Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)



Corona theorem and interpolation

Author: S. V. Kislyakov
Translated by: the author
Original publication: Algebra i Analiz, tom 27 (2015), nomer 5.
Journal: St. Petersburg Math. J. 27 (2016), 757-764
MSC (2010): Primary 30H80
Published electronically: July 26, 2016
MathSciNet review: 3582942
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $E$ be a Banach ideal space of sequences and $E’$ its order dual. By definition, $E$ verifies the corona theorem if for arbitrary bounded functions $f_j$ analytic in the unit disk $\mathbb {D}$ and such that $0<\delta \le \|\{f_j(z)\}\|_E\le 1$, there is a sequence $\{g_j\}$ of bounded analytic functions with $\sum _jf_j(z)g_j(z)\equiv 1$ and $\|\{g_j(z)\}\|_{E’}\le C(\delta )$, $z\in \mathbb {D}$. It is shown that the spaces $\ell ^p$, $1\le p<\infty$, and some more general Banach lattices verify the corona theorem.

References [Enhancements On Off] (What's this?)

  • N. K. Nikol′skiĭ, Treatise on the shift operator, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 273, Springer-Verlag, Berlin, 1986. Spectral function theory; With an appendix by S. V. Hruščev [S. V. Khrushchëv] and V. V. Peller; Translated from the Russian by Jaak Peetre. MR 827223, DOI 10.1007/978-3-642-70151-1
  • A. Uchiyama, Corona theorems for countably many functions and estimates for their solutions, Preprint, UCLA, 1980.
  • S. V. Kislyakov and D. V. Rutskiĭ, Some remarks on the corona theorem, Algebra i Analiz 24 (2012), no. 2, 171–191 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 24 (2013), no. 2, 313–326. MR 3013331, DOI 10.1090/S1061-0022-2013-01240-4
  • S. V. Kisliakov, Interpolation of $H^p$-spaces: some recent developments, Function spaces, interpolation spaces, and related topics (Haifa, 1995) Israel Math. Conf. Proc., vol. 13, Bar-Ilan Univ., Ramat Gan, 1999, pp. 102–140. MR 1707360
  • D. V. Rutsky, On $K$-closedness, BMO-regularity, and real interpolation of Hardy-type spaces, arXiv:1409.3871, 14 Nov. 2014.
  • —, Remarks on $A_p$-regular lattices of measurable functions, Algebra i Analiz 27 (2015), no. 5, 153–169. (Russian)
  • Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. II, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 97, Springer-Verlag, Berlin-New York, 1979. Function spaces. MR 540367
  • L. V. Kantorovich and G. P. Akilov, Functional analysis, 2nd ed., Pergamon Press, Oxford-Elmsford, N.Y., 1982. Translated from the Russian by Howard L. Silcock. MR 664597
  • G. Ja. Lozanovskiĭ, Certain Banach lattices, Sibirsk. Mat. Ž. 10 (1969), 584–599 (Russian). MR 0241949
  • D. V. Rutskiĭ, BMO regularity in lattices of measurable functions on spaces of homogeneous type, Algebra i Analiz 23 (2011), no. 2, 248–295 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 23 (2012), no. 2, 381–412. MR 2841677, DOI 10.1090/S1061-0022-2012-01201-X
  • D. V. Rutsky, Corona problem with data in ideal spaces of sequences, arXiv:1507.03798.

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 30H80

Retrieve articles in all journals with MSC (2010): 30H80

Additional Information

S. V. Kislyakov
Affiliation: St. Petersburg Branch, Steklov Institute of Mathematics, Russian Academy of Sciences, Fontanka 27, St. Petersburg 191023, Russia; Department of Mathematics and Mechanics, St. Petersburg State University, Universitetskiĭ pr. 28, Staryi Petergof, St. Petersburg 198504, Russia

Keywords: Corona theorem, lattice of measurable functions, $\mathrm {BMO}$-regularity
Received by editor(s): June 30, 2015
Published electronically: July 26, 2016
Additional Notes: Supported by RFBR, grant no. 14-01-00198
Article copyright: © Copyright 2016 American Mathematical Society