REMARKS ON A_p-REGULAR LATTICES OF MEASURABLE FUNCTIONS

D. V. RUTSKY

Abstract. A Banach lattice X of measurable functions on a space of homogeneous type is said to be A_p-regular if every $f \in X$ admits a majorant $g \geq |f|$ belonging to the Muckenhoupt class A_p with suitable control on the norm and the constant. It is well known that the A_p-regularity of the order dual X' of X implies the boundedness of the Hardy–Littlewood maximal operator on $X^{1/p}$ for $p > 1$ (equivalently, the A_1-regularity of this lattice), provided that X' is norming for X. This result admits a partial converse and an interesting characterization: the A_1-regularity of $X^{1/p}$ implies the A_p-regularity of X', and for lattices X with the Fatou property these conditions are equivalent to the A_1-regularity of both $X^{1/p}$ and $(X^{1/p})'$. As an application, an exact form of the self-duality of BMO-regularity is obtained, the A_q-regularity of the lattices $L_\infty(\ell_p)$ for all $1 < p, q < \infty$ is established, and in many cases it is shown that the A_1-regularity of both Y and Y' yields the A_1-regularity of $Y(\ell^s)$ for all $1 < s < \infty$, which implies the boundedness of the Calderón–Zygmund operators in $Y(\ell^s)$.

Introduction

Let a quasimetric space S endowed with a measure ν be a space of homogeneous type, e.g., $S = \mathbb{R}^n$ or $S = T^n$ with the Lebesgue measure, and let Ω be a σ-finite measurable space with measure μ. The generic point $\omega \in \Omega$ will be regarded as an additional variable. We consider quasinormed lattices X of measurable functions on $S \times \Omega$. For more details on lattices of measurable functions see, e.g., [11]; the definitions of most of the (standard) notions and properties can be found, e.g., in [14].

Let $p \geq 1$. A lattice X is said to be A_p-regular with constants (C, m) if for any $f \in X$ there exists a majorant $g \geq |f|$ such that $\|g\|_X \leq m\|f\|_X$ and $g(\cdot, \omega) \in A_p$ with constant C for almost all $\omega \in \Omega$, where A_p is the Muckenhoupt class (see, e.g., [9, Chapter 5]).

As was demonstrated in [4], the mere existence of majorants of class A_1 already characterizes the natural ambient space $\bigcup_{p > 1} L_p(\mathbb{T}^n) = \bigcup_{w \in \mathbb{A}_2} L_2(\mathbb{T}^n, w)$; there are also some generalizations of this result to spaces on \mathbb{R}^n and also to the Hardy classes. The A_1-regularity property, which is equivalent to the boundedness of the Hardy–Littlewood maximal operator M (see, e.g., [14] Proposition 1)), was found to be useful in the study of some properties related to the Calderón–Zygmund operators (see [14] 7 8 15 6).

The A_p-regularity property was introduced as a refinement of the following notion, which is related to the interpolation of Hardy-type spaces (see, e.g., [2]): a lattice X is said to be BMO-regular with constants (C, m) if for any $f \in X$ there exists a majorant $g \geq |f|$ such that $\|g\|_X \leq m\|f\|_X$ and $\log g(\cdot, \omega) \in \text{BMO}$ with norm of at most C for almost all $\omega \in \Omega$.

2010 Mathematics Subject Classification. Primary 42B20; Secondary 46B42.

Key words and phrases. A_p-regularity, BMO-regularity, Hardy–Littlewood maximal operator, Calderón–Zygmund operators.

©2016 American Mathematical Society
An important feature of BMO-regularity is its self-duality: under suitable assumptions a lattice X is BMO-regular if and only if its order dual lattice X' is also BMO-regular. For the first time this property was proved, apparently, in [1] for the case of super-reflexive spaces on the circle (see the remarks in the proof of [1] Theorem 5.12]). Later, it was extended in [10] to the general case of Banach lattices on the circle satisfying the Fatou property, by using real interpolation of Hardy-type spaces with an additional variable, and this generalization yielded the BMO-regularity of the lattices $L_1(\ell^q)$ (see also Corollary 6 below). Finally, in [14] an equivalent result on the divisibility of the BMO-regularity property was established by using only the real-variable techniques for lattices with the Fatou property on a space of homogeneous type.

We note that the proofs in both [10] and [14] are rather involved and rely on a fixed-point theorem. In [1] we give a simple and short proof of the self-duality of the BMO-regularity property for lattices on \mathbb{R}^n and \mathbb{T}. This argument is based on well-known results of Rubio de Francia [5]; thus, in this case everything follows from the Hahn–Banach separation theorem and the Grothendieck theorem, without using fixed-point theorems or the divisibility property.

Furthermore, the results presented below yield an exact version for the self-duality of the BMO-regularity property, which can be stated in terms of the A_p-regularity property as follows. Recall that for every $1 < p < \infty$ the BMO-regularity of a lattice X is equivalent to the A_p-regularity of the lattice X^δ for a sufficiently small $\delta > 0$ with suitable estimates (see, e.g., the remarks after [14, Definition 1]).

Theorem 1. Suppose that X is a Banach lattice of measurable functions on $S \times \Omega$ satisfying the Fatou property, and let $\alpha, \beta > 0$. The following conditions are equivalent:

1. $X^{\frac{1}{1+\alpha}}$ is $A_{\frac{1}{1+\alpha}+\beta+1}$-regular;
2. $X'_{\frac{1}{1+\alpha}}$ is $A_{\frac{1}{1+\alpha}+\beta+1}$-regular.

We note that, in general, Theorem 1 fails if either α or β is zero; see the paragraph below. Theorem 1 is a natural reformulation of Theorem 1 in [14] given in [1] below, which expresses this result rather concisely in terms of an F^α_β-regularity property introduced therein. The proof of Theorem 1 taken in complete detail is quite elementary, and it is based only on the Hahn-Banach separation theorem, without any need for either the Grothendieck theorem or a fixed point theorem.

The main property of the Muckenhoupt weights shows at once that if X' is a norming space for a lattice X (e.g., if X has either the Fatou property or an order continuous norm), then the A_p-regularity of X' implies the A_1-regularity of $X^{\frac{1}{p}}$ (see, e.g., [14, Proposition 4]). The converse is false generally: for example, if $X = L_{\infty}$, then $X^{\frac{1}{p}} = L_{\infty}$ is an A_1-regular lattice for all $1 \leq p < \infty$, but $X' = L_1$ is not A_p-regular for any p if $S = \mathbb{T}$ or $S = \mathbb{R}^n$ (see, e.g., [14, Proposition 3]). Nevertheless, we establish the following characterization whose proof is given in [2] below.

Theorem 2. Let X be a normed lattice of measurable functions on $S \times \Omega$ such that X' is a norming space for X. The following conditions are equivalent for all $1 < p < \infty$:

1. $X^{\frac{1}{p}} (p') = [X (\ell^1)]^{\frac{1}{p}}$ is A_1-regular;
2. X' is A_p-regular.

If X has the Fatou property then these conditions are also equivalent to the following.

3. Both $X^{\frac{1}{p}}$ and $(X^{\frac{1}{p}})' = X'_{\frac{1}{p}} L_1^{1-\frac{1}{p}}$ are A_1-regular.

Thus A_p-regularity of lattices is closely related to the A_1-regularity of some derived lattices. The A_1-regularity of both Y and Y' implies (and often characterizes) the boundedness of the Calderón–Zygmund operators in Y and some other interesting properties.
The following conditions are equivalent. In this regard, the following observations should be noted, which follow immediately from the equivalence of conditions 2 and 3 of Theorem \([2]\) we also make use of the fact that the \(A_{\infty}\)-regularity of a lattice is equivalent to its \(A_p\)-regularity for sufficiently large values of \(p\).

Corollary 3. Suppose that a normed lattice \(Y\) of measurable functions on \(S \times \Omega\) satisfies the Fatou property and is \(p\)-convex for some (finite) \(p > 1\). The following conditions are equivalent.

1. Both \(Y\) and \(Y'\) are \(A_1\)-regular.
2. \((Y^p)'\) is \(A_p\)-regular.

Corollary 4. Let \(X\) be a lattice of measurable functions on \(S \times \Omega\) with the Fatou property. The following conditions are equivalent.

1. \(X'\) is \(A_{\infty}\)-regular.
2. Both \(X^\delta\) and \((X^\delta)' = X^\delta L_1^{1-\delta}\) are \(A_1\)-regular for some \(0 < \delta < 1\) (equivalently, for all sufficiently small \(\delta\)).

As an interesting example, consider the following question: for which weights \(w\), is the lattice \(X = L_1(w)\) \(A_p\)-regular? We define (as in \([14]\)) a weighted lattice \(Z(w)\) to be the set \(\{w f \mid f \in Z\}\) endowed with the norm \(\|g\|_{Z(w)} = \|gw^{-1}\|_Z\). Thus, the weighted Lebesgue spaces with the “classical” weighted norm \(\|f\| = (\int |f|^p w)\frac{1}{p}\) look like \(L_p(w^{-\frac{1}{p}})\) in our notation. It is well known that in the case of \(p = 1\) the necessary and sufficient condition is \(w^{-q} \in A_q\), and such lattices \(X\) and \(X'\) are \(A_1\)-regular only simultaneously. We have already noted that with \(q = 1\) there are no \(A_p\)-regularity in the typical cases; see, e.g., \([14]\) Proposition 3]. The equivalence of conditions 1 and 3 in Theorem \([2]\) yields (after a simple computation) the following characterization (see also Proposition \([12]\) below).

Corollary 5. Suppose that \(1 \leq p \leq \infty\), \(1 < q \leq \infty\), and \(w\) is a weight. Then \(X = L_q(w)\) is \(A_p\)-regular if and only if \(w^q \in A_{q^p}\).

Theorem \([2]\) allows us to refine the BMO-regularity property of the lattices \(L_\infty(\ell^q)\), which was first established, apparently, in \([10]\) in the case of \(S = \mathbb{T}\) by using the self-duality of the BMO-regularity.

Corollary 6. The lattices \(L_\infty(\ell^q)\) on a measurable space \(S \times \Omega \times \mathbb{Z}\) are \(A_p\)-regular for all \(1 < p, q < \infty\).

It suffices to apply implication \(3 \Rightarrow 2\) of Theorem \([2]\) to \(X = L_1(\ell^q);\) the \(A_1\)-regularity of the lattices \(X^p = L_p(\ell^{q'})\) and \((X^p)' = L_{p'}(\ell^{q'})\) is well known (see, e.g., \([9]\) Chapter 2, \(\S 1.3.1\) or Corollary \([8]\) below).

Earlier, in \([14]\), §1, Proposition 10] the \(A_p\)-regularity of the lattices \(L_\infty(\ell^q)\) was only proved for \(q > 1 + \frac{1}{p}\). We mention that (at least for \(S = \mathbb{R}^n\) or \(S = \mathbb{T}\) the result of Proposition \([6]\) is sharp in the sense of the admissible values of \(p\) and \(q\): with \(q = 1\) the conclusion of Proposition \([6]\) is false for all \(p\) (see \([14]\), §1, Proposition 10]), and its falseness for \(p = 1\) and all \(q\) follows from the nonboundedness of the maximal operator on \(L_\infty(\ell^q)\) (see, e.g., \([9]\) Chapter 2, \(\S 5.2\)).

Theorem \([2]\) also has some interesting applications concerning the boundedness of operators on lattices with an additional variable. The proof of the following result is given in \([2]\) below.

Theorem 7. Let \(Y\) be a normed lattice of measurable functions on \(S \times \Omega\) satisfying the Fatou property. Suppose also that \(Y\) is \(p\)-convex with some \(p > 1\). If both \(Y\) and \(Y'\) are \(A_1\)-regular, then \(Y(\ell^s)\) is also \(A_1\)-regular for all \(1 < s \leq \infty\).
It is unclear whether the p-convexity assumption is indispensable in the statement of Theorem 7; it might already follow from the assumed A_1-regularity of Y.

Combined with [7 Proposition 5], duality yields the following result. For the generalities concerning the Calderón–Zygmund operators, see, e.g., [9].

Corollary 8. Let Y be a normed lattice of measurable functions on $S \times \Omega$ satisfying the Fatou property. Suppose also that Y is p-convex and q-concave with some $1 < p, q < \infty$. If both Y and Y' are A_1-regular, then $Y(\ell^p)$ and $Y'(\ell^q)$ are also A_1-regular for all $1 < s < \infty$, and, thus, any Calderón–Zygmund operator is bounded in $Y(\ell^p)$ for all $1 < s < \infty$.

The main result of [7] and [8] yields yet another corollary. The definition of a nondegenerate operator can be found in [8]; we only note that the Hilbert transform on the circle and all Riesz transforms on \mathbb{R} are nondegenerate.

Corollary 9. Suppose that Y is a normed lattice of measurable functions on $\mathbb{R}^n \times \Omega$ or $\mathbb{T} \times \Omega$ such that Y is p-convex and q-concave with some $1 < p, q < \infty$ and Y satisfies the Fatou property. Then the boundedness of any nondegenerate Calderón–Zygmund operator T on Y implies the A_1-regularity of both Y and Y', and the boundedness of all Calderón–Zygmund operators on $Y(\ell^p)$ for all $1 < s < \infty$.

It is not clear for what lattices E other than $E = \ell^s$ the results of Theorem 7 and its corollaries hold true. The proof suggests that this class of lattices probably includes all symmetric lattices on \mathbb{Z} that are p-convex and q-concave with some $1 < p, q < \infty$ (because it is well known that such lattices are interpolation spaces for the couple (ℓ^p, ℓ^q)). Is this also true for fairly arbitrary UMD spaces E?

§1. **Duality and factorisable weights**

It is well known that the A_p weights are characterized in terms of the P. Jones factorization theorem: $w \in A_p$ if and only if $w = w_0w_1^{1-p}$ with some weights $w_0, w_1 \in A_1$ and with some estimates for the constants; see, e.g., [9 Chapter 5, §5.3]. It is also well known that $\log w \in \BMO$ is equivalent to $w^\delta \in A_2$ for some $\delta > 0$ with some estimates for the constants (see, e.g., [9 Chapter 5, §6.2]). These observations motivate the following notions, which appear to be quite convenient for studying BMO-regularity.

Definition 10. Let $\alpha, \beta \geq 0$. A weight w on $S \times \Omega$ is said to belong to F_α^β with constant C if there exist weights $\omega_0, \omega_1 \in A_1$ with constant C such that $w = \frac{\omega_0}{\omega_1}$.

Definition 11. Let $\alpha, \beta \geq 0$, and suppose that X is a quasinormed lattice of measurable functions on $S \times \Omega$. X is said to be F_α^β-regular with constants (C, m) if for any $f \in X$ there exists a majorant $w \in X$, $w \geq |f|$, such that $\|w\|_X \leq m\|f\|_X$ and $w \in F_\alpha^\beta$ with constant C.

We note that, like the Muckenhoupt classes A_p, the weights belonging to F_α^β and the F_α^β-regularity condition have quite natural algebraic and order properties, and F_α^β-regularity admits an exact version of the divisibility theorem; see [8 §3].

In the present paper, however, we shall only need the following elementary properties. An application of the Hölder inequality shows that $w \in A_1$ with the constant C implies $w^\delta \in A_1$ with a constant C^δ for all $0 < \delta < 1$, so the classes are monotone in the parameters: $F_{\alpha_1}^{\beta_1} \subset F_{\alpha_2}^{\beta_2}$ for all $0 \leq \alpha_1 \leq \alpha$ and $0 \leq \beta_1 \leq \beta$ with some estimates for the constants, and the $F_{\alpha_1}^{\beta_1}$-regularity of a lattice X implies its $F_{\alpha_2}^{\beta_2}$-regularity. An example of the weights $w(t) = \frac{t^n}{(t-1)^\gamma}$ on the line (with suitable generalizations for the cases of...
\mathbb{R}^n and T) shows that the classes F^α_{β} are distinct for distinct values of the parameters α and β.

For all $\alpha, \beta \geq 0$, $\delta > 0$, and weights w, the conditions $w \in F^\alpha_{\beta}$, $w^\delta \in F^{\delta \alpha}_{\delta \beta}$ and $w^{-\delta} \in F^{\delta \beta}_{\delta \alpha}$ are equivalent. For the latter equivalence we also need to suitably clarify its meaning for the case of weights taking zero values on sets of positive measure; however, for simplicity we shall assume that all weights are nonnegative almost everywhere (we may always assume this in the F^α_{β}-property when majorizing nonzero functions at the expense of an arbitrarily small increase of the constant m). A lattice X is F^α_{β}-regular if and only if X^δ is $F^{\delta \beta}_{\delta \alpha}$-regular with appropriate estimates for the constants. By the factorization theorem already mentioned above, $w \in A_p$ with some $p > 1$ if and only if $w \in F^1_{p-1}$ (in the case where $p = 1$ this equivalence is trivial), and a lattice X is A_p-regular if and only if X is F^1_{p-1}-regular. Accordingly, $\log w \in \text{BMO}$ if and only if $w \in F^\alpha_{\beta}$ for some some $\alpha, \beta > 0$ with suitable estimates for the constants, and a lattice X is BMO-regular if and only if it is F^α_{β}-regular for some $\alpha, \beta > 0$.

As a typical example, we consider the F^α_{β}-regularity property for weighted Lebesgue spaces.

Proposition 12. Let $\alpha, \beta > 0$ and $1 < q < \infty$ be such that $\alpha q > 1$, and let w be a weight. The space $L_q(w)$ is F^α_{β}-regular if and only if $w \in F^{\alpha^{-\frac{1}{q}}}_{\beta^{\frac{1}{q}}}$.

Indeed, the F^α_{β}-regularity of $L_q(w)$ is equivalent to the $F^1_{\frac{\alpha}{q}}$-regularity of $[L_q(w)]^\frac{1}{\alpha} = L_{\alpha q}(w^\frac{1}{\alpha})$, that is, to its $A_{\frac{\alpha}{q} + 1}$-regularity, which by Corollary 5 is equivalent to

$$w^\frac{1}{\alpha}(\alpha q') \in A_{(\alpha q')(\frac{\alpha}{q} + 1)} = A_{1 + \frac{\alpha q}{q'-1}} = F^1_{\frac{q}{q'-1}}.$$

A simple computation shows that the latter is equivalent to $w \in F^{\alpha^{-\frac{1}{q}}}_{\beta^{\frac{1}{q}}}$.

Following [14, §2, Definition 2], we say that a mapping T is A_p-bounded with constants (C, m) if it is defined on a set Ω_T of measurable functions on $S \times \Omega$ such that the $(\nu \times \mu)$-closure of Ω_T (i.e., its closure with respect to convergence in measure on all sets of finite measure) contains L_∞, and for any weight $w \in A_p$ with constant C we have

$$\|T(f)\|_{L_p(w^{-\frac{1}{p}})} \leq m\|f\|_{L_p(w^{-\frac{1}{p}})}$$

for all $f \in \Omega_T$. It is well known that the maximal operator and all Calderón–Zygmund operators are A_p-bounded for all $1 < p < \infty$. It is easy to show that (see, e.g., [14, §2, Proposition 13]) the A_p-regularity of X' implies (under suitable conditions) the boundedness of the A_p-bounded operators in X', and, in particular, it implies the A_1-regularity of X'. Together with the divisibility property, this was used in [14] in order to verify the self-duality of the BMO-regularity property.

However, a similar result can be established for the lattices XL_p by using the lattice product instead of duality (see also Proposition 18 below).

Proposition 13. Suppose that Z is a quasi-normed lattice of measurable functions on $S \times \Omega$, $1 < p < \infty$, $\beta = \frac{1}{p}$, and Z is $F^{1-\beta}_{\beta}$-regular with constants (C, m). Then all A_p-bounded operators T are bounded on ZL_p.

Indeed, due to order continuity, $ZL_p \cap \Omega_T$ is dense in ZL_p. Suppose that $f \in ZL_p \cap \Omega_T$ with norm 1. Then there exist $g \in Z$, $h \in L_p$ such that $f = gh$ and $\|g\|_Z \leq 2$, $\|h\|_{L_p} \leq 1$. For simplicity we may assume (see, e.g., [14, §3, Proposition 14]) that $g > 0$ almost everywhere. The $F^{1-\beta}_{\beta}$-regularity of Z implies that there exists a majorant $u \geq |g|$ such
that \(\|u\|_Z \leq 2m \) and \(u \in F_1^{1-\beta} \) with constant \(C \), whence

\[
u^{-p} \in F_{\rho(1-\beta)}^\rho = F_{p-1}^1 = A_p
\]

with some constants independent of \(f \). Thus,

\[
\|Tf\|_{ZL_p} = \|u \cdot u^{-1}(Tf)\|_{ZL_p} \leq \|u\|_Z \|u^{-1}(Tf)\|_{L_p} \\
\leq 2m\|Tf\|_{L_p}\left(\frac{1}{|u^{-1}|} \right) \leq c\|f\|_{L_p}\left(\frac{1}{|u^{-1}|} \right) \\
= c\|h \cdot gu^{-1}\|_{L_p} \leq c\|h\|_{L_p} \leq c
\]

with a constant \(c \) independent of \(f \). We see that \(T \) is indeed bounded on \(ZL_p \).

Considering the case where \(Z = L_\infty(w) \) and \(T = M \) shows that the conditions of Proposition 15 are sharp in the sense that the parameters \(1 - \beta \) and \(\beta \) cannot be replaced by larger numbers. With the help of Proposition 12 it is easy to check that in the case where \(Z = L_q(w) \) (with \(\frac{1}{q} + \frac{1}{p} < 1 \)) and \(T = M \) the converse to Proposition 13 is also true. In general, however, the \(A_1 \)-regularity of \(ZL_p \) is weaker than the \(F_1^{1-\beta} \)-regularity of \(Z \). For example, should the equivalence be true for \(Z = L_\infty(\ell^1) \), this lattice would be \(F_{\frac{p}{p}}^{\beta} \)-regular for all \(1 < p < \infty \) and (by raising to the power \(q \)) we would have the \(F_{\frac{p}{p}}^{\beta} \)-regularity of \(L_\infty(\ell^1) \), which is false for \(\frac{q}{p'} \leq 1 \) (see [14], §1, Proposition 10).

Now we are ready to state the main result concerning the self-duality of \(F_{\alpha}^\beta \)-regularity.

Theorem 14. Suppose that \(X \) is a Banach lattice of measurable functions on \(S \times \Omega \) satisfying the Fatou property and \(\alpha > 1, \beta > 0 \). Then \(X \) is \(F_{\alpha}^\beta \)-regular if and only if the lattice \(X' \) is \(F_{\alpha-1}^{\beta+1} \)-regular.

As an illustration to Theorem 14, now we deduce Corollary 6 from this result. Indeed, the \(A_1 \)-regularity of \(L_t(\ell^p) \) for all \(1 < t, s < \infty \) (see, e.g., [9], Chapter 2, §1.3.1), or Corollary 8 implies that under the assumptions of Corollary 6 the lattice \(X = L_1(\ell^p) \) is \(F_0^{1+\delta} \)-regular for any \(\delta > 0 \), which by Theorem 14 yields the \(F_1^{1-\delta} \)-regularity of \(X' = L_\infty(\ell^q) \), i.e., its \(A_p \)-regularity for all \(p = \delta + 1 > 1 \).

The proof of Theorem 14 is given in [12] below. For now we present a relatively simple argument (but with coarser estimates) that proves the self-duality of the BMO-regularity property for lattices \(X \) on spaces of homogeneous type \(S \) such that \(L_2(S) \) admits a linear operator \(T \) that is \(A_\infty \)-bounded for all \(1 < s < \infty \) and \(A_2 \)-nondegenerate (concerning \(A_2 \)-nondegeneracy see, e.g., [14], Definition 3). For example, in the case of \(S = \mathbb{T} \) we can take the Hilbert transform \(T = H \), and in the case where \(S = \mathbb{R}^n \) any Riesz transform \(R_j \) will do for \(T \).

We shall need the following known result (for the proof in the given form and some discussion see, e.g., [14], §6).

Theorem 15. Suppose that a Banach lattice \(Y \) of measurable functions on a measurable space \(S \times \Omega \) has order continuous norm. If a linear operator \(T \) is bounded in \(Y_\frac{1}{2} \), then for any \(f \in Y' \) there exists a majorant \(w \geq |f| \), \(\|w\|_{Y'} \leq 2\|f\|_{Y'} \), such that \(\|T\|_{L_2(w^{-\frac{1}{2}}) \rightarrow L_2(w^{-\frac{1}{2}})} \leq C \) with a constant \(C \) independent of \(f \).

To verify the self-duality of BMO-regularity, suppose that a Banach lattice \(X \) on \(S \times \Omega \) satisfies the Fatou property and \(X \) is BMO-regular, so that it is \(F_1^{\beta} \)-regular with some \(\alpha, \beta > 0 \). We want to apply Theorem 15 to the lattice \(Y = X_\delta L_1^{1-\delta} \) and to the operator \(T \) with some sufficiently small \(0 < \delta < 1 \). If the conditions of Theorem 15 are satisfied in this case, then by the assumed \(A_2 \)-nondegeneracy of \(T \), the lattice \(Y' = X_\delta \) is \(A_2 \)-regular, and so \(X' = Y'_{\frac{1}{2}} \) is BMO-regular.
Thus, it suffices to prove that T is bounded on
\[Y^{\frac{1}{2}} = (X^{\frac{1}{2}} L_{1}^{1-\delta})^{\frac{1}{2}} = X^{\frac{1}{2}} L_{1}^{1-\delta}. \]

For that, in its turn, it suffices to verify that $Z = X^{\frac{1}{2}}$ satisfies the conditions of Proposition 13 with $p = 2^{\frac{2}{1-\delta}}$, i.e., that Z is $F^{1-\beta}_{\beta}$-regular with $\beta = \frac{1-\delta}{2}$. The latter is equivalent to the $F^{\frac{2}{1-\beta}}_{\beta}$-regularity of $X = Z^{\frac{1}{2}}$, which is the same as the $F^{\frac{1}{2}+1}_{\beta}$-regularity of X.

Choosing δ so small that $\frac{1}{\delta} + 1 \geq \alpha$ and $\frac{1}{\delta} - 1 \geq \beta$, we see that this assumption is satisfied.

The example of $X = L_{\infty}$ shows that the conclusion of the “only if” part of Theorem 14 is false for $\beta = 0$ and any α, because $X' = L_{1}$ is not A_{p}-regular with any $p > 1$ (see, e.g., [14 §1, Proposition 3]). It is not clear, however, whether the F^{α}_{β}-regularity of X with $\alpha \leq 1$ provides any additional information about the BMO-regularity of X'.

§2. Proof of the main results

The implication $2 \Rightarrow 1$ of Theorem 2 is established in the same way as [14 §1, Proposition 4]. To verify the other implications we introduce the following construction.

We fix some sequence $\{x_{k}\}_{k \in \mathbb{Z}}$ dense in S. For convenience, we enumerate all balls B_{j}, $j \in \mathbb{Z}$, of S with centers at these points and rational radii. Now we define a linear operator $\mathcal{M} = \{\mathcal{M}_{j}\}_{j \in \mathbb{Z}}$ on the functions $f = \{f_{j}\}_{j \in \mathbb{Z}}$ on $S \times \Omega \times \mathbb{Z}$ that are locally integrable in the first variable by
\[\mathcal{M}_{j} f_{j}(\cdot, \omega) = \left[\frac{1}{\nu(B_{j})} \int_{B_{j}} f_{j}(t, \omega) \, dt \right] \chi_{B_{j}}(\cdot) \]
for all $j \in \mathbb{Z}$ and almost all $\omega \in \Omega$. \mathcal{M} is a positive linear operator closely related to the Hardy–Littlewood maximal operator \mathcal{M}: it is easily seen $\mathcal{M} f \leq \mathcal{M} f \leq c \mathcal{M} f$ with a constant c, where \mathcal{M} is the noncentered Hardy–Littlewood maximal operator, and $\|\mathcal{M} f(x, \omega, \cdot)\|_{1, \infty} = \sqrt{\frac{1}{\nu(B_{j})}} \int_{B_{j}} (\mathcal{M}_{j} f(x, \omega))$ is pointwise equivalent to $\mathcal{M} f(x, \omega)$ for almost all $x \in S$ and $\omega \in \Omega$ provided f is nonnegative.

We shall show that the conditions of Theorem 2 are equivalent to the following auxiliary condition.

4. \mathcal{M} is bounded on $X^{\frac{1}{2}}(\ell^{p}) = [X(\ell^{1})]^{\frac{1}{2}}$.

The implication $1 \Rightarrow 4$ follows at once from the estimate $\mathcal{M} f \leq c \mathcal{M} f$. To establish $4 \Rightarrow 2$, we need the following known generalization [5 §3] of Theorem 15.

Theorem 16. Suppose that a Banach lattice Y of measurable functions on $(S \times \Omega, \nu \times \mu)$ has order continuous norm, and let $1 < p < \infty$. If a linear operator $T : Y^{\frac{1}{2}} \rightarrow Y^{\frac{1}{2}}$ is bounded (as an operator acting in the first variable) on $Y^{\frac{1}{2}}(\ell^{p}) = [Y(\ell^{1})]^{\frac{1}{2}}$, then for any $f \in Y'$ there exists a majorant $w \geq |f|$, $\|w\|_{Y'} \leq 2\|f\|_{Y'}$, such that
\[\|T\|_{L_{p}(w^{-\frac{1}{2}}) \rightarrow L_{p}(w^{-\frac{1}{2}})} \leq C \]
with a constant C independent of f.

The proof is essentially contained in the proof for the case of $p = 2$ ([14 §2, Theorem 6]), we only need to replace 2 with p in the arguments and make direct use of the assumption that T is bounded on $Y^{\frac{1}{2}}(\ell^{p})$ rather than applying the Grothendieck theorem. We omit the details.

Now suppose that \mathcal{M} is bounded on $X^{\frac{1}{2}}(\ell^{p})$ under the assumptions of Theorem 2 and let $f \in X'$, $\|f\|_{X'} = 1$; we need to construct a suitable A_{p}-majorant for f. First, we additionally assume that X has order continuous norm. Let $\tilde{Y} = X(\ell^{1})$, which is a lattice of measurable functions on $S \times \Omega \times \mathbb{Z}$. Since \mathcal{M} is a positive operator, \mathcal{M} is bounded on
the lattice $Y\frac{1}{2}(\ell^p)$ of measurable functions on $S \times \Omega \times \mathbb{Z} \times \mathbb{Z}$ as well as on $Y\frac{1}{2}$ (see, e.g., [3, Volume 2, Proposition 1.d.9]). Then, by Theorem [16] applied to \mathcal{M} and Y, for any function $g_k \in X'$ (to be exact, for the sequence $\{g_k\}_{j \in \mathbb{Z}}$; we construct the functions g_k inductively starting with $g_0 = f$), there exists a majorant $G_{k+1} = \{g_{k+1,j}\}_{j \in \mathbb{Z}} \in Y' = X'(\ell^{\infty})$, $g_{k+1,j} \geq |g_k|$ for all j, such that $\left\| \int g_{k+1,j} \right\|_{Y'} = \|G_{k+1}\|_{Y'} \leq 2\|g_k\|_{X'}$ and
\[
(1) \quad \left\| \mathcal{M} \right\|_{L_p(G_{k+1}^{-\frac{1}{2}}) \to L_p(G_{k+1}^{-\frac{1}{2}})} \leq C.
\]
We choose $g_0 = f$ and set inductively
\[
g_{k+1} = \sqrt{\int g_{k+1,j}}.
\]
Now let $w = \sum_{k \geq 0} 4^{-k}g_k$. It is easily seen that $w \geq |f|$ and
\[
\left\| w \right\|_{X'} \leq \sum_{k \geq 0} 2^{-k} = 2.
\]
Estimate (1) implies
\[
(2) \quad \int |\mathcal{M}h|^p g_k \leq \int |\mathcal{M}h|^p G_{k+1} \leq C \int |h|^p G_{k+1} \leq C \int |h|^p g_{k+1}
\]
for any $h \in L_p(w^{-\frac{1}{p}})(\ell^p) \subset L_p(G_{k+1}^{-\frac{1}{2}})$. Multiplying inequalities (2) by 4^{-k} and summing yields
\[
(3) \quad \left\| \mathcal{M} \right\|_{L_p(w^{-\frac{1}{p}})(\ell^p) \to L_p(w^{-\frac{1}{p}})(\ell^p)} \leq 4C.
\]
Thus, by (3) we have
\[
\left\| \mathcal{M}_j \right\|_{L_p(w^{-\frac{1}{p}})(\ell^p) \to L_p(w^{-\frac{1}{p}})(\ell^p)} \leq 4C
\]
for all $j \in \mathbb{Z}$. This implies that (see the proof of [14, §3, Proposition 19])
\[
\left\| \mathcal{M}_j \right\|_{L_p(w^{-\frac{1}{p}}(\cdot, \omega) \to L_p(w^{-\frac{1}{p}}(\cdot, \omega))} \leq c
\]
for all $j \in \mathbb{Z}$ and almost all $\omega \in \Omega$ with a constant c independent of f. Fixing such $\omega \in \Omega$ and applying this norm estimate to the functions $\chi_{B_j} h(\cdot, \omega)$ for arbitrary nonnegative $h \in L_p(w^{-\frac{1}{p}}(\cdot, \omega))$ shows that
\[
(4) \quad \left[\frac{1}{\nu(B_j)} \int_{B_j} h(\cdot, \omega) \, d\nu(\cdot) \right]^p \int_{B_j} w(\cdot, \omega) \leq c^p \int_{B_j} [h(\cdot, \omega)]^p w(\cdot, \omega)
\]
for every $j \in \mathbb{Z}$. It is easy to check (using the local integrability of w in the first variable, which follows from the estimates) that (4) implies the same estimate for arbitrary balls B of S, which is equivalent to the fact that $w \in A_p$ with constant c^p (see, e.g., [9, Chapter 5, §1.4]). Thus, w is a suitable A_p-majorant for f, which proves $4 \Rightarrow 2$ under an additional assumption.

Now, we lift the assumption that the norm of X is order continuous. Suppose that \mathcal{M} is bounded on $Z = \left[X(\ell^1) \right]^{\frac{1}{2}}$ under the assumptions of Theorem [2]. The boundedness of M in L_p implies that \mathcal{M} is also bounded on $L_p(\ell^p) = \left[L_1(\ell^1) \right]^{\frac{1}{2}}$. By complex interpolation (see, e.g., [14, Chapter 4, Theorem 1.14]), \mathcal{M} is bounded on $Z^\theta \left[L_p(\ell^p) \right]^{1-\theta} = \left[X_\theta(\ell^1) \right]^{\frac{1}{2}}$ uniformly in $0 < \theta < 1$, where $X_\theta = X^\theta L_1^{1-\theta}$. The norm of X_θ is order continuous, and by the result already established we see that the lattices $X_\theta = X^\theta$ are A_p-regular uniformly in $0 < \theta < 1$. To deduce the A_p-regularity of X' from this, we use the following proposition, which will conclude the proof of the implication $4 \Rightarrow 2$ in Theorem [2].
Proposition 17. Let X be a quasi-normed lattice of measurable functions on $S \times \Omega$ such that the lattices X^θ are A_p-regular uniformly on $0 < \theta < 1$. Then X is also A_p-regular.

Indeed, suppose that $f \in X$, $f \geq 0$, and $\|f\|_X = 1$; we need to show that f admits a suitable A_p-majorant. By assumption, for every $0 < \theta < 1$ there exists a majorant $g \geq f^\theta$, $\|g\|_{X^\theta} \leq m$, such that $g \in A_p$ with a constant C for some C and m independent of f. There exists $\rho > 1$ such that $g^\rho \in A_p$ with a constant C_1 independent of f and θ (see, e.g., [9, Chapter 5, §6.1]). Setting $\theta = \frac{1}{p}$, we see that the function $h = g^{\frac{1}{p}} \in X$, $\|g\|_X \leq m^{\frac{1}{p}}$, is a suitable majorant for f.

Now we suppose that, under the assumptions of Theorem 2, the lattice X has the Fatou property. If condition 2 is satisfied, then we have the A_1-regularity of $X^\frac{1}{2}$ by 2 \Rightarrow 1, and the A_1-regularity of

$$(X^\frac{1}{2})' = X' \frac{1}{2} L_1^{\frac{1}{2}} = X' \frac{1}{2} L_p'$$

follows from Proposition 13 because the A_p-regularity of X' is equivalent to its F^1-β-regularity and the F^1_{β}-β-regularity of $X' \frac{1}{2}$ with $\beta = \frac{1}{p'}$. Thus, the implication 2 \Rightarrow 3 is verified.

Finally, we establish the implication 3 \Rightarrow 4. The A_1-regularity of $X^\frac{1}{2}$ and $(X^\frac{1}{2})'$ implies at once the A_1-regularity of the lattices $X^\frac{1}{2}(\ell^\infty)$ and $(X^\frac{1}{2})'(\ell^\infty)$, and thus the boundedness of M on these lattices. Since M is a positive integral operator, its boundedness on an arbitrary lattice Z is equivalent to its boundedness on Z' if Z' is a norming lattice for Z; this follows at once from the Fubini theorem and the fact that it suffices to verify the boundedness on positive functions. Therefore, M is also bounded on $[(X^\frac{1}{2})'(\ell^\infty)]' = X \frac{1}{2}(\ell^1)$. The Calderón–Lozanovsky products are exact interpolation spaces for positive operators (see, e.g., [12]), so M is also bounded on $X \frac{1}{2}(\ell^p) = [X \frac{1}{2}(\ell^1)]^\frac{1}{2} [X \frac{1}{2}(\ell^\infty)]^{1-\frac{1}{2}}$, which means that condition 4 is satisfied as claimed. The proof of Theorem 2 is complete.

Now we prove Theorem 7. Suppose that a Banach lattice Y satisfies its assumptions: Y is p-convex with some $p > 1$, Y satisfies the Fatou property, and both Y and Y' are A_1-regular. Then $Y = X^\frac{1}{2}$ with a Banach lattice $X = Y^p$. Since X satisfies condition 3 of Theorem 2, it also satisfies condition 1 of the same theorem, i.e., $X \frac{1}{2}(\ell^p) = Y(\ell^p)$ is A_1-regular for all values of $p > 1$ sufficiently close to 1. Since $Y(\ell^\infty)$ is also A_1-regular, the logarithmic convexity of the respective sets of A_1-majorants (or a direct application of the Hölder inequality; see, e.g., [14, §3, Proposition 16]) yields the A_1-regularity of $[Y(\ell^p)]^\delta [Y(\ell^\infty)]^{1-\delta} = Y(\ell^\frac{1}{2})$ for all values of p sufficiently close to 1 and any $0 < \delta < 1$, which implies that the lattices $Y(\ell^s)$ are A_1-regular for all $1 < s < \infty$, as claimed.

Now it remains to prove Theorem 14. By symmetry, it suffices to verify the direct statement. First, we establish the following simple generalization of Proposition 13.

Proposition 18. Suppose that Z is a quasinormed lattice of measurable functions on $S \times \Omega$, $1 < p < \infty$, $\beta = \frac{1}{p}$, and Z is F^1_{β}-regular with constants (C, m). Then $(Z L_p)(\ell^s)$ is A_1-regular for all $1 < s < \infty$.

Compared to the proof of Proposition 13, it suffices to observe that, by Corollary 8, the lattices $L_p(w^{-\frac{1}{p}})(\ell^s)$ are A_1-regular for all $w \in A_p$ and $1 < p < \infty$, $1 < s < \infty$. However, we give a complete proof for clarity.

Let $f \in (Z L_p)(\ell^s) = Z(\ell^\infty) L_p(\ell^s)$ with norm 1. Then there exist $g = \{g_j\}_{j \in Z} \in Z(\ell^\infty)$ and $h = \{h_j\}_{j \in Z} \in L_p(\ell^s)$ such that $f = gh$ and $\|\bigvee_j g_j\|_Z = \|g\|_{Z(\ell^\infty)} \leq 2$, $\|h\|_{L_p(\ell^s)} \leq 1$. For simplicity we may assume that $g > 0$ almost everywhere. By replacing g with $\bigvee_j g_j$
and h with $\frac{g}{\sqrt{g^2}}$ we may assume that g does not depend on the last variable while retaining all estimates on its norm. By the $F^{1-\beta}_p$-regularity of Z, there exists a majorant $u \geq |g|$ such that $\|u\|_Z \leq 2m$ and $u \in F^{1-\beta}_p$ with constant C, and thus

$$u^{-p} \in F^{p\beta}_p(1-\beta) = F^{1}_p = A_p$$

with some constants independent of f. Therefore,

$$\|Mf\|_{(Z^{1+p})((p^*)')} = \|u \cdot u^{-1}(Mf)\|_{Z^{(1+p)}(p^*)} \leq \|\{u\}_{j \in Z} u^{-1}(Mf)\|_{L^p(p^*)} = \|u\|_Z \|Mf\|_{L^p([u^{-p}]^{-1})^p(p^*)} \leq c\|\|h\|_p^\beta \|L^p(p^*) \leq c$$

with a constant c independent of f. Thus, the maximal operator M is bounded on $(Z^{1+p})((p^*)'$, and, hence, this lattice is A_1-regular, as claimed.

Now suppose that X is F^{δ}_{γ}-regular with some $\alpha > 1$ and $\beta > 0$ under the assumptions of Theorem 14. We want to invoke Proposition 18 to establish the A_1-regularity of $Z = Y^{\frac{\delta}{\gamma}}((p^*)'$ with $Y = X^\delta L^{1-\delta}_p$ for some suitable $0 < \delta < 1$ and $1 < p < \infty$. Since $Y^{\frac{\delta}{\gamma}} = X^\delta L^{\frac{1-\delta}{p}}$, we need to check that X^δ is $F^{1-\beta}$-regular with $\beta = \frac{1-\delta}{p}$, which is equivalent to the $F^{\frac{\delta}{\gamma}}_\frac{1-\delta}{p}$-regularity of X. Comparing this with the assumptions of the theorem yields the conditions $\alpha = \frac{p}{\gamma} - \frac{1-\delta}{\delta}$ and $\beta = \frac{1-\delta}{\delta}$, which are satisfied with $\delta = \frac{1}{1+\beta}$ and $p = \delta (\alpha + \frac{1-\delta}{\delta}) = \frac{\alpha+\beta}{1+\beta}$. Proposition 18 gives the A_1-regularity of Z, which by implication 1 \Rightarrow 2 of Theorem 2 implies the A_p-regularity of $Y' = X^{\delta}$. Thus, Y' is F^{1}_p-regular, and so it is F^{1}_p-regular, and $X' = Y'^{\frac{\delta}{\gamma}} = Y'^{1+\beta}$ is $F^{\frac{\beta+1}{\alpha-1}}$-regular, as claimed.

References

ST. PETERSBURG BRANCH, STEKLOV MATHEMATICAL INSTITUTE, FONTANKA 27, ST. PETERSBURG 191023, RUSSIA

E-mail address: rutsky@pdmi.ras.ru

Received 10/FEB/2015

Translated by THE AUTHOR