Remarks on $\mathrm {\mathbf A}_p$-regular lattices of measurable functions

Author:
D. V. Rutsky

Translated by:
the author

Original publication:
Algebra i Analiz, tom **27** (2015), nomer 5.

Journal:
St. Petersburg Math. J. **27** (2016), 813-823

MSC (2010):
Primary 42B20; Secondary 46B42

DOI:
https://doi.org/10.1090/spmj/1418

Published electronically:
July 26, 2016

MathSciNet review:
3582945

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A Banach lattice $X$ of measurable functions on a space of homogeneous type is said to be $\mathrm {A}_p$-regular if every $f \in X$ admits a majorant $g \geq |f|$ belonging to the Muckenhoupt class $\mathrm {A}_p$ with suitable control on the norm and the constant. It is well known that the $\mathrm {A}_p$-regularity of the order dual $X’$ of $X$ implies the boundedness of the Hardy–Littlewood maximal operator on $X^{\frac 1 p}$ for $p > 1$ (equivalently, the $\mathrm {A}_1$-regularity of this lattice), provided that $X’$ is norming for $X$. This result admits a partial converse and an interesting characterization: the $\mathrm {A}_1$-regularity of $X^{\frac 1 p}(\ell ^{p})$ implies the $\mathrm {A}_p$-regularity of $X’$, and for lattices $X$ with the Fatou property these conditions are equivalent to the $\mathrm {A}_1$-regularity of both $X^{\frac 1 p}$ and $\big (X^{\frac 1 p}\big )’$. As an application, an exact form of the self-duality of $\mathrm {BMO}$-regularity is obtained, the $\mathrm {A}_q$-regularity of the lattices $\mathrm {L}_{\infty }(\ell ^p)$ for all $1 < p,q < \infty$ is established, and in many cases it is shown that the $\mathrm {A}_1$-regularity of both $Y$ and $Y’$ yields the $\mathrm {A}_1$-regularity of $Y(\ell ^s)$ for all $1 < s < \infty$, which implies the boundedness of the Calderón–Zygmund operators in $Y(\ell ^s)$.

- N. J. Kalton,
*Complex interpolation of Hardy-type subspaces*, Math. Nachr.**171**(1995), 227–258. MR**1316360**, DOI 10.1002/mana.19951710114 - S. V. Kisliakov,
*Interpolation of $H^p$-spaces: some recent developments*, Function spaces, interpolation spaces, and related topics (Haifa, 1995) Israel Math. Conf. Proc., vol. 13, Bar-Ilan Univ., Ramat Gan, 1999, pp. 102–140. MR**1707360** - Greg Knese, John E. McCarthy, and Kabe Moen,
*Unions of Lebesgue spaces and $A_1$ majorants*, Pacific J. Math.**280**(2016), no. 2, 411–432. MR**3453978**, DOI 10.2140/pjm.2016.280.411 - Joram Lindenstrauss and Lior Tzafriri,
*Classical Banach spaces. II*, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 97, Springer-Verlag, Berlin-New York, 1979. Function spaces. MR**540367** - Josè L. Rubio de Francia,
*Linear operators in Banach lattices and weighted $L^2$ inequalities*, Math. Nachr.**133**(1987), 197–209. MR**912429**, DOI 10.1002/mana.19871330114 - D. V. Rutsky,
*Complex interpolation of $A_1$-regular lattices*, preprint, 2013, http://arxiv.org/ abs/1303.6347. - Dmitry V. Rutsky,
*$\rm A_1$-regularity and boundedness of Calderón-Zygmund operators*, Studia Math.**221**(2014), no. 3, 231–247. MR**3208299**, DOI 10.4064/sm221-3-3 - —,
*$A_1$-regularity and boundedness of Calderón–Zygmund operators*. II, preprint, 2015, http://arxiv.org/abs/1505.00518. - Elias M. Stein,
*Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals*, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR**1232192** - S. V. Kislyakov,
*On BMO-regular lattices of measurable functions*, Algebra i Analiz**14**(2002), no. 2, 117–135 (Russian); English transl., St. Petersburg Math. J.**14**(2003), no. 2, 273–286. MR**1925883** - L. V. Kantorovich and G. P. Akilov,
*Functional analysis*, 2nd ed., Pergamon Press, Oxford-Elmsford, N.Y., 1982. Translated from the Russian by Howard L. Silcock. MR**664597** - S. G. Kreĭn, Yu. Ī. Petunīn, and E. M. Semënov,
*Interpolation of linear operators*, Translations of Mathematical Monographs, vol. 54, American Mathematical Society, Providence, R.I., 1982. Translated from the Russian by J. Szűcs. MR**649411** - G. Ja. Lozanovskiĭ,
*A remark on a certain interpolation theorem of Calderón*, Funkcional. Anal. i Priložen.**6**(1972), no. 4, 89–90 (Russian). MR**0312246** - D. V. Rutskiĭ,
*BMO regularity in lattices of measurable functions on spaces of homogeneous type*, Algebra i Analiz**23**(2011), no. 2, 248–295 (Russian, with Russian summary); English transl., St. Petersburg Math. J.**23**(2012), no. 2, 381–412. MR**2841677**, DOI 10.1090/S1061-0022-2012-01201-X - —,
*Weighted Calderón–Zygmund decomposition with some applications to interpolation*, Zap. Nauch. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI)**424**(2014), 186–200; English transl., J. Math. Sci. (N.Y.)**209**(2015), no. 5, 783–791.

Retrieve articles in *St. Petersburg Mathematical Journal*
with MSC (2010):
42B20,
46B42

Retrieve articles in all journals with MSC (2010): 42B20, 46B42

Additional Information

**D. V. Rutsky**

Affiliation:
St. Petersburg Branch, Steklov Mathematical Institute, Fontanka 27, St. Petersburg 191023, Russia

Email:
rutsky@pdmi.ras.ru

Keywords:
$\mathrm {A}_p$-regularity,
$\mathrm {BMO}$-regularity,
Hardy–Littlewood maximal operator,
Calderón–Zygmund operators

Received by editor(s):
February 10, 2015

Published electronically:
July 26, 2016

Article copyright:
© Copyright 2016
American Mathematical Society