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WAVE MODEL OF THE STURM–LIOUVILLE OPERATOR

ON THE HALF-LINE

M. I. BELISHEV AND S. A. SIMONOV

Dedicated to the memory of V. S. Buslaev

Abstract. The notion of the wave spectrum of a semibounded symmetric operator
was introduced by one of the authors in 2013. The wave spectrum is a topological
space determined by the operator in a canonical way. The definition involves a
dynamical system associated with the operator: the wave spectrum is constructed
from its reachable sets. In the paper, a description is given for the wave spectrum of

the operator L0 = − d2

dx2 + q that acts in the space L2(0,∞) and has defect indices

(1, 1). A functional (wave) model is constructed for the operator L∗
0 in which the

elements of the original L2(0,∞) are realized as functions on the wave spectrum.
This model turns out to be identical to the original L∗

0. The latter is fundamental in
solving inverse problems: the wave model is determined by their data, which allows
reconstruction of the original.

§0. Introduction

The notion of the wave spectrum of a symmetric semibounded operator was introduced
in [14]. The wave spectrum is a topological space determined by the operator in a
canonical way. The definition involves a dynamical system associated with the operator:
states of the system serve as material for constructing this space. It is constituted of the
atoms of the Hilbert lattice of subspaces determined by the reachable sets of the system
and is endowed with an adequate topology.

The wave spectrum is an invariant of the operator: the wave spectra of unitarily-
equivalent operators are canonically homeomorphic. At the same time, in important
applications the wave spectrum of an operator acting in the space of functions turns out to
be homeomorphic to the support of the functions that comprise the space. For example,
the wave spectrum of the minimal Laplacian on a Riemannian manifold with boundary
is essentially identical (isomorphic) to the manifold itself. This fact is used for solving
inverse problems. In the problem of reconstruction of a manifold from its boundary data
(for instance, the reaction operator), a unitary copy of the Laplacian is extracted from
data, and then one can find its wave spectrum. The latter, by construction, is isometric
to the manifold and thus gives the solution of the problem (cf. [14, 2]). These arguments
constitute a form of the boundary control method (the BC-method). This approach to
inverse problems is based on their deep relationship with the control theory [11, 12].

The notion of the wave spectrum arose as a result of generalizing the “experimental
material” gathered from solving particular inverse problems with the BC-method. At
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some point it became clear that the procedure of solving is equivalent to constructing
a certain functional model of a symmetric operator. In this model the elements of the
original Hilbert space are realized as functions on the wave spectrum. An outline of
this “wave” model was given in [14]1; its usefulness and efficiency may be viewed as
established facts. At the same time, in our opinion, the wave model is also interesting
from the theoretical point of view. Its systematic study is our long-term goal.

We consider a particular example: a positive definite Sturm–Liouville operator L0 =

− d2

dx2 +q in L2(0,∞) which has defect indices (1, 1). We construct the wave model of the
operator L∗

0. As we proceed, we describe the elements of the general construction and in
parallel clarify how they look like in our case. At some point, realizing the elements of the
original L2(0,∞) as complex-valued functions on the wave spectrum, we use the specifics
of the Sturm–Liouville operator. In the general case the realization is more complex:
the corresponding functions map to linear spaces of rather abstract nature [14]. The
above-mentioned specifics make it possible to investigate the model completely. The
wave spectrum turns out to be identical to the half-line [0,∞), and the model operator is
related to the original L∗

0 by a simple gauge transform. As a consequence, the potential
q is easily recovered, which determines the original operator.

We dedicate this work to the memory of Vladimir Savel′evich Buslaev, a wonderful
person, an excellent mathematician, one of our Teachers.

§1. Dynamical system with boundary control

1.1. The operator L0. Let us describe the class of operators for which our definitions
make sense. Let H be a (separable) Hilbert space and L0 an operator in H. We suppose
that:

(1) L0 is closed and densely defined: DomL0 = H;
(2) L0 is positive definite: for some κ > 0 and every y ∈ DomL0 we have (L0y, y) ≥

κ‖y‖2;
(3) L0 has nonzero defect indices n± = dimKerL∗

0 ≤ ∞.

From the third assumption it follows that L0 is unbounded. Let L denote the Friedrichs
extension of L0 : L0 ⊂ L ⊂ L∗

0, L
∗ = L, and (Ly, y) ≥ κ‖y‖2 for every y ∈ DomL (cf.

[4]). The inverse operator L−1 is bounded and is defined on the entire space H.
• Throughout, Hs stands for Sobolev classes; R+ := (0,∞), sR+ := [0,∞). “Smooth”
always means “C∞-smooth”.

In the case of the Sturm–Liouville operator, we have H = L2(R+). The operator itself
is L0 : H → H,

DomL0 =
{
y ∈ H ∩H2

loc(
sR+) | y(0) = y′(0) = 0; −y′′ + qy ∈ H

}
,

L0y := −y′′ + qy,
(1.1)

where q = q(x) is a real-valued function (the potential) such that

(1.2)
(1) q ∈ C∞(sR+),
(2) the limit point case occurs,
(3) the operator L0 is positive definite.

In this case, the problem

(1.3) −φ′′ + qφ = 0, x > 0 ; φ(0) = 1, φ ∈ L2(R+)

1The idea of this construction can be seen in the early work [1]. At the heuristic level, the wave
spectrum was introduced in [12] for solving inverse problems. A formal definition (although with a
different name) appeared later in [13].
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has a unique solution φ(x), which is a smooth function. It is known that, first,

DomL∗
0 =

{
y ∈ H ∩H2

loc(
sR+) | − y′′ + qy ∈ H

}
,

L∗
0y := −y′′ + qy,

KerL∗
0 = {cφ | c ∈ C},

(1.4)

and the defect indices of L0 are n± = dimKerL∗
0 = 12; and second, the Friedrichs

extension of the operator L0 is L : H → H,

DomL =
{
y ∈ H ∩H2

loc(
sR+) | y(0) = 0;−y′′ + qy ∈ H

}
,

Ly := −y′′ + qy.
(1.5)

We mention that the smoothness of q simplifies considerations; however, all the main
results can be extended to the case where q ∈ Cloc

(
sR+

)
at least.

1.2. Green’s system. The following definitions are close to those used in the classical
work of A. N. Kochubĕı [8] (see also [18, 16]).

Let H and B be Hilbert spaces, and let A : H → H and Γi : H → B (i = 1, 2) be
operators satisfying

DomA = H, DomΓi ⊃ DomA, RanΓ1 +RanΓ2 = B.
A collection G = {H,B;A,Γ1,Γ2} is called a Green system if its elements are related by
the Green formula

(1.6) (Au, v)H − (u,Av)H = (Γ1u,Γ2v)B − (Γ2u,Γ1v)B

for every u, v ∈ DomA. The space H is said to be inner, B is the space of boundary
values, A is the basic operator, and the Γ1,2 are the boundary operators.

1.3. The system GL0
. With the operator L0 satisfying conditions 1–3 of Subsection

1.1, a Green system can be associated in a canonical way. Let

K := KerL∗
0.

Denote by PK the orthogonal projection of H onto K, and let O and I denote the zero
and identity operators. We also define the following operators:

(1.7) Γ1 := L−1L∗
0 − I, Γ2 := PKL∗

0.

As it was shown in [2, Lemma 1], the set GL0
:= {H,K; L∗

0,Γ1,Γ2} forms a Green system.
In the same paper, the action of the boundary operators Γi was described in terms of
Vishik’s decomposition, which has the following form:

(1.8) DomL∗
0 = DomL0 � L−1K �K

(the sums are direct). If one applies this decomposition to an arbitrary y ∈ DomL∗
0,

(1.9) y = y0 + L−1gy + hy, y0 ∈ DomL0, gy, hy ∈ K,

then the boundary operators (1.7) act by the rule

(1.10) Γ1y = −hy, Γ2y = gy

(see [2, Subsection 2.3]).
• For the Sturm–Liouville operator (1.1) we have K = {cφ | c ∈ C}. Let η := L−1φ
and observe that η(0) = 0 owing to (1.5), while η′(0) �= 0. Indeed, assuming that
η(0) = η′(0) = 0, we have η ∈ DomL0 and L0η = L0L

−1φ = φ; since

0 = (L∗
0φ, η) = (φ, L0η) = (φ, φ) �= 0,

we get a contradiction.

2This is true, for instance, if q(x) > −cx2 with some c > 0: see [9, Chapter VII.26, Theorem 6].
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It is easy to check that in our case the representations (1.9) and (1.10) take the form

y =

{
y − y(0)φ−

[
y′(0)− y(0)φ′(0)

η′(0)

]
η

}
+

[
y′(0)− y(0)φ′(0)

η′(0)

]
η + y(0)φ ;

Γ1y = − y(0)φ, Γ2y =

[
y′(0)− y(0)φ′(0)

η′(0)

]
φ

(1.11)

(recall that φ(0) = 1).
Thus, the operator (1.1) canonically gives rise to the Green system with the inner space

L2(R+), the basic operator (1.4), the boundary space {cφ | c ∈ C}, and the boundary
operators (1.11).

1.4. The system αL0
. In its turn, the system GL0

that corresponds to the operator
L0 determines a dynamical system

utt + L∗
0u = 0, t > 0,(1.12)

u
∣∣
t=0

= ut

∣∣
t=0

= 0,(1.13)

Γ1u = h, t ≥ 0,(1.14)

where h = h(t) is the boundary control (a K-valued function of time) and u = uh(t) is
the solution (an H-valued function of time). In the control theory, uh( · ) is called the
trajectory, and uh(t) is the state of the system at the moment t. Aiming at applications,
we call uh the wave. System (1.12)–(1.14) is determined by the operator L0, and we
denote it by αL0

.

Recall that L is the Friedrichs extension of the operator L0. Let L
1
2 denote the positive

square root of L. Assume that the control h is smooth and vanishes near t = 0. We
denote by

(1.15) M := {h ∈ C∞ ([0,∞);K) | supph ⊂ (0,∞)}
the linear span of such controls. As was shown in [2], for h ∈ M, problem (1.12)–(1.14)
has a unique classical solution uh ∈ C∞(

[0,∞);H
)
. It vanishes near t = 0 and admits

the following representation:

(1.16) uh(t) = −h(t) +

∫ t

0

L− 1
2 sin

[
(t− s)L

1
2

]
htt(s) ds, t ≥ 0.

For controls in the class
{
h |h, htt ∈ Lloc

2

(
[0,∞);K

)
, h(0) = ht(0) = 0

}
, the (generalized)

solution is defined as the right-hand side of (1.16). To distinguish generalized solutions
from the classical ones, we call the latter smooth waves. In what follows they will play
the role of a certain structure in H.
• In the case of the Sturm–Liouville operator we have K = {cφ | c ∈ C}, and the condition
(1.14) takes the form Γ1u = h(t) = f(t)φ, t ≥ 0, with some complex-valued function f .
Hence, system (1.12)–(1.14) is equivalent to the following initial boundary value problem:

utt − uxx + qu = 0, x > 0, t > 0,(1.17)

u
∣∣
t=0

= ut

∣∣
t=0

= 0, x ≥ 0,(1.18)

u
∣∣
x=0

= f, t ≥ 0.(1.19)

As an analog of (1.15), we introduce the linear space

(1.20) Ṁ :=
{
f ∈ C∞ [0,∞) | supp f ⊂ (0,∞)

}
of smooth controls that vanish near t = 0. For f ∈ M, problem (1.17)–(1.19) has a unique
classical solution u = uf (x, t), which is smooth in both variables. For this solution, we
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have

(1.21) uf (x, t) = f(t− x) +

∫ t

x

w(x, s) f(t− s) ds, x ≥ 0, t ≥ 0,

where both summands on the right are assumed to vanish for x > t. The function w
is defined for 0 ≤ x ≤ t and is smooth; it is related in a simple way to the classical
Riemann function of the equation (1.17). This representation is employed to define the
(generalized) solution corresponding to controls f ∈ Lloc

2 [0,∞): such a solution is defined
as the right-hand side of (1.21).

The solution uf ( · , t) viewed as an L2(R+)-valued function of time is the trajectory
of the system α that corresponds to the operator (1.1). This case is specific in that the
map f �→ uf is continuous: it is easily seen that uf ∈ Cloc

(
[0,∞);L2(R+)

)
.

1.5. Controllability. We return to the system αL0
in the general case. Fix t = T ≥ 0;

the set of states

(1.22) UT
L0

:= {uh(T ) |h ∈ M}
is said to be reachable (at the time T ). It is easy to check that UT

L0
grows with T . Also,

we define

(1.23) UL0
:=

⋃
T>0

UT
L0
, DL0

:= H sUL0
,

the total reachable set and the defect subspace. The linear space of smooth waves is
invariant under L∗

0. Indeed, for u = uh(T ) ∈ UT
L0

we have

L∗
0u

h(T )
(1.12)
= −uh

tt(T )
(1.16)
= −uhtt(T ) ∈ UT

L0
,

uh(T )
(1.13)
= J2[uh

tt](T )
(1.16)
= uJ2h

tt (T )
(1.12)
= −L∗

0u
J2h(T ) ∈ L∗

0UT
L0
,

where J :=
∫ t

0
is integration in time. Consequently, L∗

0UL0
= UL0

.
Let us remark in advance that the functional model of the operator L∗

0 which we are
constructing is in fact a model of its wave part L∗

0|UL0
. Related to this is the following

question left unanswered: let sUL0
= H, i.e., suppose that the part L∗

0|UL0
is densely

defined; is it then true that its closure coincides with L∗
0? In all the examples we know

the answer is in the positive.
A system αL0

is said to be controllable if

(1.24) sUL0
= H (DL0

= {0}).
We formulate the criterion of controllability that was established in [2].

Recall the definitions. We say that an operator A induces a selfadjoint operator in a
(nontrivial) subspace L ⊂ H if L ∩DomA = L, A

[
L ∩ DomA

]
⊂ L, and the operator

A|L∩DomA is selfadjoint in L. The operator A is said to be completely nonselfadjoint if
A does not induce a selfadjoint operator in any subspace in H. In [2, Theorem 1], the
system αL0

is controllable if and only if L0 is a completely nonselfadjoint operator.
• In the case of the Sturm–Liouville operator (1.1), we show that the system α is con-
trollable. Let C∞

fin(
sR+) be the set of smooth functions with bounded support. Denote

C∞
T (sR+) := {y ∈ C∞(sR+) | supp y ⊂ [0, T )}.

Obviously, C∞
fin(

sR+) =
⋃

T>0 C
∞
T (sR+).

Lemma 1. Suppose that the operator L0 has the form (1.1) and the potential q satisfies
(1.2). Then the following relations hold:

(1.25) UT = C∞
T (sR+), T > 0 ; U = C∞

fin(
sR+),
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where UT and U are as defined in (1.22) and (1.23).

Proof. Fix T > 0 and pick f ∈ Ṁ. By (1.21), we have

uf (x, T ) = f(T − x) +

∫ T

x

w(x, s) f(T − s) ds, x ≥ 0.

This shows that the wave uf ( · , T ) is a smooth function vanishing near x = T . Hence,
the left-hand side of the first identity in (1.25) is a subset of the right-hand side.

Let y belong to the right-hand side, and let f = f(t)
∣∣
0≤t≤T

be found from the Volterra

integral equation of the second kind

f(T − x) +

∫ T

x

w(x, s) f(T − s) ds = y(x), 0 ≤ x ≤ T.

It is easily that f is a smooth function vanishing near t = 0. We extend f to the interval
(T,∞) arbitrarily but preserving its smoothness. Then, by construction, f ∈ M and
y = uf ( · , T ) ∈ UT . Therefore, the right-hand side of the first identity in (1.25) is a
subset of the left-hand side. Thus, this identity is established.

The second identity follows from the first. �

As a consequence, we have controllability: sU = C∞
fin(

sR+) = L2(R+). From controlla-
bility it follows that the operator (1.1) is completely nonselfadjoint. This fact can also
be proved directly, without using dynamics. Moreover, using (1.25) it is not difficult to
show that the closure of the wave part L∗

0

∣∣
U of the operator (1.4) coincides with L∗

0 itself.

§2. The wave spectrum

2.1. Wave isotony. Let P and Q be partially ordered sets. A map i : P → Q is said
to be isotone (order-preserving) if p � p′ implies i(p) � i(p′), see [3].

By an isotony we mean a family of isotone maps {it}t≥0 such that p � p′ and t ≤ t′

imply it(p) � it
′
(p′). In another formulation, an isotony is an isotone map of the set

P × [0,∞) (with the natural order on it) into Q.
A lattice is a partially ordered set in which every two elements x, y have the least

upper bound x∨y and the greatest lower bound x∧y (see [3]). We will deal with lattices
endowed with additional structures: complements, topology, etc.

Let L(H) be the lattice of (closed) subspaces of H with the partial order ⊆. Its

is easy to check that A ∨ B = {a+ b | a ∈ A, b ∈ B} é A ∧ B = A ∩ B. The lattice
L(H) is also a lattice with the least element {0} and the greatest element H, and with
complements, A⊥ = H  A (because A⊥ ∨ A = H, A⊥ ∧ A = {0}). By PA we denote
the (orthogonal) projection onto H on A. The topology on L(H) is defined by the strong

operator convergence of projections: Aj → A if PAj

s→ PA as j → ∞3.
By a lattice isotony of L(H) we call an isotony I = {It}t≥0 : L(H)× [0,∞) → L(H)

with the following additional properties: I0 = id and It{0} = {0}. In what follows we
deal only with such I.

Every operator L0 as defined in Subsection 1.1 gives rise to a wave isotony IL0
defined

as follows. Consider the dynamical system

vtt + Lv = g, t > 0,(2.1)

v
∣∣
t=0

= vt
∣∣
t=0

= 0,(2.2)

3The strong operator topology is not first countable, and thus it cannot be described in terms of
convergence of sequences. However, its restriction to the set of orthogonal projections (as well as to any
subset of B(H) bounded in the operator norm) is first countable and even metrizable [17].
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where g is an H-valued function of time. If g ∈ C∞(
[0,∞);H

)
vanishes near t = 0,

then this problem has a unique classical solution v = vg(t) that admits the Duhamel
representation:

vg(t) =

∫ t

0

L− 1
2 sin

[
(t− s)L

1
2

]
g(s) ds, t ≥ 0(2.3)

(see [4]). For g ∈ Lloc
2

(
[0,∞);H

)
the (generalized) solution is defined as the right-hand

side of (2.3).
Fix a subspace G ∈ L(H) and consider G-valued controls. The corresponding reachable

sets of the system (2.1)–(2.2) are

(2.4) Vt
G :=

{
vg(t) | g ∈ Lloc

2

(
[0,∞);G

)}
.

It is clear that Vt
G grows with G and t. We introduce a family of maps IL0

= {ItL0
}t≥0:

(2.5) I0L0
:= id; ItL0

G := Vt
G , t > 0.

Proposition 1. The family IL0
is an isotony of the lattice L(H).

The proof can be found in [14]. Note that IL0
is determined not by L0, but rather by

its Friedrichs extension L. It is clear that the wave isotony can be defined consistently for
every selfadjoint operator semibounded from below. In applications, problem (2.1)–(2.2)
describes propagation of waves excited by the sources g, so that the initial subspace G is
extended by the waves vg.
• We discuss the properties of the wave isotony for the Sturm–Liouville operator (1.1).
For a subset E of the half-line, denote by Er its r-neighborhood:

Er := {x ∈ sR+ | dist(x,E) := inf
e∈E

|x− e| < r}, r > 0.

Let Δa,b be one of the intervals (a, b), [a, b), (a, b], [a, b] (0 ≤ a < b ≤ ∞). Then,
obviously,

(2.6) Δr
a,b =

{
(a− r, b+ r), a ≥ r,

[0, b+ r), a < r.

If x0 ∈ sR+ is a point, then

(2.7) {x0}r =

{
(x0 − r, x0 + r), x0 ≥ r,

[0, x0 + r), x0 < r.

For a measurable set E ⊂ R+, we denote L2(E) := {y ∈ L2(R+), |y|CE = 0}, where
CE := R+ \ E.

Lemma 2. Under the conditions of Lemma 1, for every 0 ≤ a < b ≤ ∞ and T > 0 we
have

(2.8) ITL2(Δa,b) = L2(Δ
T
a,b),

where IT is defined by (2.5).

Proof. 1. In our case, system (2.1)–(2.2) is equivalent to the initial boundary value
problem

vtt − vxx + qv = g, x ∈ R+, t > 0,(2.9)

v
∣∣
t=0

= vt
∣∣
t=0

= 0, x ∈ sR+,(2.10)

v
∣∣
x=0

= 0, t ≥ 0,(2.11)

with the right-hand side g = g(x, t) such that g( · , t) ∈ G for every t ≥ 0. Condition (2.11)
follows from v( · , t) ∈ DomL, in accordance with to (1.5). Problem (2.9)–(2.11) is well
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posed for every g ∈ Lloc
2

(
R+× [0,∞)

)
; for g ∈ C∞

0

(
R+ × (0,∞)

)
its solution v = vg(x, t)

is a classical one. Moreover, owing to the finiteness of the influence domain for the
(hyperbolic) equation (2.9), if supp g( · , t) ⊂ Δa,b for every t > 0, then supp vg( · , T ) ⊂
ΔT

a,b for every T > 0.

We fix T > 0 and choose 0 ≤ a < b ≤ ∞. Consider G = L2(Δa,b) and take g ∈
Lloc
2 (Δa,b × [0,∞)). From (2.3) it follows that the map L2[0, T ] � g

∣∣
[0,T ]

�→ vg( · , T ) ∈
L2(R+) is continuous. Also, we have supp vg( · , T ) ⊂ ΔT

a,b. Therefore, VT
G ⊂ L2(Δ

T
a,b).

We shall show that VT
G is dense in L2(Δ

T
a,b).

2. Consider the auxiliary problem

wtt − wxx + qw = 0, x ∈ R+, 0 < t < T,(2.12)

w
∣∣
t=T

= 0, wt

∣∣
t=T

= y, x ∈ sR+,(2.13)

w
∣∣
x=0

= 0, 0 ≤ t ≤ T.(2.14)

It is well posed for every y ∈ Lloc
2

(
R+

)
, and for y ∈ C∞

0 (R+) its solution w = wy(x, t) is

classical. The finiteness of the domain of influence shows that suppwy( · , t) ⊂ ΔT−t
a,b for

every t > 0 whenever supp y ⊂ Δa,b.
We want to establish a relationship between the solutions of problems (2.9)–(2.11) and

(2.12)–(2.14). Suppose g ∈ C∞
0

(
R+ × (0,∞)

)
and y ∈ C∞

0 (R+), so that the solutions of
both problems are classical (smooth). By the finiteness of the domain of influence, for
every t > 0 the functions vg( · , t) and wy( · , t) have compact support in sR+. This fact
justifies the following calculation.

Integrating by parts we have:∫
R+×[0,T ]

gwy dx dt
(2.9)
=

∫
R+×[0,T ]

[vgtt − vgxx + qvg]wy dx dt

=

∫
R+

[vgtw
y − vgwy

t ]
∣∣∣t=T

t=0
dx−

∫ T

0

[vgxw
y − vgwy

x]
∣∣∣x=∞

x=0
dt

−
∫
R+×[0,T ]

vg[wy
tt − wy

xx + qwy] dx dt
(2.10)−(2.14)

= −
∫
R+

vg( · , T ) y dx,

and

(2.15)

∫
R+×[0,T ]

gwy dx dt = −
∫
R+

vg( · , T ) y dx.

Since C∞
0 (R+) is dense in L2(R+), the last identity is valid for every y ∈ L2(R+).

Let g ∈ C∞
0

(
R+ × (0,∞)

)
and y ∈ L2(R+); suppose additionally that supp g( · , t) ⊂

Δa,b for every t > 0. It follows that supp vg( · , T ) ⊂ ΔT
a,b, and (2.15) takes the form

(2.16)

∫
Δa,b×[0,T ]

gwy dx dt = −
(
vg( · , T ), y

)
L2(ΔT

a,b)
.

3. Returning to the question about the density of VT
G in L2(Δ

T
a,b), we take y ∈

L2(Δ
T
a,b) VT

G and show that y = 0.

By the choice of y, the right-hand side of (2.16) is 0. Since g is arbitrary, we conclude
that

(2.17) wy = 0 in Δa,b × [0, T ].
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We extend the solution wy to the times T ≤ t ≤ 2T by oddness:

wy( · , t) :=
{
wy( · , t), 0 ≤ t < T,

wy( · , 2T − t), T ≤ t ≤ 2T.

This extension solves the following problem:

wtt − wxx + qw = 0, x ∈ R+, 0 < t < 2T,(2.18)

w
∣∣
t=T

= 0, wt

∣∣
t=T

= y, x ∈ sR+,(2.19)

w
∣∣
x=0

= 0, 0 ≤ t ≤ 2T.(2.20)

We only need to check that the extended function wy satisfies (2.18). This is easy,
because the odd extension does not lead to jumps of wy and wy

t at t = T . By (2.17), we
have

(2.21) wy = 0 in Δa,b × [0, 2T ].

The solution of equation (2.18) with the property (2.21) can be extended by zero from
Δa,b × [0, 2T ] to the wider domain

Ω2T
a,b := {(x, t) |max{0, |t− T |+ (a− T )} < x < b+ T − |t− T |} ,

which is bounded by the corresponding characteristic lines of the equation (2.18). Indeed,
fix a point (x0, t0) for which b < x0 < b+T −|t0−T |. This point belongs to Ω2T

a,b, but not

to Δa,b × [0, 2T ]. Take a small δ > 0 such that the characteristic triangle (the influence
cone) {(x, t) |b − δ < x < x0 − |t − t0|} is contained in Ω2T

a,b. By the finiteness of the

domain of influence, the value wy(x0, t0) is determined by the Cauchy data wy, wy
x on

the (vertical) base of the cone, which is a subset of the line x = b − δ. This base is
contained inside Δa,b × [0, 2T ], and, by (2.21), this data is zero. Hence, wy(x0, t0) = 0.
The points (x0, t0) ∈ Ω2T

a,b with x0 < a (if any) can be treated similarly.

Thus, wy = wy
t = 0 everywhere in Ω2T

a,b. In particular, by (2.19), for t = T we have

y = wy
t (x, T ) = 0 for every x ∈ ΔT

a,b. Therefore, from y ∈ L2(Δ
T
a,b) VT

G it follows that

y = 0. Thus the relation VT
G = L2(Δ

T
a,b) is established, i.e., (2.8) is proved. �

2.2. Lattices, atoms, the wave spectrum. A lattice in L(H) is a subset invariant
under all the operations in L(H) that were defined at the beginning of Subsection 2.1.
Every lattice necessarily contains {0} and H.

Let M ⊂ L(H) be a family of subspaces. By LM we denote the minimal lattice in
L(H) that contains M. It consists of all subspaces of the form

∨
1≤k≤n

⋂
1≤l≤m Akl,

where for each subspace Akl either Akl ∈ M or A⊥
kl ∈ M (see [4]).

Let I be an isotony of the lattice L(H). The family M ⊂ L(H) is invariant under I if
IM := {ItM|t ≥ 0,M ∈ M} = M. For every M ⊂ L(H) there exists a minimal lattice
LI
M that contains M and is invariant under I. It is easy to check that this minimal

lattice has the following constructive description. Define an operation σ on subsets of
the lattice L(H) by the rule σ(M) := ILM. Then LI

M =
⋃

j≥1 σ
j(M).

Let F
(
[0,∞);L(H)

)
be the set of L(H)-valued functions of t. It is a lattice with

partial order, operations, and convergence defined pointwise:

{f ≤ g} ⇐⇒ {f(t) ⊆ g(t), t ≥ 0}, (f ∨ g)(t) := f(t) ∨ g(t),

(f ∧ g)(t) := f(t) ∩ g(t), (f⊥)(t) := (f(t))⊥, (lim fj)(t) := lim(fj(t)).

The least and the greatest elements of this lattice are the functions 0F and 1F identically
equal to {0} and H, respectively. If L ⊂ L(H) is a lattice, then the set F([0,∞);L)
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consisting of L-valued functions is also a lattice. If L is invariant under the isotony (of
the lattice) I, then the set of motone increasing functions

FI

(
[0,∞);L

)
:= {f(t) = ItL |L ∈ L}

is contained in F([0,∞);L). In what follows an important role will be played by its

completion FI([0,∞);L) ⊂ F([0,∞);L(H)), which is the set obtained by adding to
FI([0,∞);L) the limits of all converging sequences in FI([0,∞);L).

In the most general setting, let P be a partially ordered set with the least element 0.
The element ω ∈ P is called an atom if ω �= 0 and from 0 �= ω′ � ω it follows that ω′ = ω
(see [3]). By AtP we denote the set of all atoms of P.

Consider the system αL0
. Recall that its reachable sets are defined by (1.22); let

UL0
:= {UT

L0
}T≥0 ⊂ L(H) be the family of reachable subspaces (the closures of reachable

sets). The family UL0
and the wave isotony IL0

are determined by the operator L0. As

a consequence, this operator determines the (minimal) lattice LL0
:= L

IL0

UL0
that contains

all reachable subspaces and is invariant under IL0
. The lattice and the isotony determine

the set of functions FIL0
([0,∞);LL0

). Thus, there is a canonical correspondence between
the operator L0 and the set of atoms

ΩL0
:= AtFIL0

(
[0,∞);LL0

)
.

This set is called the wave spectrum of the operator L0 and is the main object of our
interest in this paper.

Certain additional assumptions about the operator L0 ensure that ΩL0
�= ∅, see [14].

There exist operators whose wave spectrum consists of a single point. In the general case
the question as to whether ΩL0

is nonempty remains open.
• Let us turn to the case of the Sturm–Liouville operator L0 given by (1.1) and look
at the objects defined above. In accordance with (1.25), the reachable subspaces of the
corresponding system α are U = {L2(Δ0,T )}T≥0. The action of the wave isotony I on
subspaces L2(Δa,b) is described by Lemma 2.

We say that a set E ⊂ sR+ is elementary if E =
⋃n(E)

j=1 Δaj ,bj , where 0 ≤ a1 < b1 <
a2 < b2 < · · · < an(E) < bn(E) ≤ ∞. Let E be the family of all elementary sets.

Obviously, the metric extension E �→ ET = {x ∈ sR+ | dist(x,E) < T} (see (2.6) and
(2.7)) maps elementary sets to elementary sets. We say that the subspaces L2(E) with
E ∈ E are elementary. The family of such subspaces forms the lattice LE ⊂ L(H).

Lemma 3. Under the conditions of Lemma 1, we have ITL2(E) = L2(E
T ) for every

E ∈ E .

Proof. The set E can be written as E =
⋃n(E)

j=1 Δaj ,bj . Owing to the isotony property

of IL0
, from Lemma 2 it follows that L2(Δ

T
aj ,bj

) = ITL2(Δaj ,bj ) ⊆ ITL2(E) for every

j = 1, 2, . . . , n(E), whence L2(E
T ) ⊆ ITL2(E). Arguing as in the first part of the proof

of Lemma 2, we conclude that VT
L2(E) ⊆ L2(E

T ), and, hence, IT (L2(E)) ⊆ L2(E
T ). �

It is important that E only contains unions of intervals of positive length (non-
degenerate): for a degenerate interval (like E = {x}, x ∈ R+) the equality ITL2(E) =
L2(E

T ) fails obviously.
The construction of the minimal lattice LM for M ⊂ L(H) as given above implies that

LU = LE . From Lemma 3 it follows directly that the lattice LE is invariant under the
wave isotony I, and, therefore, L = LI

U = LE .
Below, m stands throughout for Lebesgue’s measure on sR+, and

A�B := [A \B] ∪ [B \A]
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is the symmetric difference of the setsA and B. Let Leb(R+) be the σ-algebra of Lebesgue
measurable subsets of the half-line sR+.

Lemma 4. Let {En}∞n=1 be a sequence of sets belonging to Leb(R+), E ∈ Leb(R+).

Then L2(En)
L(H)−−−→ L2(E) as n → ∞ if and only if for every L > 0 we have

m((En �E) ∩ (0, L)) → 0 as n → ∞.

Proof. If L2(En)
L(H)−−−→ L2(E) as n → ∞, then the projections onto these subspaces

converge in the strong sense: PL2(En)
s−→ PL2(E). Then for every L > 0 we have

PL2(En)χ(0,L)
L2(R+)−−−−−→ PL2(E)χ(0,L), where χ(0,L) is the characteristic function of the

interval (0, L). This means that
∫ L

0
|χEn

(x) − χE(x)|2 dx = m((En � E) ∩ (0, L)) → 0
as n → ∞.

Now, suppose that for every L > 0 we have m((En�E)∩(0, L)) → 0 as n → ∞. Then

PL2(En)χ(0,L)
L2(R+)−−−−−→ PL2(E)χ(0,L). The linear span of the set {χ(0,L)|L > 0} is dense in

L2(R+). By the Banach–Steinhaus theorem we have PL2(En)
s−→ PL2(E) as n → ∞, and

this by definition means that L2(En)
L(H)−−−→ L2(E) as n → ∞. �

In accordance with the lemma, we define convergence in Leb(R+) as follows: a se-
quence {En}∞n=1 ⊂ Leb(R+) converges to E ∈ Leb(R+) if for every L > 0 we have
m((En � E) ∩ (0, L)) → 0 as n → ∞. Denote LLeb(R+) := {L2(E)|E ∈ Leb(R+)}.

Lemma 5. Under the conditions of Lemma 1 we have sL = LLeb(R+), where closure is
taken in the sense of convergence in L(H).

Proof. First, we show that sL ⊆ LLeb(R+). Let {L2(En)}∞n=1 be a sequence in L convergent
in the sense of the topology on L(H). We need to show that its limit A ∈ L(H) belongs
to LLeb(R+). The existence of the limit implies that for every L > 0 the sequence of
functions PL2(En)χ(0,L) = χEn∩(0,L) converges in L2(R+) and, therefore, is fundamental.
We have

‖χEn∩(0,L) − χEm∩(0,L)‖L2(R+) =

∫ L

0

|χEn
(x)− χEm

(x)|2 dx

= m((En ∩ (0, L))� (Em ∩ (0, L))).

(2.22)

For every L > 0 the function ρL(F,G) = m(F �G), F,G ∈ Leb(0, L), is a pseudometric
on Leb(0, L). The equivalence relation F ∼ F ′ whenever ρL(F, F

′) = 0 determines the
set of equivalence classes Leb∼(0, L), which is a complete metric space, see [7]. From
(2.22) it follows that the sequence {En ∩ (0, L)}∞n=1 is fundamental in Leb(0, L). Thus,
the sequence of equivalence classes {(En ∩ (0, L))∼}∞n=1 converges to some equivalence
class E∼(L). For L2 > L1 the intersection of every representative of the equivalence class
E∼(L2) with the interval (0, L1) belongs to the equivalence class E∼(L1). Hence, there
exists a set E ∈ Leb(R+) such that for every L > 0 one has E ∩ (0, L) ∈ E∼(L). This
exactly means that En → E as n → ∞ in the sense of the above definition, which by

Lemma 4 means that L2(En)
L(H)−−−→ L2(E) as n → ∞. Therefore, A = L2(E) ∈ LLeb(R+).

Now we show that L is dense in LLeb(R+). This is equivalent to the density of E in
Leb(R+) in the sense of the above definition. It suffices to show that for every L > 0
the set {E ∈ E|E ⊆ (0, L)} is dense in Leb(0, L) with respect to the pseudometric ρL.
Since every measurable subset of (0, L) can be approximated in ρL by open subsets of
(0, L), the open subsets are dense in Leb(0, L). Every bounded open set on the real line
is an at most countable union of nonintersecting open intervals such that the sequence
of their lengths is summable. Thus, every open subset of (0, L) can be approximated in
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the pseudometric ρL by a finite union of intervals, so that this allows us to approximate
every measurable subset of (0, L). Consequently, E is dense in Leb(R+). �

For x ≥ 0 denote

(2.23) ωx(t) := L2({x}t);

then ωx(t) is a monotone function of t with values in L(H), i.e., it is an element of
F
(
[0,∞);L

)
⊂ F

(
[0,∞);L(H)

)
.

Lemma 6. Under the conditions of Lemma 1, we have ωx ∈ Ω for every x ∈ sR+.

Proof. First, we show that ωx ∈ FI([0,∞);L). If x = 0, then for every t ≥ 0 we have

{0}t = [0, t) = lim
n→∞

(
0, t+

1

n

)
= lim

n→∞

(
0,

1

n

)t

,

where both limits are in the sense of convergence in Leb(R+). If x > 0, then, by (2.7),
for every t ≥ 0,

{x}t = lim
n→∞

(
max

{
0, x

(
1− 1

n

)
− t

}
, x

(
1 +

1

n

)
+ t

)

= lim
n→∞

(
x

(
1− 1

n

)
, x

(
1 +

1

n

))t

.

Hence, by Lemma 4, the corresponding subspaces converge as n → ∞ in L(H) for every

t ≥ 0, which means that ωx ∈ FI([0,∞);L).

Now we show that ωx is an atom of the lattice FI([0,∞);L). Suppose there exists

a nonzero element ω ∈ FI([0,∞);L) such that ω ≤ ωx. For every t ≥ 0 we can write

ω(t) = L2(E(t)) with some measurable set E(t) ⊆ {x}t. Since ω ∈ FI

(
[0,∞);L

)
, there

exists a sequence {En}∞n=1 in E such that for every t ≥ 0 we have It(L2(En))
L(H)−−−→

L2(E(t)) or, by Lemma 4, Et
n

Leb(R+)−−−−−→ E(t) as n → ∞. For δ ∈ (0, 1), denote Fn(δ) :=
En ∩ (x(1− δ), x(1 + δ)). For every t ≥ 0 we have the inclusion E(t) ⊆ {x}t. Thus, for
every L > 0 we have m

(
((Fn(δ))

t�E(t))∩ (0, L)
)
≤ m

(
(Et

n�E(t))∩ (0, L)
)
→ 0, which

means that (Fn(δ))
t Leb(R+)−−−−−→ E(t) as n → ∞.

For every set E ∈ E the derivative d(m(Et))
dt is equal to the number of positive edges of

the nonintersecting open intervals comprising the set Et. For the set Fn(δ) this number
is at least two for t < x(1− δ) and at least one for t ≥ x(1− δ), so that m((Fn(δ))

t) ≥
m(Fn(δ)) +min{2t, x(1− δ) + t}. Passing to the limit, for arbitrarily small δ > 0 we get
m(E(t)) ≥ min{2t, x(1− δ) + t}. This means that m(E(t)) ≥ min{2t, x+ t} = m({x}t)
and, since E(t) ⊆ {x}t, we have m(E(t)� {x}t) = 0 for every t ≥ 0. Therefore, every

nonzero element ω ∈ FI([0,∞);L) such that ω ≤ ωx coincides with ωx. Thus, ωx is an

atom of the lattice FI([0,∞);L). �

The following result characterizes the wave spectrum of the operator (1.1).

Theorem 1. Let L0 be the operator given by (1.1) with q satisfying conditions (1.2).
Then the set Ω is in one-to-one correspondence with the half-line sR+ :

Ω = {ωx |x ∈ sR+},

where the elements ωx are as defined in (2.23).
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Proof. By Lemma 6, {ωx |x ≥ 0} ⊆ Ω. To prove the reverse inclusion, take an atom
ω ∈ Ω. For every t ≥ 0 the subspace ω(t) has the form ω(t) = L2(E(t)), where E(t) is

some measurable set. Hence, there exists a sequence {En}∞n=1 in E such that Et
n

Leb(R+)−−−−−→
E(t) as n → ∞.

For every L > 0 we have Et
n ∩ (0, L + t)

Leb(R+)−−−−−→ E(t) ∩ (0, L + t) as n → ∞. There
exist t0 ≥ 0 and L0 > 0 such that m

(
E(t0) ∩ (0, L0 + t0)

)
> 0. Hence, there exists N0

such that m
(
Et0

n ∩ (0, L0 + t0)
)
> 0 for every n ≥ N0. Since

Et0
n ∩ (0, L0 + t0) =

(
En ∩ (0, L0 + 2t0)

)t0 ∩ (0, L0 + t0),

for every n ≥ N0 we have m((En ∩ (0, L0 + 2t0))
t0) > 0. We denote L1 := L0 + 2t0 and

Fn := En ∩ (0, L1). Since En ∈ E , we see that Fn contains no degenerate intervals; next,
Fn �= ∅ because m(F t0

n ) > 0. Therefore, Fn ∈ E and m(Fn) > 0.
For every L > 0 and n,m ∈ N we have

m
(
(F t

n � F t
m) ∩ (0, L)

)
= m

((
((En ∩ (0, L1))

t)� (Em ∩ (0, L1))
t
)
∩ (0, L)

)
≤ m

(
(Et

n � Et
m) ∩ (0, L)

)
.

Since the sequence {Et
n ∩ (0, L)}∞n=1 is fundamental in the pseudometric ρL for every

L > 0, the sequence {F t
n}∞n=1 is also fundamental in ρL. Thus, it has a limit, which we

denote by F (t) (the set F (t) is defined not uniquely, but up to a set of measure zero).
Since for every n ≥ N0 we have F (t) \ E(t) ⊆ (F (t) \ F t

n) ∪ (Et
n \ E(t)), whence

m
(
F (t) \E(t)

)
≤ m

(
(F (t) \ F t

n)
)
+m

(
(Et

n \E(t))
)
,

we obtain m(F (t) \ E(t)) = 0. Since ω is an atom, we see that ω(t) = L2(F (t)).
For every n ≥ N0 we have Fn ∈ E , Fn ⊆ (0, L1), m(Fn) > 0. For t > L1, from Lemma

3 it follows that F t
n = (0, supFn + t). The existence of the limit of F t

n as n → ∞ in
Leb(R+) means that for every ε > 0 there exists N1(ε) such that for every n,m ≥ N1(ε)
we have

m(F t
n � F t

m) = m([min{supFn, supFm}+ t,max{supFn, supFm}+ t))

= | supFn − supFm| < ε.

Therefore, {supFn}∞n=1 is a fundamental sequence of positive numbers. We denote its
limit by L2. For every ε > 0 there exists N2(ε) such that for every n ≥ N2(ε) we have
supFn ∈ (L2 − ε, L2 + ε). Then for t > ε the following inclusion is valid:(

max{0, L2 + ε− t}, L2 − ε+ t
)
⊆ F t

n.

Since F t
n

Leb(R+)−−−−−→ F (t), we have

m
(
(max{0, L2 + ε− t}, L2 − ε+ t) \ F (t)

)
≤ m

(
(max{0, L2 + ε− t}, L2 − ε+ t) \ F t

n

)
+m(F t

n \ F (t))

= m(F t
n \ F (t)) → 0 as n → ∞

and, consequently, m
(
(max{0, L2 + ε− t}, L2 − ε+ t) \ F (t)

)
= 0. Since this is true for

every ε ∈ (0, t), we get

m
(
(max{0, L2 − t}, L2 + t) \ F (t)

)
= m

(
{L2}t \ F (t)

)
= 0

for every t ≥ 0. Therefore, ω = ωL2
because ω is an atom. �

2.3. The space ΩL0
. We return to the case of a general L0. The wave spectrum, if it

is not empty, can be endowed naturally with certain structures.
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Topology. By definition, the atoms are L(H)-valued functions of time. Fix an atom
ω ∈ ΩL0

: ω = ω(t), t ≥ 0. The set

(2.24) Br[ω] := {ω′ ∈ ΩL0
| ∃ t > 0 : {0} �= ω′(t) ⊆ ω(r)} (r > 0)

is called a ball; ω and r are its center and radius.

Proposition 2. The system of balls {Br[ω] |ω ∈ ΩL0
, r > 0} is a base of some topology

on ΩL0
.

The proof was given in [2]; it checks the characteristic properties of a base. Thus, the
wave spectrum becomes a topological space.

There exist other natural topologies on ΩL0
. Relationships among them are yet to be

revealed, cf. [14]. The ball topology now seems to us the most relevant. However, its
general properties (the Hausdorff property, metrizability, etc.) have not been explored.

Metric. Under additional assumptions about atoms one can introduce a metric on ΩL0
.

Each atom ω ∈ ΩL0
: ω = ω(t), t ≥ 0, gives rise to a positive operator in H,

(2.25) τω :=

∫
[0,∞)

t dPω(t),

where Pω(t) is the projection onto the subspace ω(t) ⊆ H. We call it an eikonal ; this
term is motivated by applications, see [14, 2]. We introduce the distance

(2.26) τ : ΩL0
× ΩL0

→ [0,∞), τ (ω, ω′) := ‖τω − τω′‖.

Below we shall see that this definition can be consistent even in the case of an unbounded
τω. However, in the general case we cannot exclude the pathologic situation where τ = ∞.
How the ball topology is related to the topology that corresponds to the metric (2.26),
is also an open question.

The boundary. We return to the system αL0
and the family {UT

L0
}T≥0 ⊂ L(H) of its

reachable subspaces. The set of atoms

(2.27) ∂ΩL0
:=

{
ω ∈ ΩL0

|ω(t) ⊆ U t
L0
, ∀ t > 0

}
is called the boundary of the wave spectrum. Whether ∂ΩL0

is always nonempty, is an
open question.
• Let L0 be the Sturm–Liouville operator (1.1). Let

(2.28) β : sR+ � x �→ ωx ∈ Ω

be the canonical bijection established by Theorem 1. Below, dist(x, x′) = |x− x′| is the
standard distance in sR+.

Lemma 7. Let ω ∈ Ω be an atom. The eikonal corresponding to it is the unbounded
selfadjoint operator τω with the domain

Dom τω =

{
y ∈ L2(R+)

∣∣∣ ∫ ∞

0

(1 + x)2|y(x)|2 dx < ∞
}
.

Its action is multiplication by the distance:

(2.29) (τωy) (x) = dist(x, xω) y(x), x ∈ sR+,

where xω = β−1(ω).
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Proof. Pick a function y ∈ L2(R+) with compact support.
By Theorem 1 we have ω(t) = L2({xω}t), t ≥ 0. Hence, the operator Pω(t), which

projects L2(R+) onto L2({xω}t), acts by cutting functions to the neighborhood {xω}t:

(2.30)
(
Pω(t)y

)
(x) =

{
y(x) if dist(x, xω) < t

0 if dist(x, xω) > t.

Let T > 0 be such that supp y ⊂ {xω}T . Take a partition Ξ := {ti}Ni=0 : t0 <

t1 < · · · < tN of the interval {xω}T and points rti ∈ [ti−1, ti]. The quantity rΞ :=
max1≤i≤N (ti − ti−1) is the rank of the partition. By the definition of the integral, in
(2.25) we have

τωy = lim
rΞ→0

N∑
i=1

rti ΔiPω(t)y,

where ΔiPω(t) := Pω(ti) − Pω(ti−1) and convergence is in the L2(R+) norm. Since
ΔiPω(t)ΔjPω(t) = O for i �= j, the summands are pairwise orthogonal. By (2.30), they
are equal to

(
rti ΔiPω(t)y

)
(x) =

{
rtiy(x) if dist(x, xω) < ti − ti−1

0 if dist(x, xω) > ti − ti−1

.

In the first line we have rti = dist(x, xω)+O(rΞ) uniformly in x ∈ supp y and i = 1, . . . N .

Using the formula y =
∑N

i=1 ΔiPω(t)y and the orthogonality of summands, we get∥∥∥∥∥dist( · , xω) y −
N∑
i=1

rti ΔiPω(t)y

∥∥∥∥∥
2

=

∥∥∥∥∥
N∑
i=1

[
dist( · , xω)− rti

]
ΔiPω(t)y

∥∥∥∥∥
2

=
N∑
i=1

[
dist( · , xω)− rti

]2 ∥∥ΔiPω(t)y
∥∥2 = O(r2Ξ)

N∑
i=1

∥∥ΔiPω(t)y
∥∥2 = O(r2Ξ)‖y‖2.

Passing to the limit as rΞ → 0, we arrive at (2.29).
Closure extends τω from functions with finite support to the natural domain Dom τω ={

y ∈ L2(R+) |
∫∞
0

[1 + dist(x, xω)]
2|y(x)|2 dx < ∞

}
. The conditions y ∈ Dom τω and∫∞

0
(1 + x)2|y(x)|2 dx < ∞ are obviously equivalent. �

Corollary 1. The function (2.26) determines a metric on Ω; moreover,

(2.31) τ (ω, ω′) = dist(xω, xω′), ω, ω′ ∈ Ω.

Indeed,

τ (ω, ω′) = ‖τω − τω′‖ (2.29)
= sup

x∈sR+

| dist(x, xω)− dist(x, xω′)| = dist(xω, xω′).

From (2.31) we conclude that the bijection β is an isometry from sR+ (with the metric
dist) to Ω (with the metric τ ). The following facts can be seen from this.

Proposition 3. The balls (2.24) are identical with the balls corresponding to the τ -met-
ric: Br[ω] = {ω′ ∈ Ω |τ (ω, ω′) < r}, so that the ball topology on Ω coincides with the
metric topology. There exists a unique measure ν on Ω such that

(2.32) ν (Br[ω]) = m({xω}r) = r +min{r, xω}.
The boundary ∂Ω of the wave spectrum consists of the single atom ω0 = β(0). The
function τ : Ω → [0,∞), τ (ω) := τ (ω, ω0) = xω is a global coordinate on Ω.
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We omit the simple check of these facts. We only note that the fact that ∂Ω = {ω0}
follows from the definition of the boundary (2.27) and the relations

UT
(1.25)
= C∞

T (sR+) = L2(Δ0,T ) = L2({0}T ) = ω0(T ) (T ≥ 0),

the last of which was established in Theorem 1.
We write sR+[ · ] to specify the variable that we consider. The coordinatization

(2.33) Ω � ω �→ τ (ω) ∈ [0,∞) =: sR+[τ ]

makes the wave spectrum an isometric copy of the original half-line sR+[x]. Summarizing,
we see that the wave spectrum of the Sturm–Liouville operator on the half-line with the
defect indices (1, 1) is in fact identical to the half-line itself.

§3. The wave model

3.1. The spaces rH and Hw. Let L0 be an operator inH with a nonzero wave spectrum.
The wave model is devised to realize elements y ∈ H as functions ry( · ) on ΩL0

with values
in “natural” auxiliary spaces. A universal way to map y �→ ry( · ) was proposed in [14]
and is described below.

Germs. Fix ω ∈ ΩL0
: ω = {ω(t)}t≥0. Recall that Pω(t) is the projection onto ω(t)

in H. We say that elements y, y′ ∈ H coincide on ω (and write y
ω
= y′) if there exists

ε = ε(ω, y) > 0 such that Pω(t)y = Pω(t)y
′ for 0 ≤ t < ε. Obviously, coincidence on ω

is an equivalence relation. The corresponding equivalence class is called the germ of the
element y on the atom ω and is denoted by ry(ω). The set of germs Gω := {ry(ω) |y ∈ H}
forms the stalk above ω which obviously has the structure of a linear space.

We call the space of “functions” rH := {ry( · ) |y ∈ H} with algebraic operations defined
pointwise the model space and its elements ry are models of y ∈ H. Transition to the

model is realized by the operator W : H → rH, Wy := ry( · ). It is linear and, in known
applications, injective. The noninjectivity of W would mean the existence of a nonzero
y ∈ H and a function ε = ε(ω) such that y ⊥ ∨ω∈ΩL0

∨0≤t<ε(ω) ω(t), which could be
interpreted as the absence of completeness of the system of atoms. In the applications
that we know completeness occurs, but whether the same is true in the general case is
an open question.

The transition operator W has additional properties if the space rH is equipped with
a Hilbert structure. One of the ways to define such a structure is the following. Let
KerW = {0}. Take by definition (ry, rw)

rH := (y, w)H; then W is unitary. If KerW �= {0},
then by restricting W to H KerW we obtain a partial isometry. This trick is used in
the model theory (see, e.g., [10]); it is universal, but not very meaningful. Should some
canonical Hilbert structure be found in stalks Gω, then one could hope for realization

of H as rH = ⊕
∫
ΩL0

Gω dμ(ω) (with an adequate measure μ) such that W : H → rH
would be unitary. At present such a structure cannot be seen, but chances appear
under additional assumptions about atoms. The studied examples motivate the following
heuristic construction.

Values on atoms. Recall that in system (1.12)–(1.14) for every control h ∈ M there ex-
ists a corresponding classical solution uh ∈ C∞

loc([0,∞);H) called a smooth wave (see 1.4).
Such waves constitute reachable sets UT

L0
and UL0

(see (1.22)).
Suppose that the operator L0 is completely nonselfadjoint, so that the controllability

(1.24) occurs. Additionally assume that:
(A) there exists a subset Ωe of ΩL0

such that the system of atoms constituting Ωe is
complete, they all are continuous at zero, and ω(0) = limt→+0 ω(t) = {0};
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(B) there exists an element e ∈ H such that the limits limt→+0
‖Pω(t)u‖
‖Pω(t)e‖ exist and are

finite for every u ∈ UL0
, ω ∈ Ωe. We call such e a gauge element.

In the general case, the existence of gauge elements is not proved; however, in examples
they can be found, and it is even possible to choose e ∈ KerL∗

0. The linear space UL0

can be called the smooth structure determined by L0, owing to the role of condition (B)
that will be seen below.

Fix ω ∈ Ωe; let rUL0,ω := {ru(ω) |u ∈ UL0
} ⊂ Gω be the linear space of germs of smooth

waves. On it, we define the following sesquilinear form:

(3.1) 〈ru(ω), ru′(ω)〉 := lim
t→+0

(Pω(t)u, u
′)

(Pω(t)e, e)
, u, u′ ∈ UL0

, ω ∈ Ωe.

Consider its (linear) subset rU 0
L0,ω

:= {ru(ω) |u ∈ UL0
, 〈ru(ω), ru(ω)〉 = 0} and the factor

space UL0,ω := rUL0,ω/ rU 0
L0,ω

; let [u](ω) denote the equivalence class of the element ru(ω).

We call [u](ω) the value of the wave u ∈ UL0
on the atom ω. The form (3.1) induces

a natural pre-Hilbert structure on UL0,ω. Taking completion with respect to the corre-
sponding norm, we obtain the Hilbert space of values. We keep the notation UL0,ω for it.
It should be noted that every wave u ∈ UL0

can be represented as u = uh(T ), and so
evolution of waves in system (1.12)–(1.14) is reflected in evolution of values [uh](ω, T )
on the atoms ω ∈ Ωe.

The wave representation. In addition to (A) and (B), we make another assumption:
(C) there exists a measure μ on ΩL0

such that μ(ΩL0
\ Ωe) = 0 and

(3.2) (u, u′)H =

∫
ΩL0

〈
[u](ω), [u′](ω)

〉
dμ(ω), u, u′ ∈ UL0

.

In all examples we know such measures can be found. It is not known whether conditions
(A) and (B) guarantee the existence of μ in the general situation.

We call the space Hw := ⊕
∫
ΩL0

UL0,ω dμ(ω) the wave representation of the original H.

From the definitions it is clear that the operator U : H → Hw,

H ⊃ UL0
� u

U�→ [u]( · ) ∈ Hw,

which realizes this representation, is isometric and extends up to a unitary operator from
UL0

to the entire H. U acts by applying W and factorizing the germs.
The passage from germs ru to values [u]( · ) is aimed at the following. In all known ex-

amples, describing elements of H by sections of the bundle
⋃

ω∈ΩL0
{ω,Gω} is redundant.

Passing to values removes this redundancy, owing to factorization. We show this in the
example of the Sturm–Liouville operator.
• Let L0 be the operator (1.1). In this case H = L2(R+).

Germs. Pick an atom ω ∈ Ω. Let y, y′ ∈ H be two functions. By Theorem 1, y
ω
= y′

means that y and y′ coincide in some neighborhood of the point xω ∈ sR+. Thus, the
germ ry(ω) can be identified canonically with the usual germ of the function y( · ) at the
point xω, and the model space rH with the stalk of square-integrable functions above xω.
Then, the stalks Gω are spaces of infinite dimension.

From the same Theorem 1 it easily follows that the system of atoms composing the
wave spectrum Ω is complete. Thus, the operator W : y �→ ry is injective. At the same
time, since dimGω = ∞, modeling scalar functions y by the elements of the germ ry is
obviously redundant. This motivates the passage from germs to values.
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Values. In our case condition (A) is satisfied.
We check condition (B). The set of smooth waves is U = C∞

fin(
sR+), see (1.25). Recall

that the function φ is the solution of problem (1.3). Pick a nonzero element e ∈ KerL∗
0.

By (1.4), we have e = cφ with some constant c �= 0. In accordance with the general
theory of ordinary differential equations, the function e is smooth and may only have
simple zeros accumulating only to ∞. Denote Ne := {x ∈ R+ |e(x) = 0}.

Let ω = {ω(t)}t≥0 : ω(t) = L2({xω}t) be an atom such that xω �∈ Ne. For the smooth
waves u, u′ ∈ U we have

(3.3)
(Pω(t)u, u

′)

(Pω(t)e, e)
=

∫
{xω}t u(x)u′(x) dx∫
{xω}t e(x)e(x) dx

−→
t→+0

(
u(xω)

e(xω)

)(
u′(xω)

e(xω)

)
.

Thus, the function e fits for the role of the gauge element. Taking Ωe = ΩL0
\ {ω |xω ∈

Ne}, we conclude that condition (B) is satisfied.

By (3.3), for the germs ru(ω), ru′(ω) ∈ rUω ⊂ Gω we have

(3.4) 〈ru(ω), ru′(ω)〉 =

(
u(xω)

e(xω)

)(
u′(xω)

e(xω)

)
.

Clearly, the condition ru(ω) ∈ rU 0
ω , which by definition means that 〈ru(ω), ru(ω)〉 = 0, is

equivalent to u(xω) = 0. It also follows that the correspondence

(3.5) Uω = rUω/ rU 0
ω � [u](ω) �→ lim

t→+0

(Pω(t)u, e)

(Pω(t)e, e)
=

u(xω)

e(xω)
∈ C

is an isometry. Thus, for ω ∈ Ωe the space of values Uω is one-dimensional. The same
correspondence gives the canonical coordinatization of Uω. Other coordinatizations are

also possible and have the form [u](ω) �→ eiθ(ω) u(xω)
e(xω) with real-valued functions θ( · ).

The wave representation. Recall that the measure ν is defined in Proposition 3. For
the smooth waves u, u′ ∈ U we have

(u, u′) =

∫
R+

u(x)u′(x) dx =

∫
R+

(
u(xω)

e(xω)

)(
u′(xω)

e(xω)

)
|e(x)|2 dx

(3.4),(3.5)
=

∫
Ω

〈[u](ω), [u′](ω)〉 dμ(ω),

where μ(ω) := |e(xω)|2dν(ω). Thus, condition (C) is satisfied, and the correspondence

(3.6) H = L2(sR+) � u
U�→ [u]( · ) ∈ L2, μ(Ω) =: Hw

is an isometry. It is defined on smooth waves and extends from U up to a unitary operator
U : H → Hw, which gives the wave representation of the elements of the original H.

The coordinate representation. Coordinatizations of the spectrum (2.33) and of the
value spaces (3.5) determine an isometry

(3.7) Hw � [u]( · ) V�→ u[ · ] ∈ L2, ρ(sR+[τ ]) =: Hc,

where [u](τ ) := u(τ)
e(τ) and dρ := |e(τ )|2dτ . This gives the wave representation of elements

of the space Hw.
The composition Y := V U , Y : H → Hc extends from smooth waves up to a unitary

operator that takes functions in the original L2

(
sR+[x]

)
to functions in L2, ρ(sR+[τ ]) by

the rule

(3.8) (Y y) (τ ) = y[τ ] :=
y(τ )

e(τ )
, τ ≥ 0.
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The obvious similarity of the original space to the space of coordinate representation
and the simplicity of the correspondence y �→ y[ · ] are important facts used for solving
inverse problems.

3.2. The operator rL∗
0. Now we return to the general case considered at the begin-

ning of Subsection 3.1. Assume that the controllability sUL0
= H occurs and the op-

erator of transition to the model W is injective. In this situation the set of pairs{
{Wu,WL∗

0u} |u ∈ UL0

}
is a graph of an operator acting in the model space rH. We

call this operator the wave model of the operator L∗
0 and denote it by rL+

0 . Note that it
would be more consistent to talk about the model not of L∗

0 itself, but rather of its wave
part L∗

0|UL0
(see the remark in Subsection 1.4). We ignore this inaccuracy in order not

to overload terminology.
Since every smooth wave is u = uh(T ) and

L∗
0u

h(T )
(1.12)
= −uh

tt(T )
(1.16)
= −uhtt(T ),

the wave model can be defined as the operator with the graph

graph rL+
0 =

{
{Wuh(T ),−Wuhtt(T )} |h ∈ M, T ≥ 0

}
.

It is hard to expect the model to have rich properties in such generality. Its locality can

be conjectured: if ry ∈ Dom rL+
0 and ry|A = 0 on an open set A ⊂ ΩL0

, then rL+
0 ry|A = 0.

In the known examples locality does occur.
If the wave representation (3.6) is defined, then the corresponding version of the wave

model appears, L+
0w := UL∗

0|UL0
U∗, which acts in the space Hw. It is defined by its

graph

graphL+
0w =

{
{Uuh(T ),−Uuhtt(T )} |h ∈ M, T ≥ 0

}
.

• In the case of the Sturm–Liouville operator, the coordinate realization of the wave
model L+

0 c := Y L∗
0|UL0

Y ∗ is defined consistently. It acts in the space Hc = L2, ρ(sR+[τ ]),
is defined by its graph

graphL+
0 c =

{
{Y uh(T ),−Y uhtt(T )} |h ∈ M, T ≥ 0

}
and, by (1.4) and (3.8), is the differential operator

(
L+
0 cy[ · ]

)
[τ ] =

{
1

e(τ )

(
− d2

dτ2
+ q(τ )

)
e(τ )

}
y[τ ]

= −y′′[τ ] + p(τ ) y′[τ ] +Q(τ )y[τ ], τ ≥ 0, τ ∈ Ωe.

(3.9)

with the coefficients

p(τ ) := −2
e′(τ )

e(τ )
, Q(τ ) := q(τ )− e′′(τ )

e(τ )
.(3.10)

This operator is not closed, but its closure L∗
0 c = L+

0 c is unitarily equivalent to the
operator L∗

0 by the remark at the end of Subsection 1.5. The construction of the canon-
ical Green system as in Subsection 1.3 results in the following (recall that (Y y)(τ ) =
y(τ)
e(τ) , (Y ∗y)(τ ) = y(τ )e(τ )):

Kc = Y K = {const},
Γ1 c = Y Γ1Y

∗ : y �→ −y(0),

Γ2 c = Y Γ2Y
∗ : y �→ y′(0)

η′(0)
.

(3.11)
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3.3. The inverse problem. The functional model rL+
0 gives a unified approach to a

rather wide class of boundary inverse problems. Putting off generalizations, we demon-
strate the idea of the approach with our example.
• Auxiliary model. Consider the boundary value problem

− ψ′′ + qψ = λψ, x > 0,(3.12)

ψ(0) = 0, ψ′(0) = 1.(3.13)

Its solution ψ = ψ(x, λ) is a function that is smooth in x and entire in λ ∈ C. In

particular, for q = 0 we have ψ = sin
√
λ x√
λ

.

Our operator L0 has defect indices (1, 1). Therefore, there exists a unique spectral
function σ such that the formulas

qy(λ) =

∫ ∞

0

y(x)ψ(x, λ) dx, y(x) =

∫ ∞

−∞
qy(λ)ψ(x, λ) dσ(λ)

establish an isometry of the spaces L2(R+[x]) and L2, σ(R[λ]) (see [9, Chapter VIII]). In
other words, the operator Φ: y �→ qy is unitary.

Let us find the Φ-representation of waves corresponding to problem (1.17)–(1.19) with

a smooth control f ∈ Ṁ. For quf ( · , t) = Φuf ( · , t), using the finiteness of the support of
uf ( · , t), we have:

quf
tt(λ, t) =

∫ ∞

0

uf
tt(x, t)ψ(x, λ) dx

(1.17)
=

∫ ∞

0

[
uf
xx(x, t)− q(x)uf (x, t)

]
ψ(x, λ) dx

= −uf
x(0, t)ψ(0, λ) + uf (0, t)ψ′(0, λ) +

∫ ∞

0

uf (x, t) [ψ′′(x, λ)− q(x)ψ(x, λ)] dx

(1.17),(1.19),(3.12),(3.13)
= f(t)− λ

∫ ∞

0

uf (x, t)ψ(x, λ) dx = f(t)− λquf (λ, t).

Integrating and using (1.18), we see that

(3.14) quf (λ, t) =

∫ t

0

λ− 1
2 sin[λ

1
2 (t− s)]f(s) ds, t ≥ 0.

For the inverse problem the operator qL+
0 := ΦL∗

0|U Φ∗ plays the role of an auxiliary
model of the original L∗

0. It acts in L2, σ(R[λ]) by the rule

qL+
0 quf (λ, t) =

[
L∗
0u

f ( · , t)
]
q

(λ) = −[uf
tt( · , t)]q(λ) = −[uftt( · , t)]q(λ)

= −quftt(λ, t)
(3.14)
= −

∫ t

0

λ− 1
2 sin[λ

1
2 (t− s)]f ′′(s) ds

(3.15)

and is defined by its graph

(3.16) graph qL+
0 =

{
{quf (λ, T )− quftt(λ, T )} | f ∈ Ṁ, T ≥ 0

}
.

Recovering the potential. The classical inverse spectral problem for the Sturm–
Liouville operator on the half-line is to determine the potential q

∣∣
x∈sR+

from the given

spectral function σ
∣∣
λ∈R

(see [9, Chapter VIII]). To solve this problem, we can use the
following approach.

Step 1. Using (3.14) and (3.15), we find the operator qL+
0 in the space L2, σ(R[λ]) from

its graph (3.16).

Step 2. We construct the wave model of the operator qL+
0 and consider its coordinate

realization. Owing to the invariance of the construction of the wave model, this leads to
the operator L∗

0 c acting in L2, ρ(R+[τ ]).
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Step 3. The representation (3.9) allows us to find the coefficients p and Q. From (3.10)

we get e(τ ) = C exp
{
−
∫ τ

0
p(s)
2 ds

}
. Finally, we recover q(τ ) = Q(τ ) + e′′(τ)

e(τ) .

Since the construction of the wave model is not simple, this approach is, of course, too
involved compared to the classical procedure that involves the Gelfand–Levitan equation,
see [9]. In the present paper we only want to demonstrate, on a relatively simple example
of the Sturm–Liouville operator, the construction in all details and to show how it solves
inverse problems.

At the same time, the wave model has some advantages. It can be used for solving
problems with any data, whenever they determine the operator L0 (or, equivalently, L∗

0)
up to unitary equivalence. The spectral data, scattering data, Weyl function, characteris-
tic function (see [10, 16, 18]) can be viewed as such. The universality of the model makes
it unnecessary to convert the data of one type into another. Moreover, the wave model
is efficient for recovering objects of greater complexity, namely, Riemmanian manifolds
[14].

In the future we plan to study the construction of the wave model itself, as well as
its possible applications. It would be of interest to construct, on the basis of the wave
model, a functional model of an abstract Green system GL0

, see Subsection 1.3. This
interest is motivated by the existence of the boundary of the wave spectrum (2.27).

There are relationships, which deserve to be studied, between the wave model and
operator C∗-algebras, see [15]. The source of these relationships is the correspondence
ω ↔ τω between atoms and eikonals, see (2.25).
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