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FUNCTIONAL DIFFERENCE EQUATIONS IN THE PROBLEM

ON THE FORCED OSCILLATIONS OF A FLUID IN AN INFINITE

POOL WITH CONICAL BOTTOM

M. A. LYALINOV

Dedicated to the memory of V. S. Buslaev

Abstract. The model problem under study concerns the stationary forced oscil-
lations of a fluid of small amplitude under the action of the field of gravity in an
infinite pool with sources located on its conical bottom with infiltration. A classical
solution of that problem is studied in the linear approximation. By the use of the
Mellin transform and expansion in spherical functions, the problem is reduced to a
set of systems of functional difference equations with meromorphic coefficients that
are combinations of associated Legendre functions and their derivatives. Then, the
problem on systems of difference equations reduces to singular integral equations.
For this, in particular, solutions of some auxiliary first order functional equations
with meromorphic coefficients are computed. It is shown that the system of integral
equations in question is Fredholm with index zero. Within some assumptions, the
classical solution of the problem exists and is unique. Some estimates of the classical
solution in the vicinity of the conic point and at infinity are obtained.

§1. Introduction. Nonstationary problem

The object of study is a linearized model of the forced oscillations of a fluid in the
gravitation field, see [1]. The movement of the fluid is assumed to be irrotational and
having small amplitude of oscillations. The fluid is assumed to be incompressible, non-
viscous, and such that the forces of the surface tension can be neglected. The fluid fills
in the domain W (Figure 1) between the free surface F and the conical bottom B. The
vertex of the cone belongs to F . The symmetry axis OZ is directed vertically downwards
along the vector of the gravity force.

The fluid movement is described by the velocity potential U(X,Y, Z, t), where t is time

and X,Y, Z are the Cartesian coordinates (as in Figure 1); the velocity �V of movement
is related to the potential by the formula

�V (X,Y, Z, t) = ∇U(X,Y, Z, t).

The velocity potential satisfies the Laplace equation in W , see [1]:

ΔU(X,Y, Z, t) = 0,

where Δ = ∂2
X + ∂2

Y + ∂2
Z , t > 0, and the dynamic boundary condition on the free

surface F (Z = 0, X �= 0, Y �= 0):

Utt − g UZ = 0, t > 0,
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Figure 1. Oscillations of fluid in a pool with conic bottom

where g is the gravitational acceleration1.
The boundary condition on the conic surface of the bottom B takes the form

Un + η−1 Ut = F , t > 0,

where Un is the derivative of the potential with respect to the normal toB directed intoW
and F is the distribution of sources on the bottom (the acting force). Next, the potential
and its t-derivative are assumed to satisfy U(X,Y, 0, 0) = 0 and Ut(X,Y, 0, 0) = 0, i.e.,
are assumed to be zero on F at the initial moment t = 0 (the free surface is immovable
and occupies the position of equilibrium at the initial moment). The boundary condition
on the bottom requires a comment. The summand η−1 Ut is responsible for the process
of infiltration of the fluid across the surface of the bottom, the parameter η specifies
the ‘velocity’ of infiltration. In practice, the quantity η−1 turns out to be small and the
infiltration effect is negligible. In the model of rigid bottom, this term is absent, and,
formally, η−1 = 0. Note that the density of energy is assumed to be locally integrable,
also in the vicinity of the conic point.

The acting force F = F(s, t) is equal to zero for t < 0, s ∈ B. Provided the source
acts for t > 0 as

F(s, t) = Re
{
exp(−iΩt) f(s)

}
,

where Ω is the constant circular frequency, it is natural to expect that, for sufficiently
large t, the potential of the steady oscillations can be described by the function

U(X,Y, Z, t) = Re
{
exp(−iΩt) u(X,Y, Z)

}
,

where u(X,Y, Z) is a complex-valued harmonic function describing the stationary os-
cillations of the fluid. Formulation and investigation of the problem for the potential
u(X,Y, Z), and the study of the corresponding systems of functional equations are the
principal subjects in the present paper.

It should be noted that in the nonstationary formulation the problem under study has
some relationship with the description of the initial stage of development of a tsunami
wave, see [2], generated by sources F = F(s, t) on the bottom, when it runs over a
shallow of a conical shape in the ocean. Thus, in linear approximation, the deviation
H = H(X,Y, t) of the free surface from the equilibrium position Z = 0 is related to the
potential by the formula

H(X,Y, t) = −g−1Ut(X,Y, 0, t).

This quantity describes the shape of the gravitational oscillations of the surface of the
fluid arising under the influence of the sources on the bottom B. Although such a model

1An inhomogeneous boundary condition on F could also be considered by the incorporation of an
inhomogeneity term H into the right-hand side of the boundary condition.
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seems to be oversimplified for the description of a tsunami wave, from the mathematical
point of view it leads to substantial constructions. In particular, in the stationary forced
oscillations problem, we meet the necessity of the study of systems of functional-difference
equations with meromorphic coefficients.

A new circumstance in this work is that the meromorphic coefficients of our functional
difference equations are given by rational combinations of special functions, the associ-
ated Legendre functions and their derivatives. This leads to some technical complications,
which nevertheless can be overcome. We remark that, lately, functional difference equa-
tions have been arising in various problems of theoretical and mathematical physics, see
[3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], so that various new analytic and asymptotic methods
are needed for their study.

The problem treated in the next section is closely related to the study of solutions
of elliptic problems in a domain with piecewise smooth boundary, see [14]. However,
contrary to the monograph [14], where elliptic problems in a cone with “ideal” boundary
Dirichlet or Neumann conditions were considered, in this paper we deal with boundary
conditions of the third kind on the boundary of the domain W , depending on the scalar
parameters called surface impedances in physics. The study of the asymptotics of the
problem’s solution in the vicinity of the conic point and at infinity reduces to the inves-
tigation of a system of functional difference equations with meromorphic coefficients. It
should be noted that precisely the a system of functional difference equations that arises
in the context of the problem on forced oscillations of a fluid in a cone-shaped pool is
the principal object of study in this paper. Apparently, depending on the character of
the questions under study, elliptic problems in the cone-shaped domain with impedance
type boundary conditions also admit investigation with the help of methods described in
the monograph [14].

In §2, the problem of stationary forced oscillations of a fluid in the domain W is for-
mulated and the uniqueness of a classical rapidly vanishing solution is proved. In §3, the
Mellin transformation is exploited in order to separate the radial variable, and the prob-
lem for the Mellin transform is formulated in a layer of the unit sphere, with boundary
conditions on the circles of the layer that are nonlocal with respect to the separation
parameter. The Mellin transform in question is assumed to be a meromorphic function
with respect to the separation parameter, and it is sought in the form of an expansion in
spherical functions with undetermined coefficients. Substitution of that expansion into
the boundary conditions on the boundaries of the layer leads to a system of functional
difference equations for the unknown coefficients, which are meromorphic functions of
the separation parameter. In its turn, the problem for the system of functional difference
equations reduces further in §4, where, in particular, some auxiliary first order func-
tional difference equations are solved, and zeros of some combinations of the associated
Legendre functions and their derivatives are studied in connection with these equations.
In §5, the desired solutions of the reduced functional difference equations are represented
in terms of their values on the imaginary axis, and a system of singular integral equations
on the imaginary axis is deduced for the unknown solutions. This system of singular in-
tegral equations is studied in §6. Its Fredholm property is proved and the index is shown
to be zero. Under some conditions on the distribution of sources, the singular integral
equations in question admit a unique solution in a required class, so that the classical
solution of the problem also exists, which is demonstrated in the §7. For this, in par-
ticular, the behavior of the classical solution for the problem on the stationary forced
oscillations is studied in the vicinity of the conic point and at infinity.



270 M. A. LYALINOV

§2. The problem on stationary forced oscillations of a fluid

and the uniqueness of a rapidly decaying solution

We introduce the spherical coordinates

X = r cosϕ sin θ, Y = r sinϕ sin θ, Z = r cos θ

in the domain W occupied by the fluid, ω = (θ, ϕ),

W =
{
(r, ω) : r > 0, −π < ϕ ≤ π, θ1 < θ <

π

2

}
,

θ = θ1 is the equation of the surface B of the bottom, 0 < θ1 < π
2 .

The potential u(r, θ, ϕ) of the stationary oscillations we are looking for satisfies the
Laplace equation

Δu(r, θ, ϕ) = 0,

Δ =
1

r2
∂

∂r
r2

∂

∂r
+

1

r2
Δω, Δω =

1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2
,

(1)

in W , the Steklov boundary condition on the free surface F (θ = π
2 ),

(2)

(
1

r

∂

∂θ
u(r, θ, ϕ)−K u(r, θ, ϕ)

)∣∣∣∣
θ=π

2

= 0,

where the parameter K = Ω2

g is positive, and the following boundary condition on the

surface of the bottom:

(3)

(
1

r

∂

∂θ
u(r, θ, ϕ)− iκ u(r, θ, ϕ)

)∣∣∣∣
θ=θ1

= f(r, ϕ),

κ = Ω/η > 0. Note that 1
r
∂u
∂θ

∣∣
θ=π

2

= − ∂u
∂Z

∣∣
F
. We want to find a classical solution of

(1)–(3) that is 2π-periodic with respect to ϕ,

(4) u(r, θ, ϕ) = u(r, θ, ϕ+ 2π),

and satisfies the Meixner condition at the vertex O of the conical domain W . These
conditions can be written in the form

(5) |u(r, θ, ϕ)| ≤ const rδ, r|∇u(r, θ, ϕ)| ≤ const rδ,

uniformly with respect to the angular variables for some δ > − 1
2 . The function f(r, ϕ)

describes the sources on the bottom and is 2π-periodic in ϕ. The fact that this function
has compact support with respect to r and ϕ is natural from the point of view of physical
applications. Keeping this in mind, below we formulate, nevertheless, not so restrictive
conditions on the set of sources f .

At infinity (r → ∞), the conditions

(6) |u(r, θ, ϕ)| ≤ C r−q, |r∇u(r, θ, ϕ)| ≤ C r−q, q > 0,

are satisfied uniformly in ω = (θ, ϕ) ∈ Σ, Σ = S2 ∩ W , S2 is the unit sphere with the
center at O.2

We say that a classical solution is rapidly decaying if in (6) we have

(7) q > 1.

It turns out that, provided a rapidly decaying classical solution of problem (1)–(6)
exists, it is unique.

Theorem 2.1. If a classical solution u = u(r, θ, ϕ) of the homogeneous problem (1)–(6)
(f = 0, K > 0, κ �= 0) is rapidly decaying in the sense of (7), then u ≡ 0.

2We call the domain Σ the ‘layer on the unit sphere’.
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Indeed, we employ Green’s formula with integration over the domain Wρ,R = W ∩
(bR \ bρ), where ba = {r < a} is the ball of radius a with center at the origin, R > ρ > 0.
Using the equation, we have

0 =

∫
Wρ,R

Δu su dX dY dZ = −
∫
Wρ,R

|∇u|2 dX dY dZ +

∫
∂Wρ,R

∂u

∂n
sudS,

where n is the external normal to ∂Wρ,R. The homogeneous boundary conditions on F
and B yields

−
∫
Wρ,R

|∇u|2 dX dY dZ +K

∫
Fρ,R

|u|2 dS − iκ

∫
Bρ,R

|u|2 dS

+

∫
Σρ

∂u

∂n
sudS +

∫
ΣR

∂u

∂n
su dS = 0,

where Fρ,R and Bρ,R are the parts of the surfaces F and B (respectively) that are in
the interior of the sphere ΣR and in the exterior of the sphere Σρ. Letting ρ → 0 and
R → ∞ and using the Meixner conditions (5) and conditions (6) and (7) at infinity in
the last two integrals respectively, we arrive at the relation∫

W

|∇u|2 dX dY dZ −K

∫
F

|u|2 dS + iκ

∫
B

|u|2 dS = 0.

Separating the real and imaginary parts in this identity, we see that∫
W

|∇u|2 dX dY dZ = K

∫
F

|u|2 dS

and

κ

∫
B

|u|2 dS = 0.

The latter identity implies

u|B = 0,

and from the homogeneous boundary condition on the bottom we have

∂u

∂n

∣∣∣
B
= 0.

Should the surface B be internal and located in W , the uniqueness theorem for the
Cauchy problem (see [15, pp. 165–166]) for an elliptic equation would imply that u ≡ 0
in our problem. We extend u by zero to the interior of the cone bounded by B. The
function u becomes harmonic in the half-space Z > 0 (see [16]). Now the fact that u ≡ 0
follows from the result of [15] mentioned above.3

Remark 2.2. The restrictions imposed on the impedances K > 0, κ �= 0 are essential. If
κ = 0, then, as was shown in [12], the corresponding homogeneous problem (1)–(6) has
nontrivial kernel of decaying solutions for any K > 0. Therefore, the impedance κ can
be viewed as a parameter regularizing the problem.

§3. Separation of the radial variable in the layer Σ on the unit sphere

We seek the solution u(r, ω) in W in the form of the Mellin integral

(8) u(r, ω) =
1

2πi

∫ c+i∞

c−i∞
uν(ω) r

ν− 1
2 dν,

3The author is grateful to A. A. Fedotov for his remark, which enabled us to simplify the proof.



272 M. A. LYALINOV

where c is a constant. The inverse transform has the form

(9) uν(ω) =

∫ ∞

0

u(r, ω) r−ν− 1
2 dr.

For any ω ∈ Σ, the Mellin transform uν(ω) is regular (holomorphic) with respect to ν
in the strip Π(1/2 − b, 1/2 + a), where we have used the notation Π(x1, x2) = {ν ∈ C :
x1 < Re(ν) < x2}. The constants a and b specify the width of the regularity strip, and
1/2 − b < c < 1/2 + a, where a ≥ δ, b ≥ q (see (5) and (6)). In accordance with the
properties of the Mellin transformation, see [17], we obtain the estimates

|u(r, θ, ϕ)| ≤ C ra

as r → 0 and

|u(r, θ, ϕ)| ≤ C r−b

as r → ∞, with a constant C independent of ω = (θ, ϕ). We assume that uν(ω) is twice
continuously differentiable with respect to (θ, ϕ) ∈ Σ (see Figure 2) for all regular values
of ν and meromorphic with respect to ν for all ω ∈ Σ. Moreover, we assume that

uν(ω) → 0, |ν| → ∞,

in the strip Π(1/2 − b, 1/2 + a) uniformly with respect to ω ∈ Σ, so that the Mellin
transform and the inverse formula exist.

Substituting (8) in equation (1), we get

Δu =

(
∂2

∂r2
+

2

r

∂

∂r
+

1

r2
Δω

)
1

2πi

∫ +i∞

−i∞
uν(ω) r

ν− 1
2 dν

=
1

2πi

∫ +i∞

−i∞

(
Δωuν(ω) +

[
ν2 − 1

4

]
uν(ω)

)
rν−

5
2 dν = 0.

Obviously, whenever uν(ω) satisfies the equation

(10)

(
Δω + ν2 − 1

4

)
uν(ω) = 0,

ω ∈ Σ, the original u(r, θ, ϕ) is a solution of the Laplace equation.

S2

Σ

� O

Figure 2. A spherical layer
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We turn to the boundary conditions. Substituting the Mellin transform to the condi-
tion on the free surface, we obtain

1

2πi

∫ +i∞

−i∞

(
∂uν(ω)

∂θ
rν−

3
2 −Kuν(ω) r

ν− 1
2

)
dν

∣∣∣∣
θ=π

2

=

{
1

2πi

∫ +i∞−1

−i∞−1

∂uν+1(ω)

∂θ
rν−

1
2 dν − 1

2πi

∫ +i∞

−i∞
Kuν(ω) r

ν− 1
2 dν

}∣∣∣∣∣
θ=π

2

= 0,

where we have changed the integration variable ν − 1 �→ ν in the first summand. We
deform the straightlinear integration contour (−i∞−1,+i∞−1) into the imaginary axis,

assuming that no poles of ∂uν+1(ω)
∂θ

∣∣∣
θ=π

2

are intersected in this case. This assumption,

i.e., the regularity of ∂uν+1(ω)
∂θ

∣∣
θ=π

2

in the strip Π(−ε − 1, ε) for some small ε > 0, is

viewed as an additional constraint for the class of transforms uν(ω) described above.
Therefore, the boundary condition (2)

1

2πi

∫ +i∞

−i∞

(
∂uν+1(ω)

∂θ
−Kuν(ω)

) ∣∣∣∣
θ=π

2

rν−
1
2 dν = 0,

is fulfilled provided

(11)

(
∂uν+1(ω)

∂θ
−Kuν(ω)

) ∣∣∣∣
θ=π

2

= 0.

Remark 3.1. The boundary condition (11) is nonlocal with respect to the parameter ν
of separation of variables, which reflects the fact that no separation of the radial and
angular variables is possible in the mixed boundary condition in the traditional meaning
of this term.

Proceeding similarly with the boundary condition on the bottom, we assume the

regularity of ∂uν+1(ω)
∂θ

∣∣
θ=θ1

in the strip Π(−ε− 1, ε) for some small ε > 0. We have

(12)

(
∂uν+1(ω)

∂θ
− iκ uν(ω)

) ∣∣∣∣
θ=θ1

= ψν(ϕ).

In (12), the right-hand side ψν(ϕ) is the Mellin transform of the function of source f(r, ϕ),
which we simply call ‘source’ as well.

We need to obtain a more detailed description of the class of rapidly decaying sources
f , i.e., such that as r → ∞ we have |f(r, ϕ)| ≤ O(r−1−ε) uniformly in ϕ ∈ (0, 2π] for
some small ε > 0. Precisely such sources are considered in this paper. Let a source be
represented by the integral

(13) f(r, ϕ) =
1

2πi

∫ +i∞

−i∞
ψν(ϕ) r

ν− 1
2 dν,

then the inverse transform is

(14) ψν(ϕ) =

∫ ∞

0

f(r, ϕ) r−ν− 1
2 dr.

For any ϕ ∈ (0, 2π], the Mellin transform ψν(ϕ) of a rapidly decaying source is regular
(holomorphic) with respect to ν in the strip Π(−1/2 − ε, 1 + ε), ε > 0, satisfies the
estimate4

(15) |ψν(ϕ)| ≤ C |ν|−3/2−δ1 , δ1 > 0,

4This restriction is related to the smoothness of f and is of technical nature: it could be relaxed
should it be necessary for some applications.
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in that strip uniformly in ϕ, and extends up to a meromorphic function on the entire
complex plane. The transform is a 2π-periodic function of ϕ and is represented by a
trigonometric polynomial

ψν(ϕ) =

N∑
n=−N

e−inϕΨn(ν), Ψn(ν) =
1

2π

∫ 2π

0

einϕ ψν(ϕ) dϕ,

where N is an arbitrary natural number. In the last identity, instead of the complete
Fourier series, an arbitrary finite segment of it is considered, which leads to some technical
simplifications,5 but is not a serious constraint from the viewpoint of applications. As a
consequence of this, the source f is also assumed to be a trigonometric polynomial in ϕ
obeying the estimates

|f(r, ϕ)| ≤ C r1/2+ε

as r → 0 and

|f(r, ϕ)| ≤ C r−1−ε

as r → ∞ uniformly in ϕ. Certainly, the class of sources can be enlarged substantially,
but, however, this is not our goal in this paper.

Lemma 3.2. Suppose that the Mellin transform uν(ω) satisfies the conditions mentioned

above (including the regularity of ∂uν+1(ω)
∂θ

∣∣
θ=π

2

and ∂uν+1(ω)
∂θ

∣∣
θ=θ1

in the strip Π(−ε−1, ε)

for some small ε > 0) and that the function ψν(ϕ) is specified by a rapidly decaying source
f . Moreover, suppose that uν(ω) is a classical solution of problem (10)–(12). Then the
potential u(r, ω) in (8) is a classical solution of problem (1)–(6).

It is well known that a linear combination of spherical functions

e−inϕ P
−|n|
ν− 1

2

(cos θ), e−inϕ P
−|n|
ν− 1

2

(− cos θ), n = 0,±1,±2, . . .

solves equation (10), where the P
−|n|
ν− 1

2

( · ) are the associated Legendre functions, see [18].

A solution of problem (10)–(12) in the spherical layer Σ is naturally sought in the form

(16) uν(ω) =

N∑
n=−N

e−inϕ

⎛
⎝An(ν)

P
−|n|
ν− 1

2

(cos θ)

dθ1P
−|n|
ν− 1

2

(cos θ1)
+Bn(ν)

P
−|n|
ν− 1

2

(− cos θ)

dθ1P
−|n|
ν− 1

2

(− cos θ1)

⎞
⎠ ,

where

dθP
−|n|
ν− 1

2

(cos θ) :=
d

dθ
P

−|n|
ν− 1

2

(cos θ) = − sin θ
d

dx
P

−|n|
ν− 1

2

(x)
∣∣∣
x=cos θ

.

The unknown coefficients An(ν) and Bn(ν) are to be found from the boundary conditions.

5In this case there is no need to take care of the uniform convergence of the Fourier series and the
corresponding uniform estimates.
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§4. Problems for systems of functional difference equations for An(ν)
and Bn(ν) and solution of auxiliary equations

Direct substitution of expression (16) into the boundary conditions (11), (12) leads to
the following functional difference equations (n = 0,±1, . . . , N)6

An(ν + 1)
dθP

−|n|
ν+ 1

2

(cos θ)
∣∣
θ=π

2

dθ1P
−|n|
ν+ 1

2

(cos θ1)
+Bn(ν + 1)

dθP
−|n|
ν+ 1

2

(− cos θ)
∣∣
θ=π

2

dθ1P
−|n|
ν+ 1

2

(− cos θ1)

−K

⎛
⎝An(ν)

P
−|n|
ν− 1

2

(cos θ)
∣∣
θ=π

2

dθ1P
−|n|
ν− 1

2

(cos θ1)
+Bn(ν)

P
−|n|
ν− 1

2

(− cos θ)
∣∣
θ=π

2

dθ1P
−|n|
ν− 1

2

(− cos θ1)

⎞
⎠ = 0,

(17)

An(ν + 1) +Bn(ν + 1)

− iκ

⎛
⎝An(ν)

P
−|n|
ν− 1

2

(cos θ1)

dθ1P
−|n|
ν− 1

2

(cos θ1)
+Bn(ν)

P
−|n|
ν− 1

2

(− cos θ1)

dθ1P
−|n|
ν− 1

2

(− cos θ1)

⎞
⎠ = Ψn(ν).

(18)

It turns out that, instead of equations (17) and (18), it is convenient to study equivalent
equations for the unknown functions Un(ν) and Vn(ν) related to An(ν) and Bn(ν) by
the formulas

Un(ν) = An(ν)
dθP

−|n|
ν− 1

2

(cos θ)
∣∣
θ=π

2

dθ1P
−|n|
ν− 1

2

(cos θ1)
+Bn(ν)

dθP
−|n|
ν− 1

2

(− cos θ)
∣∣
θ=π

2

dθ1P
−|n|
ν− 1

2

(− cos θ1)
,(19)

Vn(ν) = An(ν) +Bn(ν).(20)

The reason for introducing Un(ν) and Vn(ν) will be clarified below. Note that, using
[18], we have

P
−|n|
ν− 1

2

(0) =
2−|n|√π

Γ
(ν+|n|− 1

2

2 + 1
)
Γ
(−ν+|n|+ 3

2

2

) ,
d

dx
P

−|n|
ν− 1

2

(x)
∣∣∣
x=0

=
21−|n|(−

√
π)

Γ
(ν+|n|+ 1

2

2

)
Γ
(−ν+|n|+ 1

2

2

) .
The formulas for An(ν) and Bn(ν) in terms of Un(ν) and Vn(ν) follow from (19), (20)

and take the form

An(ν) =

⎛
⎝Un(ν)− Vn(ν)

dxP
−|n|
ν− 1

2

(x)
∣∣
x=0

dθ1P
−|n|
ν− 1

2

(− cos θ1)

⎞
⎠ [Dn(ν)]

−1,(21)

Bn(ν) =

⎛
⎝−Un(ν)− Vn(ν)

dxP
−|n|
ν− 1

2

(x)
∣∣
x=0

dθ1P
−|n|
ν− 1

2

(cos θ1)

⎞
⎠ [Dn(ν)]

−1,(22)

where

[Dn(ν)]
−1 =

−1

dxP
−|n|
ν− 1

2

(x)
∣∣
x=0

dθ1P
−|n|
ν− 1

2

(cos θ1) dθ1P
−|n|
ν− 1

2

(− cos θ1)[
dθ1P

−|n|
ν− 1

2

(cos θ1) + dθ1P
−|n|
ν− 1

2

(− cos θ1)
] .

6It should be noted that, instead of a simple linear algebraic system of equations that arises tradi-
tionally in the framework of the method of variables’ separation for the ideal boundary conditions, we
obtain a system of functional difference equations for the calculation of An( · ), Bn( · ) in view of the
nonlocality with respect to ν of the boundary conditions (11), (12).
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Note that D0(ν) has neither zeros nor poles at the points ν = ±1/2 and in the strip
Π(−1/2, 1/2), which can be shown with the help of formula 8.842(1) in [18], although
dθ1Pν− 1

2
(± cos θ1) vanish for ν = ±1/2, see also (6.10), (6.11) in [12].

In terms of the unknowns Un(ν) and Vn(ν), equations (17), (18) take the form

Un(ν + 1)−K (T11(ν)Un(ν) + T12(ν)Vn(ν)) = 0,(23)

Vn(ν + 1)− iκ(T21(ν)Vn(ν) + T22(ν)Vn(ν)) = Ψn(ν),(24)

where

T11(ν) =
P

−|n|
ν− 1

2

(0)

dxP
−|n|
ν− 1

2

(x)
∣∣
x=0

[
dθ1P

−|n|
ν− 1

2

(cos θ1)− dθ1P
−|n|
ν− 1

2

(− cos θ1)
]

[
dθ1P

−|n|
ν− 1

2

(cos θ1) + dθ1P
−|n|
ν− 1

2

(− cos θ1)
] ,

T12(ν) =
2P

−|n|
ν− 1

2

(0)[
dθ1P

−|n|
ν− 1

2

(cos θ1) + dθ1P
−|n|
ν− 1

2

(− cos θ1)
] ,

T21(ν) =
1

dxP
−|n|
ν− 1

2

(x)
∣∣
x=0

Wn(ν)[
dθ1P

−|n|
ν− 1

2

(cos θ1) + dθ1P
−|n|
ν− 1

2

(− cos θ1)
] ,

T22(ν) =

[
P

−|n|
ν− 1

2

(cos θ1) + P
−|n|
ν− 1

2

(− cos θ1)
]

[
dθ1P

−|n|
ν− 1

2

(cos θ1) + dθ1P
−|n|
ν− 1

2

(− cos θ1)
] ,

Wn(ν) = P
−|n|
ν− 1

2

(− cos θ1) dθ1P
−|n|
ν− 1

2

(cos θ1)− P
−|n|
ν− 1

2

(cos θ1) dθ1P
−|n|
ν− 1

2

(− cos θ1).

Let the meromorphic solutions Un(ν) and Vn(ν) of equations (23), (24) be holomorphic
in the strip Π(−ε, 1 + ε) for some small ε > 0. Then Un(ν + 1) and Vn(ν + 1) are
holomorphic with respect to ν in the strip Π(−1− ε, ε) whence we see that the functions

∂uν+1(ω)

∂θ

∣∣∣
θ=π

2

=

N∑
n=−N

e−inϕUn(ν + 1),

∂uν+1(ω)

∂θ

∣∣∣
θ=θ1

=
N∑

n=−N

e−inϕVn(ν + 1)

are regular in the same strip, which was assumed in Lemma 3.2. This explains the
convenience of introducing Un(ν) and Vn(ν).

We turn to estimating Un(ν) and Vn(ν) at ±i∞ in the strip Π(−ε, 1+ε). We employ
the fact that the classical solution u(r, ω) in (16) is continuos in F and B, which implies
the absolute integrability of uν(ω)|θ=π/2 and uν(ω)|θ=θ1 for ν ∈ (−i∞, i∞), which is also
uniform in ϕ. The asymptotics of the associated Legendre functions (see [18]) looks like
this:

P
−|n|
ν− 1

2

(cos θ) =

√
2

π sin θ

Γ(ν + |n|+ 1/2)

Γ(ν + 1)
cos(νθ − π|n|/2− π/4) [1 +O(1/|ν|)],

0 < θ < π, ν → ±i∞, n is fixed arbitrary. It is easy to verify that the following estimates
suffice for the integrability of uν(ω)|θ=π/2 and uν(ω)|θ=θ1 uniform in ϕ:

|An(ν)| ≤ C |ν|−δ1 | exp(±iν[π/2− θ1])|,
|Bn(ν)| ≤ C |ν|−δ1 , δ1 > 0,

as ν → ±i∞ in the strip Π(−ε, 1 + ε), and we also assume (see (15)) that

|Ψn(ν)| ≤ C |ν|−3/2−δ1 .
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These estimates mean that

(25) |Un(ν)| ≤ C |ν|−δ1 , |Vn(ν)| ≤ C |ν|−δ1 , δ1 > 0,

as ν → ±i∞ in the strip Π(−ε, 1 + ε).

Remark 4.1. These estimates make it possible to describe classes of functions in which
the singular integral equations deduced from the problem for functional equations are to
be studied.

Under the assumptions made above, the following is true.

Theorem 4.2. Suppose that the meromorphic functions Un(ν) and Vn(ν) satisfy the
conditions mentioned above and solve the system of functional equations (23), (24) for
n = 0,±1 . . . ,±N . The Mellin transform uν(ω) in (16) solves problem (10)–(12).

We want to reshape system (23), (24) to integral equations. For this, as a preliminary,
we simplify system (23), (24) extracting the ‘principal’ terms in the equations. Observe
that

T11(ν) = O(1/ν), T12(ν) = O(exp(±iν[π/2− θ1])/ν),

T22(ν) = O(1/ν), T21(ν) = O(exp(±iν[π/2− θ1])/ν)

as ν → ±i∞ along the imaginary axis. In the matrix T = {Tik}, the diagonal entries are
asymptotically leading. Taking this into account, we construct special solutions of the
auxiliary equations

wn(ν + 1)−K T11(ν)wn(ν) = 0,(26)

vn(ν + 1)− iκ T22(ν) vn(ν) = 0(27)

in order to reduce (23), (24) to the form enabling us to deduce singular integral equations
with the Fredholm property. Equation (26) was studied carefully in [12], and the results
are as follows.

Lemma 4.3. If a meromorphic solution wn(ν) of equation (23) is holomorphic in the

strip Π(−ε, 1+ ε) and has there the asymptotics wn(ν) = O(
√
|ν|) as ν → ±i∞, then in

this strip wn(ν) admits the representation (n = 0,±1 . . . ,±N)

wn(ν) = exp(ν logK) dxP
−|n|
ν− 1

2

(x)
∣∣
x=0

Γ(−ν + |n|+ 1/2) sn(ν − 1/2),

where the meromorphic function sn(ν) is a holomorphic solution of the equation

sn

(
ν +

1

2

)
=

h−
n (ν)

h+
n (ν)

sn

(
ν − 1

2

)
,

h±
n (ν) = dθ1P

−|n|
ν− 1

2

(− cos θ1)± dθ1P
−|n|
ν− 1

2

(cos θ1),

(28)

bounded in the strip Π(−Cn − 1/2, Cn + 1/2), (Cn > 1) and having no zeros in that
strip. In the strip Π(−Cn− 1/2, Cn +1/2) the function sn(ν) in (28) admits the integral
representation

sn(ν) = exp

{
π

2i

∫ i∞

−i∞

Λn(ξ) dξ

cos2(π[ξ − ν])

}
,

Λn(ξ) =

∫ ξ

−i∞
log

{
h−
n (τ )

h+
n (τ )

}
dτ,
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where the cuts specifying a regular branch of the logarithm pass from the real zeros ν±m(|n|)
and −ν±m(|n|) (ν±m(|n|) > 0) of the functions h±

n (ν) at +∞ and −∞ respectively,

log

{
h−
n (ν)

h+
n (ν)

}
= O(exp[−iν(π − 2θ1)]), ν → −i∞.

Turning to equation (27), we represent it in the form7

(29) vn(ν + 1)− κ

1

ν + a

(
i(ν + a)

p+n (ν)

h+
n (ν)

)
vn(ν) = 0,

where p+n (ν) = P
−|n|
ν− 1

2

(cos θ1) + P
−|n|
ν− 1

2

(− cos θ1), a > 0. The reason for representing

equation (29) in such a form is of technical nature and is related to the fact that, unlike

iν
p+
n (ν)

h+
n (ν)

, the factor
(
i(ν + a)

p+
n (ν)

h+
n (ν)

)
is holomorphic in the vicinity of the imaginary axis

and is not zero including the infinity. We solve the equation in a desired class and then
let a → +0. The substitution

(30) vn(ν) = exp(ν logκ)
1

Γ(ν + a)
σn(ν, a)

reduces (29) to the equation

(31) σn(ν + 1, a)−
(
i(ν + a)

p+n (ν)

h+
n (ν)

)
σn(ν, a) = 0,

where the coefficient has the asymptotics(
i(ν + a)

p+n (ν)

h+
n (ν)

)
= ±1 +O(1/ν), ν → ±i∞.

Note that the parameter a is chosen so that this coefficient have no zeros on the imaginary
axis.

For the construction of the desired solution of equation (31), we must study the zeros of
the functions p+n (ν) and h+

n (ν). The zeros μ
+
m(|n|) of the equation h+

n (ν) = 0 were studied
in [12], they are simple and located on the real axis, being symmetric with respect to

the origin because h+
n (ν) is even, and admit the estimate |μ+

m(|n|)| >
√

1
4 + |n|2, |n| > 0.

Observe, however, that |μ+
m(0)| ≥ 1/2.

The behavior of zeros of the entire function p+n (ν) can be studied much as the behavior
of μ+

m(|n|) was studied in [12]. Indeed, consider the regular Sturm–Liouville problems
(|n| = 0, 1, 2, . . . , x = cos θ)

− d

dx
(1− x2)

d

dx
Y +(x) +

|n|2
1− x2

Y +(x) = λ+
ν Y

+(x), x ∈ (0, x1), x1 = cos θ1,

d

dx
Y +(x)

∣∣∣
x=0

= 0, Y +(x)
∣∣
x=cos θ1

= 0,

where Y +(x) = P
−|n|
ν− 1

2

(−x)+P
−|n|
ν− 1

2

(x) and λ+
ν (|n|) = ν2+(|n|)− 1

4 is the spectral parameter

depending on |n|. We denote by L+ the differential operator in the first summand of the
equation. Standard calculations lead to the expression∫ x1

0

L+Y +(x)Y +(x) dx =

∫ x1

0

(1− x2)

∣∣∣∣dY +(x)

dx

∣∣∣∣
2

dx

=

∫ x1

0

[(
ν2+ − 1

4

)
|Y +(x)|2 − |n|2

1− x2

∣∣Y +(x)
∣∣2] dx.

7Notice that this way to construct a solution with the desired properties has an alternative.
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The spectrum of the problem in question is discrete and simple, and the ν+m(|n|) corre-
sponding to nontrivial Y +( · ) are real and satisfy the inequality

(ν+m(|n|))2 ≥ 1

4
+ |n|2 + |n|2

∫ x1

0

x2 |Y +(x)|2

1− x2
dx

[∫ x1

0

|Y +(x)|2 dx
]−1

.

Also, they are roots of the equation(
P

−|n|
ν− 1

2

(−x) + P
−|n|
ν− 1

2

(x)
)∣∣

x=cos θ1
= 0

and admit the estimates

|ν+m(|n|)| >
√

1

4
+ |n|2, |n| = 0, 1, 2, . . . .

Note that for n = 0 the relation
(
Pν− 1

2
(− cos θ1) + Pν− 1

2
(cos θ1)

)∣∣
ν=1/2

= 2 leads to the

strict inequalities |ν+m(0)| > 1
2 instead of |ν+m(0)| ≥ 1

2 .

All zeros of the entire functions ν+a, p+n (ν), and h+
n (ν) except for h

+
0 (ν) with ν = ±1/2

lie outside the strip Π(−ε, ε) (ε > 0 is small) including the imaginary axis. We make
cuts from these zeros to ±∞ so that they do not intersect this strip. A branch

ln(ν) = log

(
i(ν + a)

p+n (ν)

h+
n (ν)

)
will be fixed by the condition log(. . . ) → 0 as ν → i∞. Note that log(. . . ) → −iπ as
ν → −i∞.

We seek a solution of equation (31) in the form

(32) σn(ν, a) = exp
{
τn(ν − 1/2, a)

}
,

where the τn(ν, a) satisfy the equation

τn(ν + 1/2, a)− τn(ν − 1/2, a) = log

(
i(ν + a)

p+n (ν)

h+
n (ν)

)
:= ln(ν)

and, as a consequence,

τ ′n(ν + 1/2, a)− τ ′n(ν − 1/2, a) =
dln(ν)

dν
.

The right-hand side of the last equation is holomorphic in the strip Π(−1/2, 1/2) and is
estimated as O(1/ν2) as ν → i∞. Its solution has the form (see, e.g., [12])

τ ′n(ν) =
(−1)

2i

∫ i∞

−i∞

dln(ξ)

dξ
tan (π[ξ − ν]) dξ.

Integrating this with respect to ν, we obtain (see (32))

(33) σn(ν, a) = exp{τn(ν − 1/2, a)} = exp

{
i

2π

∫ i∞

−i∞

dln(ξ)

dξ
log

[
sin (π[ν − ξ])

cos(πξ)

]
dξ

}
.

Now let a → +0; then vn(ν) in (30) is holomorphic and has no zeros for ν ∈ Π(−ε, 1+ε).8

(Moreover, the pole of dln(ξ)
dξ in the integrand in (33) at the point ξ = 0 is on the imaginary

axis, but the integration contour in (33) goes on the right of it along an arc of small
radius.) Meromorphic continuation of vn(ν) to the entire complex plane is performed with
the use of the functional equation (27). Observe that σn(ν,+0) = exp(± iπν

2 [1+O(1/ν)]),
ν → ±i∞, and it has a simple pole at ν = 0, so that vn(ν) is holomorphic and has no
zeros in the vicinity of ν = 0.

8The point ν = 0 is a removable singularity of vn(ν) = exp(ν logκ) 1
Γ(ν)

σn(ν,+0) because it is a

simple zero of 1/Γ(ν) and a simple pole of σn(ν,+0).
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The above argument shows that the following is true.

Lemma 4.4. If a meromorphic solution vn(ν) of equation (24) is holomorphic in the

strip Π(−ε, 1 + ε) and has the asymptotics vn(ν) = O(
√
|ν|) as ν → ±i∞, then in that

strip vn(ν) admits the representation (n = 0,±1 . . . ,±N , a = +0),

vn(ν) = exp(ν logκ)
1

Γ(ν)
σn(ν,+0),

(see (30)), where σn(ν,+0) is a meromorphic function (see (32)) holomorphic in the strip
Π(−ε, 1 + ε) except for ν = 0, representable as in (33), where a = +0, and having no
zeros in that strip.

§5. Reduction of the functional difference equations to a system

of singular integral equations

We move the summands containing the factors T12, T21 exponentially decaying at ±i∞
to the right-hand side of (23) and (24). Using the auxiliary functions wn(ν), vn(ν) from
Lemmas 4.3 and 4.4, we introduce new unknowns αn(ν), βn(ν) by the formulas

Un(ν) = αn(ν)wn(ν) cos
2 πν, Vn(ν) = βn(ν)vn(ν) cos

2 πν,

and substitute them in (23),(24), obtaining

αn(ν + 1)− α(ν) = KT12(ν)vn(ν)β(ν)/wn(ν + 1),(34)

βn(ν + 1)− βn(ν) = [iκT21(ν)wn(ν)α(ν) + Ψn(ν)/ cos
2 πν]/vn(ν + 1).(35)

Estimates (25) show that, as ν → ±i∞ in the strip Π(−ε, 1+ε), the unknowns αn(ν),
βn(ν) satisfy

(36) |αn(ν)| ≤ C
|ν|−1/2−δ1

| cos2 πν| , |βn(ν)| ≤ C
|ν|−1/2−δ1

| cos2 πν| , δ1 > 0.

Remark 5.1. In particular, estimates (36) mean that αn(ν) and βn(ν) belong to L2(iR),
where iR = (−i∞, i∞), because they are holomorphic in the vicinity of the imaginary
axis. The right-hand sides of equations (34), (35) decay on the imaginary axis as ν →
±i∞ not slower than O(|ν|−1−δ1), δ1 > 0; actually, they decay exponentially.

We shall use a simple statement (see, e.g., [3, 12]) about the solution of the difference
equation

τ (ν + 1)− τ (ν) = h(ν)

with a function h(ν) holomorphic in the vicinity of the imaginary axis (specifically, in
Π(−ε,+ε)) and admitting the estimate |h(ν)| ≤ O(|ν|−1−δ1) there as ν → ±i∞. This
equation has a bounded solution

τ (ν) =
1

2i

∫ i∞

−i∞
cot (π[ξ − ν])h(ξ) dξ

holomorphic in the strip ν ∈ Π(−ε, 1 + ε). This statement can be verified with the help
of the residues theorem. If ν tends to the imaginary axis, ν → iR, approaching it from
the right side (ν + 0), then the action of the integral operator on the right-hand side is
understood as

1

2i

∫ i∞

−i∞
cot (π[ξ − (ν + 0)])h(ξ) dξ = −h(ν)

2
+

1

2i
v.p.

∫ i∞

−i∞
cot (π[ξ − ν])h(ξ) dξ,

where the last summand is an integral in the sense of the Cauchy principal value.
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Applying this statement to (34), (35), we obtain an integral representation

α(ν) =
1

2i

∫ i∞

−i∞
(cot (π[ξ − (ν + 0)])− tanπν)

KT12(ξ) vn(ξ)βn(ξ)

wn(ξ + 1)
dξ,(37)

βn(ν) =
1

2i

∫ i∞

−i∞
(cot (π[ξ − (ν + 0)])− tanπν)

[
iκ T21(ξ)wn(ξ)αn(ξ)

vn(ξ + 1)

+
Ψn(ξ)

cos2(πξ)vn(ξ + 1)

]
dξ,

(38)

where ν ∈ Π(−ε, 1+ε), and the summand Const tanπν is a solution of the homogeneous
equation τ (ν + 1) − τ (ν) = 0 and is added in (37), (38) in order that the unknowns
αn(ν), βn(ν) decay along the imaginary axis at infinity.

The elementary identity

cot (π[ξ − ν])− tanπν =
cos(πξ)

sin(π[ξ − ν]) cos(πν)

allows us to deduce the following integral representations from (37), (38):

Un(ν) =
1

2i

∫ i∞

−i∞

dξ

sin(π[ξ − ν − 0])

T12(ξ) cos(πν)wn(ν)

T11(ξ) cos(πξ)wn(ξ)
Vn(ξ),(39)

Vn(ν) =
1

2i

∫ i∞

−i∞

dξ

sin(π[ξ − ν − 0])

[
T21(ξ) cos(πν)vn(ν)

T22(ξ) cos(πξ)vn(ξ)
Un(ξ)

+
cos(πν)vn(ν)Ψn(ξ)

iκ cos(πξ)vn(ξ)T22(ξ)

]
.

(40)

From (39) and (40) it is obvious that if Un(ν), Vn(ν) are given on the imaginary axis
by the right-hand sides and are holomorphic near that axis, then these functions on the
left-hand side are holomorphically continued to the entire strip ν ∈ Π(−ε, 1+ε) for some
ε > 0. However, if ν belongs to the imaginary axis, we get singular integral equations for
computing Un(ν), Vn(ν). Since Un(ν) and Vn(ν) are holomorphic for ν ∈ Π(−ε, 1 + ε)
(see (39), (40)), they can be analytically continued to the strip ν ∈ Π(−1−ε, 0). Analytic
continuation can be also constructed with the help of the functional equations for Un(ν),
Vn(ν).

Instead of Un(ν) and Vn(ν), in (39), (40) it is convenient to introduce an(ν), bn(ν) by
the formulas

Un(ν) = an(ν) cos
2 πν, Vn(ν) = bn(ν) cos

2 πν.

These new functions satisfy a system of integral equations in L2(iR)× L2(iR):

an(ν) =
1

2i

∫ i∞

−i∞

1

sin(π[ξ − ν − 0])

T12(ξ) cos(πξ)wn(ν)

T11(ξ) cos(πν)wn(ξ)
bn(ξ) dξ,(41)

bn(ν) =
1

2i

∫ i∞

−i∞

1

sin(π[ξ − ν − 0])

[
T21(ξ) cos(πξ)vn(ν)

T22(ξ) cos(πν)vn(ξ)
an(ξ)

]
dξ +Φ(ν),(42)

where the free term is defined as

Φ(ν) =
1

2i

∫ i∞

−i∞

1

sin(π[ξ − ν − 0])

[
vn(ν)Ψn(ξ)/(iκ)

cos(πξ) cos(πν)vn(ξ)T22(ξ)

]
dξ,
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and

T12(ν)

T11(ν)
=

2dxP
−|n|
ν− 1

2

(x)
∣∣
x=0[

dθ1P
−|n|
ν− 1

2

(cos θ1)− dθ1P
−|n|
ν− 1

2

(− cos θ1)
] ,

T21(ν)

T22(ν)
=

1

dxP
−|n|
ν− 1

2

(x)
∣∣
x=0

Wn(ν)[
P

−|n|
ν− 1

2

(cos θ1) + P
−|n|
ν− 1

2

(− cos θ1)
] .

Equations (41), (42) can be written in a matrix form standard for singular integral
equations with the Cauchy kernel:

(43) Hn(ν) +
1

iπ

∫ i∞

−i∞

Kn(ν, ξ)

[ξ − ν − 0]
Hn(ξ) dξ = Fn(ν),

where Hn(ν) = (an(ν), bn(ν))
T , Fn(ν) = (0,Φn(ν))

T and

Kn(ν, ξ) = −1

2

π[ξ − ν]

sin(π[ξ − ν])

(
0 T12(ξ) cos(πξ)wn(ν)

T11(ξ) cos(πν)wn(ξ)
T21(ξ) cos(πξ)vn(ν)
T22(ξ) cos(πν)vn(ξ)

0

)
.

Extracting the characteristic and the regular part of the singular operator in (43), we
obtain

(44) (I −Kn(ν, ν))Hn(ν) +
v.p.

iπ

∫ i∞

−i∞

Kn(ν, ν)Hn(ξ)

[ξ − ν]
dξ + TnHn(ν) = Fn(ν),

where Tn is a regular integral operator,

TnHn(ν) =
1

iπ

∫ i∞

−i∞

Kn(ν, ξ)−Kn(ν, ν)

ξ − ν
Hn(ξ) dξ.

We shall study the singular integral equation (44) in the space L2(iR)× L2(iR).

§6. Fredholm property and the index of the singular integral operator

Theorem 6.1.

1) The index of the characteristic part of the singular integral operator in (44) is
finite and is equal to zero.

2) The operator Tn is a Hilbert–Schmidt operator in L2(iR)× L2(iR).
3) The singular integral operator in (44) is Fredholm and has zero index.

Obviously, the third statement is a direct consequence of first two, so that we turn to
their proof.

The symbol of the singular integral operator in question is the matrix-valued function

I −Kn(ν, ν) + tKn(ν, ν),

t = ±1, ν ∈ iR. The characteristic operator in (44) is Fredholm if and only if det(I −
Kn(ν, ν) +Kn(ν, ν)) and det(I − 2Kn(ν, ν)) and continuos, see [19]. The first relation is
obvious, we verify the second. A direct calculation leads to the expression

det(I − 2Kn(ν, ν))

=

[
P

−|n|
ν− 1

2

(cos θ1)− P
−|n|
ν− 1

2

(− cos θ1)
]

[
P

−|n|
ν− 1

2

(cos θ1) + P
−|n|
ν− 1

2

(− cos θ1)
]
[
dθ1P

−|n|
ν− 1

2

(cos θ1) + dθ1P
−|n|
ν− 1

2

(− cos θ1)
]

[
dθ1P

−|n|
ν− 1

2

(cos θ1)− dθ1P
−|n|
ν− 1

2

(− cos θ1)
] .

When ν runs along the imaginary axis, the factors in the numerator and denominator
are nonzero because, as it has been verified, the zeros of these factors are real and lie
outside the strip Π(−1/2, 1/2).
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The index of the characteristic singular integral operator in (44) is equal to

ind (det{I − 2Kn(ν, ν)}) = 0.

Indeed, the asymptotics of the associated Legendre functions as ν → ±i∞, ν ∈ iR, shows
that det{1 − 2Kn(ν, ν)} tends to 1 and remains real9 and positive for ν ∈ iR, because
the factors in the determinant do not change their signs.

Turning to the compactness of the operator Tn, we verify the Hilbert–Schmidt estimate
for its kernel

1

iπ

Kn(ν, ξ)−Kn(ν, ν)

ξ − ν

=
i

2π[ξ − ν]

(
0 π[ξ−ν]

sin(π[ξ−ν])
T12(ξ) cos(πξ)wn(ν)
T11(ξ) cos(πν)wn(ξ)

− T12(ν)
T11(ν)

π[ξ−ν]
sin(π[ξ−ν])

T21(ξ) cos(πξ)vn(ν)
T22(ξ) cos(πν)vn(ξ)

− T21(ν)
T22(ν)

0

)

Obviously, the proof of the desired result reduces to Hilbert–Schmidt estimates for the
entries of the matrix kernel of the operator∫ i∞

−i∞

∫ i∞

−i∞

1

|ξ − η|2

∣∣∣∣ π[ξ − ν]

sin(π[ξ − ν])

Σik(ξ) cos(πξ)wn(ν)

cos(πν)wn(ξ)
− Σik(ν)

∣∣∣∣
2

|dξ| |dν| < ∞,

where i, k = 1, 2 (i �= k),

Σik(ν) =
Tik(ν)

Tii(ν)
= O(exp(±iνχ)), ν → ±i∞,

χ = π/2− θ1. It is easily seen that, since the integrand is continuous, when we integrate
over a compact set, the integral is finite. Therefore, it suffices to check that∫∫

p2+q2≥R2

1

|p− q|2

∣∣∣∣ π[p− q]

sinh(π[p− q])

σik(p) cosh(πp)Wn(q)

cosh(πq)Wn(p)
− σik(q)

∣∣∣∣
2

dp dq < ∞,

where R is sufficiently large, ξ = ip, ν = iq, Wn(q) = wn(ν), σik(q) = Σik(ν). When we
integrate over the subdomain {p2 + q2 ≥ R2} in the second and fourth quadrant, i.e.,
for p > 0, q < 0 or p < 0, q > 0, the double integral is easily shown to be bounded.
This follows from the fact that p �= q and the functions σik(q) decay exponentially at
infinity. Therefore, it remains to study the convergence of the integral in the closed first
and third quadrants. These two cases are treated similarly, so that we restrict ourselves
to the integral over DR = {p2 + q2 ≥ R2, p > 0, q > 0},

JR :=

∫∫
DR

|σik(q)|2
|p− q|2

∣∣∣∣ π[p− q]

sinh(π[p− q])

Zik(p)

Zik(q)
− 1

∣∣∣∣
2

dp dq,

where σik(q) = O(exp(∓qχ)), q → ±∞,

Zik(p) := σik(p) cosh(πp)/Wn(p) = O(exp(±p[π − χ])/
√
|p|), p → ±∞.

Introducing the polar coordinates p = ρ cosψ, q = ρ sinψ, ψ ∈ [0, π/2], we split the
segment of integration over ψ into two parts: (ψ1(ε), ψ2(ε)), where ψ1(ε) = π/4 − ε,
ψ2(ε) = π/4 + ε, ε > 0 is small, and its complement Pε to [0, π/2]. In JR we pass to
the iterated integral, splitting it into two summands with integration over (ψ1(ε), ψ2(ε))
and over Pε. In the summand with integration over Pε we have cosψ �= sinψ (p �= q),
the iterated integral converges, and this summand is bounded by a constant C1. The

9The functions P
−|n|
ν− 1

2

(cos θ) are real for ν ∈ iR.
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second summand with integration over (ψ1(ε), ψ2(ε)) can be transformed so as to admit
the estimates

JR ≤ C1 + C

∫ ψ2(ε)

ψ1(ε)

∫
ρ≥R

exp(−2χρ sinψ)

ρ[cosψ − sinψ]2

∣∣∣∣ πρ[cosψ − sinψ]

sin(πρ[cosψ − sinψ])

Zik(ρ cosψ)

Zik(ρ sinψ)
− 1

∣∣∣∣
2

dρ dψ.

We estimate the iterated integral on the right-hand side of this inequality, denoting it
by Jε

R. Changing the order of integration in Jε
R, we introduce the new variable φ of

integration by the formula φ = ψ − π/4, (cosψ − sinψ = −
√
2 sinφ):

Jε
R =

∫
ρ≥R

ρ exp(−χρ
√
2)

∫ ε

−ε

∣∣∣∣∣ π exp(−χρΦ2(φ))

sinh(πρ[−
√
2 sinφ])

Zik

(
ρ√
2
+ρΦ1(φ)

)
Zik

(
ρ√
2
+ρΦ2(φ)

) − 1

ρ[−
√
2 sinφ]

∣∣∣∣∣
2

dφ dρ,

where the notation is introduced in accordance with the relations cosψ = 1/
√
2+Φ1(φ),

sinψ = 1/
√
2+Φ2(φ), Φ1(φ) = (− sinφ+cosφ− 1)/

√
2, Φ2(φ) = (sinφ+cosφ− 1)/

√
2.

In the inner integral we change the integration variable by the formula τ = ρ[−
√
2 sinφ].

We have

Jε
R ≤ C

∫
ρ≥R

dρ exp(−
√
2χρ) I(ρ, ε),

where

I(ρ, ε) =

∫ √
2ρ sin ε

−
√
2ρ sin ε

∣∣∣∣∣π exp(−χ[τ/2 + τΨ(τ/ρ)])

sinh(πτ )

Zik(ρ/
√
2 + τ/2 + τΨ(τ/ρ))

Zik(ρ/
√
2− τ/2 + τΨ(τ/ρ))

− 1

τ

∣∣∣∣∣
2

dτ,

where the function Ψ(x), analytic for small x, is defined by the relation

ρΦ1(φ)
∣∣
τ=ρ[−

√
2 sinφ]

= τ/2 + τΨ(τ/ρ),

or
ρΦ2(φ)

∣∣
τ=ρ[−

√
2 sinφ]

= −τ/2 + τΨ(τ/ρ),

Ψ(x) = O(x) as x → 0. The integrand in I(ρ, ε) is continuous in τ for all ρ ≥ R and is
bounded with respect to ρ (ρ ≥ R) for all τ on the segment of integration, so that I(ρ, ε)
admits the estimate

I(ρ, ε) ≤ const ρ.

The resulting inequality allows us to assert that

Jε
R ≤ C2

∫
ρ≥R

ρ exp(−
√
2χρ) dρ ≤ Const,

which completes the proof of Theorem 6.1.

Remark 6.2. In accordance with the general theory [19], a two-sided regularizer of (44)
can be constructed in explicit terms.

§7. Estimates for the solution of the problem in the vicinity of the conic

point and at infinity. Existence of the classical solution

Assume that the integral equation (44) is solvable and hence, there exist meromorphic
solutions An(ν), Bn(ν) of the functional difference equations in the required class of func-
tions. Then the solution of the problem on forced oscillations of a fluid is constructed by
formulas (8) and (16). In order to estimate the solution in the vicinity of the conic point
and at infinity, we use the representation (8), (16), where the coefficients An(ν), Bn(ν)
are solutions of functional difference equations. Calculation of the asymptotics as r → 0
and r → ∞ is based on the arguments traditional for the Mellin integral representations.
For ω ∈ Σ, the integral (8) converges exponentially if r > 0. The integration contour
iR can be deformed into a parallel straight line (−i∞ + γ, i∞ + γ) to the right of the
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imaginary axis, γ > 0, or to the left, γ < 0. Moreover, the poles of the Mellin transform
uν(ω) are intersected at points νp,

u(r, ω) =
∑
p

sgn(−γ) resνp
{uν(ω)} rνp−1/2 + uγ(r, ω),

uγ(r, ω) =
1

2πi

∫ γ+i∞

γ−i∞
uν(ω) r

ν− 1
2 dν,

(45)

Summation in (45) is over all poles located in the strip between the imaginary axis and
the vertical line iR + γ, and

|uγ(r, ω)| ≤ C rγ−1/2

uniformly with respect to ω ∈ Σ.
Taking these simple arguments into account, it is easy to evaluate the behavior of the

solution as r → 0. The pole nearest to the imaginary axis in the domain Re(ν) > 0 is
located at the point ν = ν+ > 1/2, see (16), corresponds to the summand with n = 0,
see (21), (22), and is a root of a transcendental equation. Observe that ν = 1/2 is not a
pole in (16), because in (21), (22) (for n = 0) we have U0(ν)

∣∣
ν=1/2

= 0, V0(ν)
∣∣
ν=1/2

= 0,

see (39), (40). Since Un(ν) and Vn(ν) are holomorphic in Π(−ε, 1 + ε), we can use (21),
(22), from (45) to find

(46) u(r, ω) = − resν=ν+
{uν(ω)} rν+−1/2 +O(rν∗−1/2), r → 0.

Note that ν∗ is the pole of uν(ω) nearest to ν+ to the right of ν+.
For calculation of asymptotics as r → ∞, we need to study the poles of uν(ω) located

to the left of the imaginary axis. Let −νq be the negative pole of the Mellin transform10

nearest to the imaginary axis. Deforming the integration contour as above, we arrive at
the asymptotics

(47) u(r, ω) = resν=−νq
{uν(ω)} r−νq−1/2 +O(r−ν∗∗−1/2), r → ∞,

where −ν∗∗ is the next (by the order) negative pole.
We want to check that the classical solution of problem (1)–(6) obtained in this way

not only satisfies the Meixner conditions (see (46)) but also decays rapidly in the sense
of the definition in §2 (see (7)). For this, it is necessary to verify that νq > 1/2 in the
asymptotics (47). In order to prove the inequality νq > 1/2, it suffices to consider n = 0
in (16) and to check that the pole11 at the point ν = −1/2 for the summands with n = 0
is compensated for by the zero at ν = −1/2 of the functions A0(ν), B0(ν). In view of
the explicit linear relations (21), (22) linking A0(ν), B0(ν) and U0(ν), V0(ν), it suffices to
show that U0(ν), V0(ν) vanish at this point. This would mean that the Mellin transform
uν(ω) is holomorphic with respect to ν in the strip Π(−1/2− ε, 0) for some ε > 0, thus
proving the inequality νq > 1/2.

For this, we rewrite the functional difference equations (23), (24) in the form

(48)

{
Un(ν)
Vn(ν)

}
=

(
T11(ν) T12(ν)
T21(ν) T22(ν)

)−1 {
K−1 Un(ν + 1)

(iκ)−1 (Vn(ν + 1)−Ψn(ν))

}
.

10This pole is simple.
11There is a zero of the denominators dθ1Pν− 1

2
(± cos θ1) at this point, while the other summands

are regular in the strip Π(−1/2− ε, 0).
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The entries of the inverse matrix {T−1}ik on the right-hand side of the equations have
the form

{T−1}11 =
dxP

−|n|
ν− 1

2

(x)
∣∣
x=0

P
−|n|
ν− 1

2

(0)

[
P

−|n|
ν− 1

2

(cos θ1) + P
−|n|
ν− 1

2

(− cos θ1)
]

[
P

−|n|
ν− 1

2

(cos θ1)− P
−|n|
ν− 1

2

(− cos θ1)
] ,

{T−1}12 =
(−2) dxP

−|n|
ν− 1

2

(x)
∣∣
x=0[

P
−|n|
ν− 1

2

(cos θ1)− P
−|n|
ν− 1

2

(− cos θ1)
] ,

{T−1}21 =
(−1)

P
−|n|
ν− 1

2

(0)

Wn(ν)[
P

−|n|
ν− 1

2

(cos θ1)− P
−|n|
ν− 1

2

(− cos θ1)
] ,

{T−1}22 =

[
dθ1P

−|n|
ν− 1

2

(cos θ1)− dθ1P
−|n|
ν− 1

2

(− cos θ1)
]

[
P

−|n|
ν− 1

2

(cos θ1)− P
−|n|
ν− 1

2

(− cos θ1)
]

and are holomorphic in the vicinity of −1/2 (a removable singularity for n = 0) in the
strip Π(−1/2 − ε, 0). If the argument ν on the left-hand side of (48) is in the strip
Π(−1 − ε, 0), then the argument of Un( · ), Vn( · ) on the right-hand side of (48) varies
in the strip Π(−ε, 1). Recall that it suffices to consider the summand with n = 0 in
(16), because the other summands are regular in this strip. If ν = −1/2 and n = 0 in
(48), then U0(ν + 1)

∣∣
ν=−1/2

= 0 and V0(ν + 1)
∣∣
ν=−1/2

= 0 on the right-hand side, but,

generally speaking, Ψ0(−1/2) �= 0. We impose an additional constraint on the class of
sources by assuming that

(49) Ψ0(−1/2) = 0, or, equivalently

∫ ∞

0

∫ 2π

0

f(r, ϕ) dϕ dr = 0.

Now in a standard way we can prove that under certain conditions the problem on
forced oscillations of a fluid admits a classical rapidly decaying solution.

Theorem 7.1. Let f(r, ϕ) belong to the class of rapidly vanishing sources satisfying
conditions (49), and let K > 0, κ �= 0; then there exists a unique rapidly decaying
classical solution of the problem (1)–(6) having the asymptotics (46) as r → 0 and (47)
as r → ∞.

Indeed, the uniqueness of a rapidly decaying solution was proved in Theorem 2.1. Since
the integral equation (44) is Fredholm with zero index, unique solvability in L2(iR) ×
L2(iR) follows from the fact that the homogeneous equation has only a trivial solution.
The latter circumstance is implied by the proved uniqueness of a rapidly decaying classical
solution of the problem: if the integral equation (44) has a nontrivial solution constructed
by the explicit formulas (8) and (16), then the classical solution will be a rapidly decaying
solution of the homogeneous problem, which contradicts Theorem 2.1. Therefore, the
equation has a unique solution, which allows us to construct the solution An(ν), Bn(ν)
of the problem for functional equations in the required class and to recover the Mellin
transform (16) and the rapidly decaying classical solution (8) of problem (1)–(6).

Some comments are in order. As has already been noted, the parameter κ plays the
role of a parameter regularizing the problem in the following sense. If κ = 0, then, as
was shown in [12], the problem has a nontrivial kernel, so that it cannot be well posed in
the sense of Hadamard. If κ �= 0, the problem of finding the classical solution of (1)–(6)
admits reduction to a Fredholm singular integral equation with zero index. Thus, in
this sense the problem is Fredholm with zero index. If the sources also decay rapidly
and condition (49) is fulfilled (a source is “orthogonal” to constants), then the rapidly
decaying solution for such sources exists and is unique.
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[16] L. Hörmander, The analysis of linear partial differential operators. I–IV, Grundlehren Math. Wiss.,
vol. 256, 257, Springer-Verlag, Berlin, 1983. MR0717035 (85g:35002a), MR0705278 (85g:35002b)

[17] Ph. Flajolet, X. Gourdon, and Ph. Dumas, Mellin transforms and asymptotics: harmonic sums,
Theoret. Comput. Sci. 144 (1995), no. 1–2, 3–58. MR1337752

[18] I. S. Gradshteyn and I. M. Ryzhik Table of integrals, series and products, Fizmatgiz, Moscow, 1963;
English transl., Acad. Press, Orlando, 1980. MR0582453 (81g:33001)
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