
Algebra i analiz St. Petersburg Math. J.
Tom 27 (2015), � 2 Vol. 27 (2016), No. 2, Pages 327–331

http://dx.doi.org/10.1090/spmj/1389
Article electronically published on January 29, 2016

A SIMPLE EMBEDDING THEOREM FOR KERNELS OF TRACE

CLASS INTEGRAL OPERATORS IN L2(Rm).

APPLICATION TO THE FREDHOLM TRACE FORMULA

M. SH. BIRMAN

Easy reading for professionals

Abstract. The present paper by Mikhail Shlemovich Birman was written in 1989
and circulated among specialists as a preprint published in English by Linköping Uni-
versity (the original manuscript of M. Sh. Birman was translated by A. A. Laptev). In
this paper a transparent approach to the proof of the Fredholm formula for the traces
of integral operators of trace class was found. By communication with D. R. Yafaev
we knew that M. Sh. Birman did not publish this paper because he discovered that
a similar construction was used in the book by M. A. Shubin on pseudodifferential
operators. This is so, but the presentation in the present text is much more general,
clear, and detailed. In this connection, and also in connection with the renewed in-
terest to integral formulas for traces of integral operators, the editorial board decided
to publish this paper under the heading “Easy Reading for Professionals”.

The paper is based on a talk given by the author at a seminar organized by Prof.
L. Hedberg in Linköping University, 5 June 1989.

1. Our purpose in this paper is mainly pedagogical. We would like to eliminate one
common misunderstanding related to the application of Fredholm’s classical formula

(1)
∑
n

λn(K) =

∫
K(x, x) dx

to arbitrary operators of trace class S1 in L2(Rm). Here the λn(K) are the eigenvalues
of an operator K. If K ∈ S1, then, by the well-known Lidskĭı theorem (see [1, 2]), the
left-hand side in (1) coincides with the functional TrK, i.e., with the “matrix trace” of
the operator K. Thus, it suffices to check the identity

(2) TrK =

∫
K(x, x) dx, K ∈ S1,

where K is the kernel of the operator K. This can be written as an integral operator:
for a.e. x ∈ R

m we have

(3) (Ku)(x) =

∫
K(x, y)u(y) dy.

However, in formula (3), one only needs to know the value of the kernel K almost every-
where in R

2m with respect to Lebesgue measure. The “diagonal” x = y is of zero measure
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in R
2m. This fact forces us to interpret formula (2) more carefully if the kernel is not

continuous. It turns out (see Subsection 4) that if K∈S1, then after the change of vari-
ables y = x+ a the kernel K becomes a continuous function of a, with values in L1(Rm)
with respect to x. This “embedding theorem” removes the difficulty in understanding
formula (2).

2. Let H be a separable Hilbert space, let Sp = Sp(H), p = 1, 2, be (respectively)
the trace class and the class of Hilbert–Schmidt operators in H, and let ‖ · ‖p be the
corresponding norm in Sp. If K ∈ S1, then there exists a (nonunique) representation

(4) K = LM, L,M ∈ S2.

If (4) is satisfied, then

‖K‖1 ≤ ‖L‖2‖M‖2,(5)

‖K‖1 = min
L,M

‖L‖2‖M‖2 (K = LM).(6)

We mention the following elementary result.

Proposition. Let S̃2 (⊂ S2) be set dense in S2. Then the set S̃1 = {K : K = LM,L ∈
S̃2,M ∈ S̃2} is dense in S1.

Proof. Indeed, inequality (5) reduces to the estimate

‖K − K̃‖1 = ‖(L− L̃)M + L̃(M − M̃)‖1
≤ ‖M‖2‖L− L̃‖2 + ‖L̃‖2‖M − M̃‖2. �

3. First, we consider a situation more general than in Subsection 1. Let H = L2(X,μ),
where X is a separable space with measure μ. We shall also need the tensor square of
the space H, i.e., space L2(Ω, ν), where Ω = X2, ν = μ× μ. It is well known that every
operator K ∈ S2 can be written as an integral operator:

(7) (Ku)(x) =

∫
X

K(x, y)u(y) dμ(y),

where K ∈ L2(Ω, ν). Moreover, formula (7) gives an isometric isomorphism of the space
S2(H) onto L2(Ω, ν):

(8) ‖K‖22 =

∫∫
X2

|K(x, y)|2 dμ(x)dμ(y).

In terms of kernels, formula (4) means that

(9) K(x, y) =

∫
X

L(x, z)M(z, y) dμ(z).

In order to define the operator K, it suffices to know the kernel K ∈ L2(Ω, ν) (ν)-a.e.
on Ω. At the same time, if K ∈ S1, then the kernel K is defined by formula (9) for
(μ)-a.e. x ∈ X and for (μ)-a.e. y ∈ X, and the exceptional sets of μ-measure zero are
independent of each other. Such a kernel (a “representative” of the equivalence class
K ∈ L2(Ω, ν)) will be called a regular kernel of the operator K ∈ S1; we denote it by K0.
(For the relationship of the regular kernel with scattering theory, see [3].) Note that the
regular kernel K0(x, y) is already defined (μ)-a.e. on the diagonal x = y. Moreover, the
formula

(10) TrK =

∫
X

K0(x, x) dμ(x)
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is valid. Indeed, denoting M∗(x, y) = M(y, x), we have

TrK = TrLM = (L,M∗)L2(Ω,ν) =

∫∫
X2

L(x, z)M(z, x) dμ(x) dμ(z),

which coincides with (10).
It seems that our goal is reached. However, under this approach, the definition of the

canonical (regular) representative for K ∈ L2(Ω, ν) needs the factorization (4). It would
be good to have a method for constructing K0 directly in terms of the function K. We
are able to do this for H = L2(Rm).

4. Now we assume that X = R
m, and that μ is the Lebesgue measure on R

m, i.e.,
H = L2(Rm). Put

(11) K̂(x, a) = K(x, x+ a), x, a ∈ R
m.

The kernels K̂ and K determine each other uniquely a.e. on R
2m. If K is regularized as

in (9), then( ∫
|K̂(x, a)| dx

)2

≤
( ∫∫

|L(x, z)|2 dx dz
)( ∫∫

|M(z, x+ a)|2 dx dz
)

= ‖L‖22‖M‖22.

Combining this inequality with (4) and (6), for K ∈ S1(L
2(Rm)) we see that (using

obvious notation)

K̂ ∈ L∞(Rm
a ;L1(Rm

x )),(12)

‖K̂‖L∞(Rm
a ;L1(Rm

x )) ≤ ‖K‖1.(13)

From Subsection 2 it is clear that the set of operators with kernels of class C∞
0 (R2m) is

dense in S1(L
2(Rm)). Together with estimate (13), it allows us to replace (12) by the

stronger property

(14) K̂ ∈ C0(R
m
a ;L1(Rm

x )),

which implies that the L1(Rm)-valued function K̂(·, a) is continuous with respect to the
variable a and converges to zero as |a| → ∞. Thus, we obtain the following embedding
theorem.

Theorem. Let K ∈ S1(L
2(Rm)), let K be the corresponding kernel from (7), and let K̂

be defined as in (11). Then relation (14) and estimate (13) hold true.

The natural identification of an operator of class S1 and its kernel (11) allows us to
write (13) and (14) in the form of an embedding:

(15) S1(L
2(Rm)) ↪→ C0(R

m
a ;L1(Rm

x )).

As usual, we understand this embedding as follows: for K ∈ S1 the kernel K̂ modulo the
equivalence class with respect to Lebesgue measure on R

2m coincides with some element
of the space C0(R

m
a ;L1(Rm

x )).

Now we shall give an estimate for the modulus of continuity ωh

(
K̂;C0(R

m
a ;L1(Rm

x ))
)

of the function K̂ with respect to the variable a. Obviously,( ∫
|K̂(x, b)− K̂(x, a)| dx

)2

=

( ∫ ∣∣∣∣
∫

L(x, z) (M(z, x+ b)−M(z, x+ a)) dz

∣∣∣∣ dx
)2

≤ ‖L‖22
∫∫

|M(z, x+ b)−M(z, x+ a)|2 dx dz,

i.e.,

(16) ωh

(
K̂;C0(R

m
a ;L1(Rm

x ))
)
≤ ‖L‖2 ωh(M;L2(R2m)).
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The proof of inequality (16) shows that no uniform estimate is available for ωh(K̂) on
the unit ball in the space S1(L

2(Rm)).

5. To get (13) and (14), we used the regular value K0 for the kernel K. So, if the condi-
tions of the theorem are fulfilled, we obtain formula (10), which now can be written in
the form

(17) TrK =

∫
Rm

K0(x, x) dx =

∫
Rm

K̂(x, 0) dx.

By continuity, the value K̂(x, 0) is defined for a.e. x in terms of the kernel K.
Now, let the operator Γa be a “shift by a”, i.e., Γa : u(y) → u(y−a). Then K(x, y+a)

is the kernel of the operator KΓa. If K ∈ S1, then from (17) we obtain

(18) TrKΓa =

∫
Rm

K0(x, x+ a) dx =

∫
Rm

K̂(x, a) dx.

Now, if a → 0, then formula (18) becomes the same as (17). To calculate TrK, we can
use any averaging process, which, after taking the limit, gives us the value of a continuous
function at some fixed point. In particular, taking the usual mean value over the ball
|a| ≤ h immediately leads to a natural and efficient expression:

TrK = lim
h→0

1

κmhm

∫
|a|≤h

da

∫
Rm

K̂(x, a) dx

= lim
h→0

1

κmhm

∫∫
|y−x|≤h

K(x, y) dx dy;

(19)

here κm is the volume of the unit ball in R
m. It is easy to write other versions of efficient

expressions for TrK.

6. The considerations of Sections 4 and 5 are automatically extended to the case where

H = L2(Rm;H),

H being an auxiliary Hilbert space, dimH ≤ ∞. Then in formula (3) the kernel K is
already an operator-valued function: K(x, y) ∈ S2(H) for a.e. (x, y) ∈ R

2m. Identity (8)
becomes the formula

‖K‖22,H =

∫∫
R2m

‖K(x, y)‖22,H dx dy.

If K ∈ S1(H) and (4) is satisfied, then formula (9) (for dμ(z) = dz) retains its meaning
if the kernels L, M take their values in S2(H). It follows that K(x, y) ∈ S1(H) for a.e.

x ∈ R
m and a.e. y ∈ R

m. The kernel K̂ can still be defined by (11). Relation (14) and
estimate (13) can be replaced (respectively) by

K̂ ∈ C0

(
R

m
a ;L1(Rm

x ;S1(H))
)

and

sup
a

∫
Rm

‖K̂(x, a)‖1,H dx ≤ ‖K‖1,H.

Now formula (17) looks like this:

TrH K =

∫
(TrH K0(x, x)) dx =

∫ (
TrH K̂(x, 0)

)
dx.

An obvious modification of formula (19) can also be written.
Note that representation of an operator in this integral form with an operator-valued

kernel is often used in mathematical scattering theory (see [3, 4]).

7. The results of Sections 4–6 can be generalized to the case of the spaceH= L2(X,μ;H),
where X is a group and μ is a shift invariant measure.
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8. Great attention has previously been paid to embedding theorems of the form

W ↪→ S1(L
2(Rm)),

where W is some suitable class of functions on R
2m (class of kernels). See, e.g., [1, 5]. At

the same time, it seems that the simple embedding (15) has not been observed before.
Concerning formulas like (19), we mention that in [1] (for m = 1 and for a finite interval
[α, β]), a more complicated expression was presented:

TrK = lim
h→0

∫ β

α

Kh(x, x) dx,

Kh(x, y) =
1

4h2

∫ x+h

x−h

∫ y+h

y−h

K(x′, y′) dx′dy′.

The kernel Kh is continuous on [α, β]2.

9. The author is grateful to S. V. Kislyakov and A. A. Laptev for useful discussions.
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