA(z) + f(0) 2.

Of course, first we have to apply Lemma 2.3 to f(rz) 2, r < 1, and then take the
limit as r → 1.

The following lemma is also well known, see for example Lemma 6 in Appendix 3 of
the monograph [4].

Lemma 2.5. Let u be a C2 subharmonic function (Δu ≥ 0) in the unit disk D, and let
0 ≤ u(z) ≤ 1 for all z ∈ D. Then, for all f ∈ H2(E),

1

2π

∫
D

Δu(z) f(z) 2 ln
1

|z| dA(z) ≤ e‖f‖22.

Proof. Replacing u and f by u(rz) anf f(rz), r < 1, and then taking the limit as r → 1,
we may always assume without loss of generality that u and f are continuous up to the
boundary of D, so that Green’s formula (Lemma 2.3) applies to U(z) = eu(z) f(z) 2.
Direct computation using the fact that Δ = 4∂∂̄ shows that

Δ
(
eu(z) f(z) 2

)
= eu(Δu) f 2 + 4eu (∂u)f + ∂f 2 ≥ (Δu) f 2.

Then denoting dμ(z) = (2π)−1 ln |z|−1 dA(z) and using Green’s formula (Lemma 2.3),
we can write

1

2π

∫
D

Δu f 2 dμ ≤
∫
D

Δ
(
eϕ f 2

)
dμ =

1

2π

∫
T

eϕ f 2 |dz| − eϕ(0) f(0) 2

≤ e
1

2π

∫
T

f 2 |dz| = e‖f‖22. �
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2.3. Proof of Theorem 1.1. By homogeneity, it suffices to prove the theorem only for
A = 1, so we assume that

sup
λ∈D

‖Γkλ‖2 ≤ 1.

We introduce some notation. Fix an orthonormal basis {ek}k in E; for a vector
x =

∑
k xkek ∈ E (of course xk = (x, ek)E), let sx be the “complex conjugate” vector,

sx :=
∑

k sxkek. So for the function h with values in E the symbol sh denotes the func-
tion obtained by taking the complex conjugates of the coordinate functions of h (the
orthonormal basis {ek}k is assumed to be fixed).

Let ϕ be the antianalytic symbol of the Hankel operator Γ, so that Γ = Γϕ. Recall
that for z ∈ D we use ϕ(z) to denote the harmonic extension of ϕ to the unit disk; then
sϕ ∈ H2(E).

It suffices to estimate the operators Γϕr
, ϕr(z) := ϕ(rz), r ∈ (0, 1), so without loss of

generality we may assume that sϕ is analytic in some disk larger than D.
We want to estimate

(Γf, sg) =
1

2π

∫
T

(ϕf, sg)E |dz|, f ∈ H2, sg ∈ H2
−(E) (equivalently, g ∈ zH2(E)).

Since it suffices to check the boundedness on a dense set, we may assume that f and g
are polynomials, so that we can apply Green’s formula. Since f, g and sϕ are analytic in
D and Δ = 4∂∂̄, we get ∂̄(ϕf, g)E = (f(∂̄ϕ), g)E and

Δ(ϕf, g)E = 4
(
(f(∂̄ϕ), ∂̄sg)E + (f ′(∂̄ϕ), sg)E

)
= 4

(
(f(∂̄ϕ), sg′)E + (f ′(∂̄ϕ), sg)E

)
.

Therefore, using Green’s formula (Lemma 2.3) and the fact that the function (ϕf, sg)E
vanishes at the origin, we obtain

(Γf, sg) =
1

2π

∫
T

(ϕf, sg)E |dz| = 2

π

∫
D

(
(f(∂̄ϕ), sg′)E + (f ′(∂̄ϕ), sg)E

)
ln

1

|z| dA(z).

We can estimate by Cauchy–Schwarz:∣∣∣∣ 2π
∫
D

(f(∂̄ϕ), sg′)E ln
1

|z| dA(z)

∣∣∣∣
≤

(
2

π

∫
D

(∂̄ϕ) 2|f |2 ln 1

|z| dA(z)

)1/2 (
2

π

∫
D

g′ 2 ln
1

|z| dA(z)

)1/2

.

By Lemma 2.4,

(2.2)
2

π

∫
D

g′ 2 ln
1

|z| dA(z) ≤ ‖g‖22.

To estimate the first integral, we define u(z) = 1 + ϕ(z) 2 − ϕ 2(z), and observe that
Δu = 4 ∂̄ϕ 2. From the assumption supλ∈D

‖Γkλ‖2 ≤ 1 and Lemma 2.1 it follows that
0 ≤ u(z) ≤ 1, z ∈ D. Therefore, by Lemma 2.5,

(2.3)
2

π

∫
D

(∂̄ϕ) 2|f |2 ln 1

|z| dA(z) ≤ e‖f‖22.

Gathering estimates (2.2) and (2.3) together, we get
∣∣∣∣ 2π

∫
D

(
f(∂̄ϕ), sg′

)
E
ln

1

|z| dA(z)

∣∣∣∣ ≤ √
e‖f‖2‖g‖2.
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Similarly,∣∣∣∣ 2π
∫
D

(f ′(∂̄ϕ), sg)E ln
1

|z| dA(z)

∣∣∣∣
≤

(
2

π

∫
D

(∂̄ϕ) 2 g 2 ln
1

|z| dA(z)

)1/2 (
2

π

∫
D

|f ′|2 ln 1

|z| dA(z)

)1/2

.

Interchanging f and g in the above argument, we get the estimate∣∣∣∣ 2π
∫
D

(
f ′(∂̄ϕ), sg

)
E
ln

1

|z| dA(z)

∣∣∣∣ ≤ √
e‖f‖2‖g‖2,

whence |(Γf, sg)| ≤ 2
√
e‖f‖2‖sg‖2. �

§3. Concluding remarks

The main idea of using only Green’s formula (and Lemma 2.5) goes back to [5], where
the reproducing kernel thesis for the Carleson embeding theorem for the disk and for the
unit ball in Cn was proved by using a similar technique; for the disk the estimate

√
2e

for the norm of the embedding operator1 was obtained, see Theorem 0.2 there.
However, the proof in the present paper is much simpler than in [5]. Namely, the proof

in [5] required some not completely trivial comutations and estimates; in the present
paper all the computations (modulo known facts such as Lemmas 2.1–2.5) can be done
in one’s head.

Using the estimate (mentioned above) for the Carleson embedding theorem from [5],

B. Jacob, J. Partington, and S. Pott obtained in [2] the estimate 4
√
2e for the reproducing

kernel thesis for Hankel operators. Their proof also involved Green’s formula, but the
proof presented here, besides giving a better constant, is significantly simpler and much
more streamlined (in particular, because it does not employ the result from [5]).

Also, Theorem 1.1 here can be used to give an explicit constant in the reproduc-
ing kernel thesis for the so-called generalized embedding theorem, described below in
Section 3.1, and in particular for the Carleson emebedding theorem, although for the
Carleson embedding theorem it gives a constant worse than that obtained in [5].

3.1. Generalized embedding theorem. Let θ ∈ H∞ be an inner function, and let
Kθ be the corresponding backward shift invariant subspace

Kθ := H2 � θH2.

It is well known (see, e.g., the projection lemma in [4, p. 34]) and is easy to prove that
the orthogonal projection Pθ from H2 onto Kθ is given on the unit circle T by

(3.1) Pθf = f − θP+(sθf) = θP−(sθf), f ∈ H2.

Let (X , μ) be a measure space, and let θλ, λ ∈ X be a measurable family of inner functions
(meaning that the function (z, λ) 
→ θλ(z) is measurable). Identity (3.1) implies that the
projection-valued function λ 
→ Pθλ is measurable (in the weak, and so in the strong
sense), so one can ask under what conditions on the measure μ the following generalized
embedding theorem

(3.2)

∫
X
‖Pθλf‖2H2 dμ(λ) ≤ C‖f‖2H2 , f ∈ H2,

holds true.

1Compare with 2
√
e for Hankel operators.



A REMARK ON THE REPRODUCING KERNEL THESIS 485

Note that if θ is an elementary Blaschke factor,

θ(z) =
z − λ

1− sλz
,

then the corresponding space Kθ is spanned by the reproducing kernel kλ, and

Pθf = (f, kλ)kλ = (1− |λ|2)1/2f(λ)kλ,
so ‖Pθf‖22 = (1− |λ|2)|f(λ)|2.

Therefore, for X = D and θλ(z) = (z − λ)/(1− sλz), λ ∈ D, estimate (3.2) reduces to
the classical Carleson embedding theorem, and (3.2) is true if and only if the measure
(1− |λ|2) dμ(λ) is Carleson.

Define a Hankel operator Γ: H2 → H2
−(L

2(μ)) by

Γf(z, λ) = Γ
Ďθλ
f(z) = P−( sθλf)(z), f ∈ H2, z ∈ T, λ ∈ D.

From (3.1), it follows that
‖Γf( · , λ)‖2 = ‖Pθλf‖2,

showing that (3.2) is equivalent to the estimate ‖Γ‖ ≤
√
C.

But for the Hankel operators the reproducing kernel thesis holds, and Theorem 1.1
implies that if ∫

D

‖Pθλka‖22 dμ(λ) ≤ A‖f‖22, a ∈ D,

then (3.2) is true with C = 4eA.
The fact that the reproducing kernel thesis is valid for the generalized embedding

theorem (with some constant) was proved in [6]; the above argument connecting (3.2) and
the boundedness of the Hankel operator Γ is essentially taken from there. Theorem 1.1
in the present paper simly gives us an explicit constant.

It also gives a simpler proof of Theorem 0.2 in [5] (reproducing kernel thesis for the
Carleson emebedding theorem), but with a worse constant (4e vs 2e in [5]2).
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