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CWIKEL TYPE ESTIMATES FOR THE BORDERED

AIRY TRANSFORM

V. A. SLOUSHCH

To the memory of Vladimir Savel’evich Buslaev

Abstract. Compactness conditions as well as estimates for singular values of the
bordered Airy transform fAg in L2(R) are studied for suitable functions f(x), g(x),
x ∈ R. Sufficient conditions for the operator fAg to be in the Schatten–von Neumann
class Sp, p ∈ (0, 2), are obtained. In particular, certain conditions ensuring that the
operator fAg is in trace class are given.

Introduction

In the space L2(R), we consider the unitary integral Airy transformation A defined
by the formula

Au(x) :=

∫
R

Ai(y − x)u(y) dy, u ∈ L2(R) ∩ L1(R).

Here Ai(z) = 1
π

∫∞
0

cos( t
3

3 + zt) dt, z ∈ R, is the Airy function. We shall be interested
in compactness conditions and in estimates for the singular values of the operator fAg,
f, g ∈ L2,loc(R). In what follows, the conditions for the operator fAg to belong to the
Lorentz classes Sp,q, p ∈ (0, 2), q ∈ (0,+∞] will be stated. The results can prove to be

useful in the study of the spectrum of the Stark operator H = − d2

dx2 + x perturbed by a
decaying potential.

The conditions of being in the class Sp,q for p > 2 have been studied for a wide range
of integral operators (see, e.g., a survey of these results in [1]). These questions naturally
arise in the spectral theory of differential operators (the references to relevant papers can
be found in [2]). In particular, the conditions for the operator fAg to belong to the classes
Sp,q, p > 2, were obtained in [1] (see Theorem 1.1 below). The conditions ensuring that
integral operators belong to the classes Sp,q, p < 2, have been studied to a lesser extent.
Such results with no additional requirements on the smoothness of the operators’ kernel
were obtained in the papers [3, 4], and [2] for the operator f(i∇)g(x) and in the paper [5]

for the operator f( pH)g(x), where pH is the Dirac operator. In [6] the conditions of being
in the classes Sp,q, p < 2, were obtained for the operator f(H)g(x), provided that the
self-adjoint and lower bounded operator H generates a semigroup satisfying the Nash–
Aronson estimate (the upper Gaussian estimate). The results of [6] cannot be directly
applied to the operator fAg = Af(H)g because the Stark operator H is not bounded
from below. Nevertheless, after a certain modernization, the method developed in [6]
applies to the operator fAg. The present paper is devoted to the results obtained in this
way.
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The paper comprises Introduction and three sections. In §1 the relevant statements
pertaining to function spaces and classes of compact operators are collected. The condi-
tions for the operator fAg to belong to the classes Sp,q, p > 2, as obtained in [1], are
also given. In §2, the main result of the paper (Theorem 2.1) is formulated. The proof
of the main result is given in §3. A brief outline of the results of the present paper was
published in [7].

In what follows, for a linear operator T acting in a pair of Hilbert spaces the symbol
T ∗ denotes the adjoint operator. For a measurable function f(x), x ∈ R, the symbol
[f(x)] (or sometimes simply f for brevity) denotes the operator of multiplication by the
function f(x). The characteristic function of a set Ω is denoted by 1Ω. Moreover, the
following notation is used throughout:

x+ :=

{
x, x ≥ 0,

0, x < 0;
〈x〉 := (1 + x2)1/2; int x := max{m ∈ N : m ≤ x}, x ∈ R.

The author expresses his gratitude to Professor T. A. Suslina for useful discussions and
help in the preparation of the manuscript.

§1. Preliminary results

1.1. Function spaces and classes of compact operators. Let (Z, dν) be a separable
measurable space with a σ-finite measure. Alongside the standard classes Lp(Z, dν), we
define the Lorentz classes Lp,q(Z, dν), p ∈ (0,+∞), q ∈ (0,+∞] (see, e.g., [3, 2]). Namely,
for a ν-measurable f : Z → C put Of (s) := {z ∈ Z : |f(z)| > s} and νf (s) := ν(Of (s)),
s > 0. The class Lp,q is singled out by the requirement that the functional

(1.1) ‖f‖Lp,q
:=

{(
q
∫ +∞
0

sq−1ν
q/p
f (s) ds

)1/q
, 0 < q < +∞;

sups>0 s ν
1/p
f (s), q = +∞.

be finite. The space Lp,q is complete with respect to the quasinorm ‖ · ‖Lp,q
; Lp,q is

separable for q ∈ (0,+∞); the space Lp,∞ is generally nonseparable and contains the
separable subspace

L0
p,∞ :=

{
f ∈ Lp,∞ : νf (s) = o(s−p), s → +0, s → +∞

}
.

The following relations are noteworthy: Lp,p = Lp, ‖f‖Lp,p
= ‖f‖Lp

.
For an arbitrary compact operator T acting from a Hilbert space H1 to a Hilbert

space H2, we denote by sn(T ), n ∈ N, the singular values of the operator T (i.e., the
consecutive eigenvalues of the operator (T ∗T )1/2); let n(s, T ) := #{n ∈ N : sn(T ) > s}
stand for the distribution function of the singular values. The following inequality will
be used below (see [9, §11.1, Subsection 3]:

(1.2) n(s+ t, S+ T) ≤ n(s, S) + n(t,T), s, t > 0, S,T ∈ S∞.

The class Sp,q(H1,H2), p ∈ (0,+∞), q ∈ (0,+∞] (see, e.g., [3]), is singled out by the
condition that the functional

(1.3) ‖T‖Sp,q
:=

{(
q
∫ +∞
0

sq−1nq/p(s,T) ds
)1/q

, 0 < q < +∞;

sups>0 s n
1/p(s,T), q = +∞.

is bounded. The space Sp,q is complete with respect to the quasinorm ‖ · ‖Sp,q
; Sp,q for

q ∈ (0,+∞) is separable. The space Sp,∞ is nonseparable and contains the separable
subspace

S0
p,∞ :=

{
T ∈ Sp,∞ : n(s, T ) = o(s−p), s → +0

}
,



CWIKEL TYPE ESTIMATES FOR THE AIRY TRANSFORM 317

in which the set of finite-rank operators is dense. The class Sp,p coincides with the
standard Schatten–von Neumann class Sp. The functional ‖T‖Sp,p

coincides with the
standard (quasi)norm in Sp:

‖T‖Sp
=

(∑
n∈N

spn(T )

)1/p

.

1.2. The conditions for the operator fAg to belong to the classes Sp,q, p >

2. On the plane R2 we define the measure dν(x, y) := Ai2(y − x) dx dy, (x, y) ∈ R2.
With each pair of functions f, g ∈ L2,loc(R), we associate the function of two variables
(f ⊗ g)(x, y) := f(x)g(y). Theorem 3.2 in [1] implies the following statement.

Theorem 1.1. Suppose that the condition f ⊗ g ∈ Lp,q(R
2, dν) is satisfied for some

p > 2, q ∈ (0,+∞] (or p = q = 2). Then fAg ∈ Sp,q and we have

‖fAg‖Sp,q
≤ C(p, q)‖f ⊗ g‖Lp,q

.

If, moreover, q = +∞ and νf⊗g(s) = o(s−p), s → +0, then fAg ∈ S0
p,∞.

It is not hard to deduce the following corollary to Theorem 1.1.

Corollary 1.2. Suppose that, for some p ≥ 2, the conditions

|f(x)| ≤ C1(1 + x2)−α/2, x ∈ R,(1.4)

|g(y)| ≤ C2(1 + y2)−β/2, y ∈ R,(1.5)

α > 1/2p, β > 1/2p, (α+ β) > 3/2p(1.6)

are satisfied. Then fAg ∈ Sp and we have

(1.7) ‖fAg‖Sp
≤ C(α, β, p)C1C2.

§2. The main result

Let N denote the following set of rectangles forming a partition of the plane R2:

• [m,m+ 1)× [m,m+ 1), m ∈ Z;
• [m,m+ 1)× [−m− 1,−m), m ∈ Z;
• [m+ 2l,m+ 2l+1)× [m,m+ 1), m, l ∈ Z+;
• [m+ 2l,m+ 2l+1)× [−m− 1,−m), m, l ∈ Z+;
• [m,m+ 1)× [−m− 2l+1,−m− 2l), m, l ∈ Z+;
• [−m− 1,−m)× [−m− 2l+1,−m− 2l), m, l ∈ Z+;
• [−m− 2l+1,−m− 2l)× [−m− 1,−m), m, l ∈ Z+;
• [−m− 2l+1,−m− 2l)× [m,m+ 1), m, l ∈ Z+;
• [−m− 1,−m)× [m+ 2l,m+ 2l+1), m, l ∈ Z+;
• [m,m+ 1)× [m+ 2l,m+ 2l+1), m, l ∈ Z+.

We define the following two functions on the set N:

ϕ(K) :=

{
〈z〉−7/16e−(2/3)z3/2

, z ≥ 0,

〈z〉−1/2, z < 0,
z = c− b, K = [a, b)× [c, d) ∈ N;

ψκ(K) :=

{
〈z〉κ, z ≥ 0,

〈z〉1/2, z < 0,
z = c− b, K = [a, b)× [c, d) ∈ N, κ > 0.

We introduce a measure on the set N by the formula dνκ(K) := ψκ(K)d�(K), where
d�(K) is the counting measure on N. With each pair of functions f, g ∈ L2,loc(R) we
associate the sequence

ϑ(f, g) =
{
ϑK(f, g)

}
K∈N

, ϑK(f, g) = ‖f ⊗ g‖L2(K) · ϕ(K), K ∈ N.
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The main result of the present paper is the following claim.

Theorem 2.1. Assume that the condition ϑ(f, g) ∈ Lp,q(N, dνκ) is satisfied for some
p ∈ (0, 2), q ∈ (0,+∞], κ > 5

8 · int
(
2
p

)
+ 3

8 . Then fAg ∈ Sp,q and we have

‖fAg‖Sp,q
≤ C(p, q,κ)‖ϑ(f, g)‖Lp,q

.

If ϑ(f, g) ∈ L0
p,∞(N, dνκ), then fAg ∈ S0

p,∞.

The proof of Theorem 2.1 will be given in §3. Theorem 2.1 implies the following.

Corollary 2.2. Let conditions (1.4)–(1.6) be satisfied for some p ∈ (0, 2). Then fAg ∈
Sp and estimate (1.7) is true.

§3. Proof of Theorem 2.1

3.1. Since the rectangles in the set N form a partition of the plane R2, the kernel of the
operator fAg admits the representation

f(x) Ai(y − x)g(y) =
∑
K∈N

TK(x, y),

TK(x, y) := 1[a,b)(x)f(x) Ai(y − x)g(y)1[c,d)(y), (x, y) ∈ R
2,

K = [a, b)× [c, d) ∈ N.

(3.1)

Under the condition f, g ∈ L2,loc(R), the kernel TK(x, y) determines a Hilbert–Schmidt
operator TK , K ∈ N.

Proposition 3.1. For arbitrary p = 2
n , n ∈ N, we have TK ∈ Sp, K ∈ N, and

(3.2) ‖TK‖Sp
≤ C(p,κ)ϑK(f, g)ψ1/p

κ
(K), κ >

5

8
· 2
p
− 1

4
, K ∈ N.

Proposition 3.1 is proved in Subsection 3.4. For p = 2, estimate (3.2) takes the form

(3.3) ‖TK‖S2
≤ C(κ)ϑK(f, g)ψ1/2

κ
(K), κ >

3

8
, K ∈ N.

From the definition of the measure dνκ it follows that Lp,q(N, dνκ) ⊂ L2(N, dνκ), p ∈
(0, 2), q ∈ (0,+∞], and, hence, under the conditions of Theorem 2.1 we have ϑ(f, g) ∈
L2(N, dνκ), κ > 5

8 · int
(
2
p

)
+ 3

8 . Therefore, by (3.1) and (3.3), the series
∑

K∈N
‖TK‖2S2

converges, the series
∑

K∈N
TK = fAg converges in S2, and

‖fAg‖2S2
=

∑
K∈N

‖TK‖2S2
.

The results of [8] (see also [9, §11.5, Subsection 4]) show that the following statement
is valid.

Proposition 3.2. If T1, T2 ∈ Sp, p ∈ (0, 1], then

‖T1 + T2‖pSp
≤ ‖T1‖pSp

+ ‖T2‖pSp
.

Proposition 3.2 immediately yields the next corollary.

Corollary 3.3. Supose {Tn}n∈N ⊂ Sp, p ∈ (0, 1], and the series
∑

n ‖Tn‖pSp
converges.

Then the series
∑

n Tn converges in Sp, and ‖
∑

n Tn‖pSp
≤

∑
n ‖Tn‖pSp

.
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3.2. Proof of Theorem 2.1. Suppose that ϑ(f, g) ∈ Lp,q(N, dνκ) for some p ∈ (0, 2),
q ∈ (0,+∞], κ > 5

8 · int
(
2
p

)
+ 3

8 . Picking the largest p0 = 2
n < p, n ∈ N, we observe that

2
p0

= n = int
(
2
p

)
+1, κ > 5

8 ·
2
p0

− 1
4 . We split the operator fAg (see (3.1)) into the sum

fAg = T
(0)(s) + T

(2)(s),

T
(0)(s) =

∑
ϑK(f,g)>s

TK , T
(2)(s) =

∑
ϑK(f,g)≤s

TK , s > 0.(3.4)

Proposition 3.1 and Corollary 3.3 now yield the relation T(0)(s) ∈ Sp0
, s > 0, and the

estimate

‖T(0)(s)‖p0

Sp0
≤ C(p0,κ)‖ϑ(0)(f, g, s)‖p0

Lp0
, s > 0,

ϑ
(0)
K (f, g, s) :=

{
ϑK(f, g) if ϑK(f, g) > s,

0 if ϑK(f, g) ≤ s.

(3.5)

In a similar way, (3.3) yields the relation T(2)(s) ∈ S2, s > 0, and the estimate

‖T(2)(s)‖2S2
≤ C(κ)‖ϑ(2)(f, g, s)‖2L2

, s > 0,

ϑ
(2)
K (f, g, s) :=

{
0 if ϑK(f, g) > s,

ϑK(f, g) if ϑK(f, g) ≤ s.

(3.6)

By (1.1) we have

‖ϑ(0)(f, g, s)‖p0

Lp0
≤ (νκ)ϑ(s)s

p0 +

∫ +∞

s

(νκ)ϑ(σ) dσ
p0 ,

‖ϑ(2)(f, g, s)‖2L2
≤

∫ s

0

(νκ)ϑ(σ) d σ
2, s > 0.

Combined with (3.4)–(3.6) and (1.2), this leads to the inequalities

n(s, fAg) ≤ n(s/2,T(2)(s)) + n(s/2,T(0)(s))

≤ 4s−2‖T(2)(s)‖2S2
+ 2p0s−p0‖T(0)(s)‖p0

Sp0

≤ C(κ)s−2

∫ s

0

(νκ)ϑ(σ) dσ
2 + C(p0,κ)s

−p0

[
(νκ)ϑ(s)s

p0+

∫ +∞

s

(νκ)ϑ(σ) dσ
p0

]
.

(3.7)

The assertions of Theorem 2.1 for q = +∞ follow easily from (3.7). For any q ∈ (0,+∞),
relations (1.3) and (3.7) yield the estimate

‖fAg‖q
Sp,q

≤ S1

∫ +∞

0

dsq
[
s−2 ·

∫ s

0

dσ2(νκ)ϑ(σ)

]q/p
+ S2

∫ +∞

0

dsq(νκ)
q/p
ϑ (s)

+ S3

∫ +∞

0

dsq
[
s−p0 ·

∫ +∞

s

dσp0(νκ)ϑ(σ)

]q/p
.

(3.8)

Here Si = Si(κ, p, q, p0), i = 1, 2, 3. By applying [6, Lemma 4.2] to the first integral
in (3.8) and [6, Lemma 4.1] to the third integral, we get the required assertions of
Theorem 2.1. �

3.3. To complete the proof of Theorem 2.1 it remains to check the validity of Proposi-
tion 3.1. First, we obtain a number of preliminary estimates for the singular values of
the operators TK , K ∈ N.
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Proposition 3.4. For arbitrary p = 2/(n+1), n ∈ N, K = [a, b)× [c, d) ∈ N, and t > 0,
we have TK ∈ Sp and

‖TK‖Sp
≤ C(p, α, β, t)〈d− c〉α max

x∈[a,b]
〈x− c〉−1/4‖f ⊗ g‖L2(K),(3.9)

‖TK‖Sp
≤ C(p, α, β, t)〈b− a〉α max

y∈[c,d]
〈y − a〉−1/4‖f ⊗ g‖L2(K),(3.10)

C(p, α, β, t) = C(p, α, β)ent(b−c)+n3t3

3 〈t2〉β〈
√
t〉βt−n

4 ,

α > α(n) := 1/4 + n/2, β > β(n) :=
n(n+ 2)

4
, t > 0.

To verify Proposition 3.4, note that operator TK admits the decomposition TK =
M0 · · ·Mn, where the operators Mj are defined by as follows:

M0 := 1[a,b)[f(p)e
ntp]A[〈x− c〉−α1 ],

Mj := [〈x− c〉αje−(j−1)tx]A∗[e−tp]A[〈x− c〉−αj+1ejtx], j = 1, . . . , n− 1,

Mn := [〈x− c〉αne−(n−1)tx]A∗[e−tp]A[g(y)]1[c,d),

α1 > 3/4, αj+1 > αj + 1/2, t > 0.

The operators Mj , j = 0, . . . , n satisfy the following estimates.

Lemma 3.5. For any α1 > 3/4, αj+1 > αj + 1/2, j = 1, . . . , n − 1, and t > 0, the
operators Mj, j = 0, . . . , n belong to the Hilbert–Schmidt class, and, moreover,

‖M0‖S2
≤ C(α1)e

ntb max
x∈[a,b]

〈x− c〉−1/4‖f‖L2(a,b);(3.11a)

‖Mj‖S2
≤ C(αj , αj+1, j)〈t2〉αj 〈

√
t〉αj t−

1
4 e(3j

2−3j+1)t3/3, j = 1, . . . , n− 1;(3.11b)

‖Mn‖S2
≤ C(αn, n)〈d− c〉αn〈t2〉αn〈

√
t〉αnt−

1
4 e−ncte(3n

2−3n+1)t3/3‖g‖L2(c,d).(3.11c)

The proof of Lemma 3.5 is given in Subsection 3.6. Estimate (3.9) follows from the
decomposition TK = M0 · · ·Mn, estimates (3.11), and the inequality (see, e.g., [9, §11.5,
Subsection 4])

‖TS‖Sr
≤ C(p, q)‖T‖Sp

‖S‖Sq
, T ∈ Sp, S ∈ Sq,

r−1 = p−1 + q−1, p, q ∈ (0,+∞).
(3.12)

Similarly, the operator TK admits the decomposition TK = Nn ·Nn−1 · · ·N0, where

N0 := [〈x− a〉−α1 ]A[g(p)e−tnp]1[c,d),

Nj := [〈x− a〉−αj+1e−jtx]A[etp]A∗[〈x− a〉αje(j−1)tx], j = 1, . . . , n− 1,

Nn := 1[a,b)fA[e
tp]A∗[〈x− a〉αne(n−1)tx],

α1 > 3/4, αj+1 > αj + 1/2, t > 0.

Lemma 3.6. For any α1 > 3/4, αj+1 > αj + 1/2, j = 1, . . . , n − 1, and t > 0, the
operators Nj, j = 0, . . . , n, belong to the Hilbert–Schmidt class, and

‖N0‖S2
leC(α1)e

−ntc max
y∈[c,d]

〈y − a〉−1/4‖g‖L2(c,d);(3.13a)

‖Nj‖S2
≤ C(αj , αj+1, j)〈t2〉αj 〈

√
t〉αj t−

1
4 e(3j

2−3j+1)t3/3 j = 1, . . . , n− 1;(3.13b)

‖Nn‖S2
≤ C(αn, n)〈b− a〉αn〈t2〉αn〈

√
t〉αnt−

1
4 enbte(3n

2−3n+1)t3/3‖f‖L2(c,d).(3.13c)

Lemma 3.6 is proved in Subsection 3.6. Estimate (3.10) follows from the decomposition
TK = Nn ·Nn−1 · · ·N0, estimates (3.13), and inequality (3.12). �
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3.4. Proof of Proposition 3.1. First, we verify Proposition 3.1 for p = 2. From the
estimate

|Ai(z)| ≤ C〈z〉−1/4e−
2
3 z

3/2
+ , z ∈ R,

for the Airy function (see, e.g., [10]) and the elementary inequality 〈a+b〉θ ≤ Cθ〈a〉θ〈b〉|θ|,
a, b ∈ R, θ ∈ R it follows that

Ai2(y − x) ≤ C〈y − c〉1/2〈x− c〉−1/2e−
4
3 (y−x)

3/2
+ ,

Ai2(y − x) ≤ C〈x− a〉1/2〈y − a〉−1/2e−
4
3 (y−x)

3/2
+ .

This yields the inequality

(3.14) ‖TK‖S2
≤ Γ1/4(K)‖f ⊗ g‖L2(K)e

− 2
3 (c−b)

3/2
+ , K = [a, b)× [c, d) ∈ N.

Here and in what follows we use the notation

Γα(K) := min
{
〈b− a〉α max

y∈[c,d]
〈y − a〉−1/4, 〈d− c〉α max

x∈[a,b]
〈x− c〉−1/4

}
.

It remains to observe that for all K = [a, b)× [c, d) ∈ N and α > 0 we have

(3.15) Γα(K) ≤ C(α)〈b− c〉−1/4.

Inequalities (3.14) and (3.15) imply (3.3).
Now we verify Proposition 3.1 for p = 2/(n+ 1), n ∈ N. From (3.9), (3.10) it follows

that

‖TK‖Sp
≤ C(p, α, β)Γα(K)ent(b−c)+n3t3

3 〈t2〉β〈
√
t〉βt−n/4‖f ⊗ g‖L2(K),

α >
1

4
+

n

2
, β >

n(n+ 2)

4
, t > 0, K = [a, b)× [c, d) ∈ N.

(3.16)

Choosing the parameter

t =

⎧⎪⎨
⎪⎩
n−1(b− c)−1, b− c ≥ 1,

n−1
√
c− b , b− c ≤ −1,

n−1, −1 < b− c < 1,

in (3.16) and using (3.15), we arrive at (3.2). �

3.5. In order to prove Lemmas 3.5 and 3.6, we shall need explicit expressions for the
kernels of the integral operators A

∗[e−zp]A, A[ezp]A∗, Re z > 0. By the Avron–Herbst
formula (see [11])

A
∗[eitp]A = ei

t3

3 [eitx]Φ∗[eit
2p+ip2t]Φ, t ∈ R,

the integral operator A∗[eitp]A, t ∈ R, has the kernel

(3.17) K0(t, x, y) :=
1√

−4πit
ei

t3

12−i (x−y)2

4t +i x+y
2 t, x, y, t ∈ R.

Extending the form (A∗[e−zp]Au, v), u, v ∈ C∞
0 (R), analytically from the imaginary line

to the right half-plane and using (3.17), we prove that the operator A∗[e−zp]A, Re z > 0,
is an integral operator with the kernel

(3.18) K1(z, x, y) :=
1√
4πz

e
z3

12 −
(x−y)2

4z − x+y
2 z, x, y ∈ R, Re z > 0.

On the other hand, the kernel of the operator A∗[e−zp]A, Re z > 0, can be expressed as
follows:

(3.19) K1(z, x, y) =

∫
R

Ai(x− p)e−zp Ai(y − p) dp, x, y ∈ R, Re z > 0.
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Finally, the kernel of the operator A[ezp]A∗, Re z > 0, can be written as

(3.20) K2(z, x, y) :=

∫
R

Ai(p− x)ezp Ai(p− y) dp, x, y ∈ R, Re z > 0.

Comparing (3.18)–(3.20), we see that

(3.21) K2(z, x, y) =
1√
4πz

e
z3

12 −
(x−y)2

4z + x+y
2 z, x, y ∈ R, Re z > 0.

3.6. Proof of Lemmas 3.5 and 3.6.

Remark 3.7. For all α,m ≥ 0 and t > 0, we have

(3.22)

∫
R

〈z〉2αe− z2

2t −ztm dz ≤ C(α)〈m〉2α〈t2〉2α〈
√
t〉2αe t3m2

2 t1/2.

Proof. Estimate (3.22) will follow if we pass to the new variable η = z+t2m√
t

and use the

inequalities 〈
√
tη〉2α ≤ 〈

√
t〉2α〈η〉2α, 〈t2m〉2α ≤ 〈t2〉2α〈m〉2α. �

Proof of Lemma 3.5. 1) Estimate (3.11a) is checked by an explicit calculation, with the
help of the inequalities

Ai2(y − x) ≤ C〈y − x〉−1/2 ≤ C〈x− c〉−1/2〈y − c〉1/2.
2) From (3.18) it follows that each Mj , j = 1, . . . , n− 1, is an integral operator with

the kernel

(3.23) Mj [x, y] :=
et

3/12

√
4πt

〈y − c〉−αj+1〈x− c〉αje−
(x−y)2

4t − (2j−1)(x−y)
2 t, x, y ∈ R, t > 0.

Estimate (3.11b) follows from (3.22), (3.23), and the inequality

〈x− c〉αj ≤ C〈y − c〉αj 〈x− y〉αj .

3) The proof of estimate (3.11c) is similar to that of estimate (3.11b). �
Lemma 3.6 is proved much as 3.5. In this proof, identity (3.21) is employed instead

of (3.18).
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