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HOMOGENIZATION OF THE DIRICHLET PROBLEM

FOR HIGHER-ORDER ELLIPTIC EQUATIONS

WITH PERIODIC COEFFICIENTS

T. A. SUSLINA

To the memory of Vladimir Savel’evich Buslaev

Abstract. Let O ⊂ Rd be a bounded domain of class C2p. The object under study
is a selfadjoint strongly elliptic operator AD,ε of order 2p, p ≥ 2, in L2(O;Cn), given
by the expression b(D)∗g(x/ε)b(D), ε > 0, with the Dirichlet boundary conditions.

Here g(x) is a bounded and positive definite (m×m)-matrix-valued function in Rd,
periodic with respect to some lattice; b(D) =

∑
|α|=p bαD

α is a differential operator

of order p with constant coefficients; and the bα are constant (m × n)-matrices. It
is assumed that m ≥ n and the symbol b(ξ) has maximal rank. Approximations
are found for the resolvent (AD,ε − ζI)−1 in the L2(O;Cn)-operator norm and in
the norm of operators acting from L2(O;Cn) to Hp(O;Cn), with error estimates
depending on ε and ζ.

Introduction

An extensive literature is devoted to homogenization problems for differential opera-
tors (DOs) with periodic rapidly oscillating coefficients. To start with, we mention the
books [BeLPa, BaPan, ZhKO].

0.1. Operator error estimates for homogenization problems in Rd. In a series of
papers [BSu1, BSu2, BSu3, BSu4] by Birman and Suslina, an operator-theoretic approach
to homogenization problems was suggested and developed. This approach was applied to
the study of a wide class of matrix selfadjoint strongly elliptic second order DOs acting
in L2(R

d;Cn) and admitting a factorization of the form

(0.1) Aε = b(D)∗g(x/ε)b(D), ε > 0.

Here an (m × m)-matrix-valued function g(x) is bounded, uniformly positive definite,
and periodic with respect to some lattice Γ ⊂ Rd. Next, b(D) is a first order DO of

the form b(D) =
∑d

j=1 bjDj , where the bj are constant (m× n)-matrices. It is assumed

that m ≥ n and that the symbol b(ξ) has rank n for any 0 �= ξ ∈ R
d. The simplest

example of an operator like (0.1) is the acoustics operator − div g(x/ε)∇; the operator
of elasticity theory can also be written in the required form. These and other examples
were considered in [BSu2] in detail.

In [BSu1, BSu2], it was shown that, as ε → 0, the resolvent (Aε+I)−1 converges in the
L2(R

d;Cn)-operator norm to the resolvent of the effective operator A0 = b(D)∗g0b(D).
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Here g0 is a constant effective matrix. The following estimate was proved:

(0.2)
∥∥(Aε + I)−1 − (A0 + I)−1

∥∥
L2(Rd)→L2(Rd)

≤ Cε.

In [BSu3], a sharper approximation for the resolvent (Aε + I)−1 in the L2(R
d;Cn)-

operator norm with error O(ε2) was found. In [BSu4], an approximation for the resol-
vent (Aε + I)−1 in the norm of operators acting from L2(R

d;Cn) to the Sobolev space
H1(Rd;Cn) was obtained. It was proved that

(0.3)
∥∥(Aε + I)−1 − (A0 + I)−1 − εK(ε)

∥∥
L2(Rd)→H1(Rd)

≤ Cε.

Here K(ε) is the so-called corrector. The operator K(ε) contains rapidly oscillating factors
and so depends on ε; herewith, ‖K(ε)‖L2→H1 = O(ε−1).

Estimates of the form (0.2) and (0.3) are called operator error estimates. They are
order-sharp. The method of [BSu1, BSu2, BSu3, BSu4] is based on the scaling transfor-
mation, the Floquet–Bloch theory, and analytic perturbation theory.

We also mention the recent papers [Su4, Su5], where two-parametric analogs of esti-
mates (0.2) and (0.3) (depending on ε and ζ) for the resolvent (Aε−ζI)−1 at an arbitrary
point ζ ∈ C \ R+ were obtained.

A different approach to operator error estimates (the modified method of first-order
approximation or the shift method) was suggested by Zhikov; in [Zh] and [ZhPas1], this
method was employed to get estimates of the form (0.2) and (0.3) for the acoustics
operator and the elasticity operator. Concerning further results, see the recent survey
[ZhPas2] by Zhikov and Pastukhova and the references therein.

A homogenization problem for periodic elliptic DOs of high even order is of separate
interest. The operator-theoretic approach of Birman and Suslina was developed for such
operators in the paper [V] by Veniaminov and in the recent paper [KuSu] by Kukushkin
and Suslina.

In [V], operators of the form Bε = (Dp)∗g(x/ε)Dp were studied. Here g(x) is a
symmetric positive definite and bounded tensor of order 2p, periodic with respect to a
lattice Γ. Such an operator with p = 2 arises in the theory of elastic plates (see [ZhKO]).
The effective operator is given by B0 = (Dp)∗g0Dp, where g0 is the effective tensor.
In [V], the following analog of estimate (0.2) was proved:∥∥(Bε + I)−1 − (B0 + I)−1

∥∥
L2(Rd)→L2(Rd)

≤ Cε.

In [KuSu], a more general class of higher-order elliptic DOs acting in L2(R
d;Cn) and

admitting a factorization of the form

(0.4) Aε = b(D)∗g(x/ε)b(D)

was studied. Here g(x) is a bounded and uniformly positive definite (m × m)-matrix-
valued function, periodic with respect to Γ. The operator b(D) of order p ≥ 2 is of the
form b(D) =

∑
|α|=p bαD

α, where the bα are constant (m × n)-matrices. It is assumed

that m ≥ n and that the symbol b(ξ) has rank n for any 0 �= ξ ∈ Rd. The main results
of [KuSu] are approximations of the resolvent (Aε − ζI)−1, where ζ ∈ C \R+, in various
operator norms with two-parametric error estimates (depending on ε and ζ). It was
shown that the resolvent (Aε − ζI)−1 converges in the L2(R

d;Cn)-operator norm to the
resolvent of the effective operator A0 = b(D)∗g0b(D) (where g0 is the constant effective
matrix), and

(0.5)
∥∥(Aε − ζI)−1 − (A0 − ζI)−1

∥∥
L2(Rd)→L2(Rd)

≤ C1(ζ)ε.

Approximation was obtained for the resolvent in the “energy” norm (i. e., the norm of
operators acting from L2(R

d;Cn) to Hp(Rd;Cn)), with the corrector taken into account:

(0.6)
∥∥(Aε − ζI)−1 − (A0 − ζI)−1 − εpK(ζ; ε)

∥∥
L2(Rd)→Hp(Rd)

≤ C2(ζ)ε.
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The corrector K(ζ; ε) contains rapidly oscillating factors; we have ‖K(ζ; ε)‖L2→Hp =
O(ε−p). The dependence of C1(ζ) and C2(ζ) on ζ is searched out.

Similar results on homogenization of higher-order elliptic operators were obtained in
the recent papers [Pas1, Pas2] by Pastukhova with the help of the shift method (in those
papers, estimates are one-parametric, it was assumed that ζ = −1).

0.2. Operator error estimates for homogenization problems in a bounded
domain. Operator error estimates were also studied for second order elliptic operators
with rapidly oscillating coefficients in a bounded domain O ⊂ Rd with sufficiently smooth
boundary. In [Zh, ZhPas1], the acoustics operator and the operator of elasticity theory
with the Dirichlet or Neumann conditions on the boundary ∂O were studied; analogs of
estimates (0.2) and (0.3), but with error terms of order O(ε1/2), were obtained. The error
deteriorates because of the boundary influence. (In the case of the Dirichlet problem for
the acoustics operator, the (L2 → L2)-estimate was improved in [ZhPas1], but the order
was not sharp.)

Similar results for the operator − div g(x/ε)∇ in a bounded domain with the Dirichlet
or Neumann conditions were obtained in the papers [Gr1, Gr2] by Griso with the help
of the “unfolding” method. In [Gr2], an analog of estimate (0.2) of sharp order O(ε) for
the same operator was obtained for the first time.

For the second order matrix operators AD,ε and AN,ε given by expression (0.1) with
the Dirichlet or Neumann conditions, respectively, operator error estimates were obtained
in the papers [PSu1, PSu2, Su1, Su2, Su3]. In [PSu1, PSu2], the Dirichlet problem was
studied and the following estimate was obtained:

(0.7)
∥∥A−1

D,ε − (A0
D)−1 − εKD(ε)

∥∥
L2(O)→H1(O)

≤ Cε1/2.

Here A0
D is the effective operator with the Dirichlet condition, and KD(ε) is the cor-

responding corrector. In [Su1, Su2], a sharp-order estimate in the L2(O;Cn)-operator
norm was proved:

(0.8)
∥∥A−1

D,ε − (A0
D)−1

∥∥
L2(O)→L2(O)

≤ Cε.

Similar results for the Neumann problem were obtained in [Su3]. The method of [PSu1,
PSu2, Su1, Su2, Su3] was based on using the results for the problem in Rd, introduction
of the boundary layer correction term, and estimation of this term in H1(O;Cn) and in
L2(O;Cn). Some technical tricks were borrowed from [ZhPas1].

In the recent papers [Su4, Su5], approximations for the resolvents (AD,ε − ζI)−1 and
(AN,ε−ζI)−1 at an arbitrary point ζ ∈ C\R+ (two-parametric analogs of estimates (0.7)
and (0.8)) were obtained.

Independently, an estimate of the form (0.8) for uniformly elliptic second order systems
with the Dirichlet or Neumann conditions, under some regularity assumptions on the
coefficients, was obtained by a different method in the paper [KeLiS] by Kenig, Lin, and
Shen.

0.3. Main results. In the present paper, we study the operator AD,ε of order 2p in a
bounded domain O of class C2p. This operator is given in a factorized form (0.4) under
the Dirichlet conditions on the boundary ∂O. Our goal is to find approximations for the
resolvent (AD,ε − ζI)−1 at a regular point ζ with error estimates depending on ε and ζ.

Now we describe the main results. Let ζ = |ζ|eiϕ ∈ C \ R+ be such that |ζ| ≥ 1. It is
proved that

(0.9)
∥∥(AD,ε − ζI)−1 − (A0

D − ζI)−1
∥∥
L2(O)→L2(O)

≤ C1(ϕ)
(
ε|ζ|−1+1/2p + ε2p

)
,
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(0.10)∥∥(AD,ε− ζI)−1− (A0
D − ζI)−1−εpKD(ζ; ε)

∥∥
L2(O)→Hp(O)

≤ C2(ϕ)
(
ε1/2|ζ|−1/2+1/4p+εp

)
for 0 < ε ≤ ε1 (where ε1 is a sufficiently small number depending on the domain O and
the lattice Γ). Here A0

D is the effective operator given by the expression b(D)∗g0b(D) with
the Dirichlet conditions. The corrector KD(ζ; ε) involves rapidly oscillating factors, and
‖KD(ζ; ε)‖L2→Hp = O(ε−p). The dependence of the constants C1(ϕ) and C2(ϕ) on the
angle ϕ is traced; estimates (0.9) and (0.10) are uniform with respect to ϕ in any sector
ϕ ∈ [ϕ0, 2π − ϕ0] with arbitrarily small ϕ0 > 0. For fixed ζ, estimate (0.9) is of sharp
order O(ε), while estimate (0.10) is of order O(ε1/2) (the order deteriorates because of
the boundary influence). Estimates (0.9) and (0.10) show that the error becomes smaller
as |ζ| grows.

In the general case, the corrector KD(ζ; ε) involves an auxiliary smoothing operator.
We distinguish an additional condition under which the standard corrector (without
smoothing) can be used.

Besides approximation for the resolvent, we find approximation for the operator
g(x/ε)b(D)(AD,ε−ζI)−1 (corresponding to the “flux”) in the (L2 → L2)-operator norm.

For completeness, we also find approximation for the resolvent (AD,ε − ζI)−1 in a
larger domain of the parameter ζ; the character of dependence of estimates on ζ in this
case is different. Let us describe these results. The operators AD,ε and A0

D are positive
definite. Let c∗ > 0 be their common lower bound. Suppose that ζ ∈ C \ [c∗,∞). We
put ζ − c∗ = |ζ − c∗|eiψ. For 0 < ε ≤ ε1 we have∥∥(AD,ε − ζI)−1 − (A0

D − ζI)−1
∥∥
L2(O)→L2(O)

≤ C(ζ)ε,(0.11) ∥∥(AD,ε − ζI)−1 − (A0
D − ζI)−1 − εpKD(ζ; ε)

∥∥
L2(O)→Hp(O)

≤ C(ζ)ε1/2,(0.12)

where C(ζ) = C(ψ)|ζ − c∗|−2 for |ζ − c∗| ≤ 1 and C(ζ) = C(ψ) for |ζ − c∗| > 1. The
dependence of C(ψ) on the angle ψ is traced. Estimates (0.11) and (0.12) are uniform
with respect to ψ in any sector of the form ψ ∈ [ψ0, 2π−ψ0] with arbitrarily small ψ0 > 0.

0.4. Method. We rely on the results for operator (0.4) of order 2p in L2(R
d;Cn) ob-

tained in [KuSu] (estimates (0.5) and (0.6)). First, we deduce yet another result for
the problem in Rd (which is similar to (0.6)), where the Steklov smoothing is involved;
see Theorem 3.3 below.

The method of investigation of the operator AD,ε is similar to the case of the second
order operators: it is based on consideration of the associated problem in Rd, intro-
duction of the boundary layer correction term, and a careful analysis of this term. An
important technical role is played by the Steklov smoothing (like in the paper [ZhPas1])
and estimates in the ε-neighborhood of the boundary. First, estimate (0.10) is proved.
Next, we prove estimate (0.9), using the already proved inequality (0.10) and duality
arguments.

Estimates (0.11) and (0.12) are deduced (in a relatively simple way) from the already
proved estimates at the point ζ = −1 and suitable identities for the resolvents.

0.5. Plan of the paper. The paper consists of two chapters. Chapter 1 (§§1–3) is
devoted to the problem in R

d. In §1, we introduce the class of operators Aε in L2(R
d;Cn),

describe the effective operator A0, and introduce smoothing operators of two types. In §2,
we describe the properties of the matrix-valued function Λ(x) that is a periodic solution
of the auxiliary problem (1.10). In §3, the results of the paper [KuSu] on approximation
of the resolvent (Aε − ζI)−1 (Theorems 3.1 and 3.2) are given, and another version of
approximation for the resolvent in the “energy” norm involving the Steklov smoothing
(Theorem 3.3) is obtained. Chapter 2 (§§4–8) is devoted to the Dirichlet problem. §4
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contains the statement of the problem, description of the effective operator, and auxiliary
statements. In §5, the main results for the Dirichlet problem, namely, estimates (0.9),
(0.10) are formulated (see Theorems 5.1 and 5.2). The first two steps of the proofs are
presented: the associated problem in R

d is considered, and the boundary layer correction
term wε is introduced; the problem is reduced to estimation of the correction term in
Hp(O;Cn) and in L2(O;Cn). In §6, we prove the required estimates for the correction
term and complete the proof of Theorems 5.1 and 5.2. In §7, we distinguish the case
where the smoothing operator can be removed and the standard corrector can be used.
Some special cases are considered. In §8, approximation for the resolvent (AD,ε − ζI)−1

for ζ ∈ C \ [c∗,∞) is obtained (estimates (0.11) and (0.12) are proved).

0.6. Notation. Let H and G be complex separable Hilbert spaces. The symbols ‖ · ‖H
and ( · , · )H stand for the norm and the inner product in H, respectively; the symbol
‖ · ‖H→G denotes the norm of a continuous linear operator acting from H to G.

The inner product and the norm in C
n are denoted by 〈 · , · 〉 and | · |, respectively.

Next, 1 = 1n stands for the unit (n× n)-matrix. If a is a matrix of size m× n, then |a|
denotes the norm of the matrix a viewed as an operator from Cn to Cm. The classes Lq

of Cn-valued functions in a domain O ⊂ Rd are denoted by Lq(O;Cn), 1 ≤ q ≤ ∞. The
Sobolev classes of Cn-valued functions in a domain O ⊆ Rd are denoted by Hs(O;Cn),
s ∈ R. Next, Hs

0(O;Cn) is the closure of the class C∞
0 (O;Cn) in the space Hs(O;Cn).

If n = 1, we write simply Lq(O) and Hs(O), but sometimes we use this simpler notation
also for spaces of vector-valued or matrix-valued functions.

The vectors are denoted by the bold font. We denote x = (x1, . . . , xd) ∈ Rd, iDj =
∂j = ∂/∂xj , j = 1, . . . , d, and D = −i∇ = (D1, . . . , Dd). If α = (α1, . . . , αd) ∈ Z

d
+ is a

multiindex, then |α| =
∑d

j=1 αj and Dα = Dα1
1 . . . Dαd

d . For two multiindices α and β,
we write β ≤ α if βj ≤ αj , j = 1, . . . , d; the binomial coefficients are denoted by
Cβ

α = Cβ1
α1

. . . Cβd
αd
.

We use the notation R+ = [0,∞). By C, c, c, C, C (possibly, with indices and marks)
we denote various constants in estimates.

Chapter 1. Homogenization of operators in Rd

§1. Periodic elliptic operators in L2(R
d;Cn)

1.1. Lattices in Rd. Let Γ be the lattice in Rd generated by a basis n1, . . . ,nd:

Γ =

{
n ∈ R

d : n =
d∑

i=1

lini, li ∈ Z

}
,

and let Ω be the elementary cell of the lattice Γ:

Ω =

{
x ∈ R

d : x =
d∑

i=1

tini, −
1

2
< ti <

1

2

}
.

The basis s1, . . . , sd in Rd dual to the basis n1, . . . ,nd is defined by the relations

〈si,nj〉Rd = 2πδij . This basis gives rise to a lattice rΓ dual to the lattice Γ:

rΓ =

{
s ∈ R

d : s =
d∑

i=1

qisi, qi ∈ Z

}
.

Instead of the cell of the dual lattice, it is more convenient to consider the central Brillouin
zone

rΩ =
{
k ∈ R

d : |k| < |k− s|, 0 �= s ∈ rΓ
}
,
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which is a fundamental domain of rΓ. Below we use the notation |Ω| = measΩ,

r0 =
1

2
min

0�=s∈rΓ
|s|, r1 =

1

2
diamΩ.

By rHs(Ω;Cn) we denote the subspace of all functions in Hs(Ω;Cn) whose Γ-periodic
extension to R

d belongs to Hs
loc(R

d;Cn). If ϕ(x) is a Γ-periodic function on R
d, we

denote

ϕε(x) := ϕ(ε−1x), ε > 0.

1.2. The class of operators. In L2(R
d;Cn), consider the DO Aε of order 2p formally

given by the differential expression

(1.1) Aε = b(D)∗gε(x)b(D), ε > 0.

Here g(x) is a uniformly positive definite and bounded (m×m)-matrix-valued function
(in general, g(x) is a Hermitian matrix with complex entries):

(1.2) g, g−1 ∈ L∞(Rd); g(x) > 0.

The operator b(D) is given by

(1.3) b(D) =
∑
|α|=p

bαD
α,

where the bα are constant (m × n)-matrices (in general, with complex entries). It is
assumed that m ≥ n and that the symbol b(ξ) =

∑
|α|=p bαξ

α satisfies

rank b(ξ) = n, 0 �= ξ ∈ R
d.

This condition is equivalent to the inequalities

(1.4) α01n ≤ b(θ)∗b(θ) ≤ α11n, θ ∈ S
d−1, 0 < α0 ≤ α1 < ∞,

with some positive constants α0 and α1. Without loss of generality we assume that the

norms of the matrices bα do not exceed the constant α
1/2
1 :

(1.5) |bα| ≤ α
1/2
1 , |α| = p.

The precise definition of the operator Aε is given in terms of the quadratic form

(1.6) aε[u,u] =

∫
Rd

〈gε(x)b(D)u, b(D)u〉 dx, u ∈ Hp(Rd;Cn).

Note that the following elementary inequalities are valid:

(1.7)
∑
|α|=p

|ξα|2 ≤ |ξ|2p ≤ cp

∑
|α|=p

|ξα|2, ξ ∈ R
d,

where cp depends only on d and p. Using the Fourier transformation and relations (1.2),
(1.4), and (1.7), it is easy to check that

(1.8) c0

∫
Rd

|Dpu|2 dx ≤ aε [u,u] ≤ c1

∫
Rd

|Dpu|2 dx, u ∈ Hp(Rd;Cn),

where |Dpu|2 :=
∑

|α|=p |Dαu|2. Here

(1.9) c0 = α0‖g−1‖−1
L∞

, c1 = cpα1‖g‖L∞ .

Hence, the form (1.6) is closed and nonnegative. The selfadjoint operator in L2(R
d;Cn)

corresponding to this form is denoted by Aε.
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1.3. The effective operator. In order to formulate our results, we need to introduce

the effective operator A0. Let an (n × m)-matrix-valued function Λ ∈ rHp(Ω) be the
(weak) Γ-periodic solution of the problem

(1.10) b(D)∗g(x) (b(D)Λ(x) + 1m) = 0,

∫
Ω

Λ(x) dx = 0.

The so-called effective matrix g0 of size m×m is defined as follows:

(1.11) g0 = |Ω|−1

∫
Ω

rg(x) dx,

where

(1.12) rg(x) := g(x) (b(D)Λ(x) + 1m) .

It turns out that the matrix g0 is positive definite. The effective operator A0 for the
operator (1.1) is given by the differential expression

(1.13) A0 = b(D)∗g0b(D)

on the domain H2p(Rd;Cn). Below we need the following estimates for the symbol
L(ξ) = b(ξ)∗g0b(ξ) of the effective operator:

(1.14) c0|ξ|2p1n ≤ L(ξ) ≤ C∗|ξ|2p1n, ξ ∈ R
d,

where c0 is defined by (1.9) and C∗ = α1‖g‖L∞ . These estimates follow from (1.4) and
the properties of the effective matrix (its positivity and estimates (1.16)).

1.4. Properties of the effective matrix. The following properties of the effective
matrix were checked in [KuSu, Proposition 5.3].

Proposition 1.1. Denote

sg := |Ω|−1
∫
Ω

g(x)dx, g :=

(
|Ω|−1

∫
Ω

g(x)−1dx

)−1

.

The effective matrix g0 satisfies the estimates

(1.15) g ≤ g0 ≤ sg.

If m = n, then g0 = g.

In homogenization theory for specific DOs, estimates (1.15) are known as the Voight–
Reuss bracketing. From (1.15) it follows that

(1.16) |g0| ≤ ‖g‖L∞ , |(g0)−1| ≤ ‖g−1‖L∞ .

Now we distinguish the cases where one of the inequalities in (1.15) becomes an iden-
tity. The following two statements were checked in [KuSu, Propositions 5.4 and 5.5].

Proposition 1.2. Let gk(x), k = 1, . . . ,m, be the columns of the matrix g(x). The
identity g0 = sg is equivalent to the relations

(1.17) b(D)∗gk(x) = 0, k = 1, . . . ,m.

Proposition 1.3. Let lk(x), k = 1, . . . ,m, be the columns of the matrix g(x)−1. The
identity g0 = g is equivalent to the relations

(1.18) lk(x) = l0k + b(D)vk(x), l0k ∈ C
m, vk ∈ rHp(Ω;Cn); k = 1, . . . ,m.

The following property was mentioned in [KuSu, Remark 5.6].

Remark 1.4. If g0 = g, then the matrix (1.12) is constant: rg(x) = g0 = g.
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1.5. Smoothing operators. In what follows, we need two smoothing operators of dif-
ferent types. The first of them acts in L2(R

d;Cm) as follows:

(1.19) (Πεu)(x) = (2π)−d/2

∫
rΩ/ε

ei〈x,ξ〉pu(ξ) dξ,

where pu(ξ) is the Fourier image of the function u(x). In other words, Πε is the pseu-
dodifferential operator whose symbol is the characteristic function χ

rΩ/ε(ξ) of the set

rΩ/ε. Obviously, Πε is the orthogonal projection in Hs(Rd;Cm) for any s ≥ 0. We have
DαΠεu = ΠεD

αu for u ∈ Hs(Rd;Cm) and any multiindex α such that |α| ≤ s.
The following statement was checked in [PSu2, Proposition 1.4].

Proposition 1.5. For any u ∈ H1(Rd;Cm) we have

‖Πεu− u‖L2(Rd) ≤ εr−1
0 ‖Du‖L2(Rd).

The next statement was obtained in [BSu4, Subsection 10.2].

Proposition 1.6. Suppose that f(x) is a Γ-periodic function on Rd such that f ∈ L2(Ω).
Let [fε] be the operator of multiplication by the function f(ε−1x). Then the operator
[fε]Πε is continuous in L2(R

d;Cm) and

‖[fε]Πε‖L2(Rd)→L2(Rd) ≤ |Ω|−1/2‖f‖L2(Ω), ε > 0.

The second operator in question is called the Steklov smoothing operator and is denoted
by Sε. It acts in L2(R

d;Cm) as follows:

(1.20) (Sεu)(x) = |Ω|−1

∫
Ω

u(x− εz) dz.

Note that ‖Sε‖L2(Rd)→L2(Rd) ≤ 1. Obviously, DαSεu = SεD
αu for u ∈ Hs(Rd;Cm) and

any multiindex α such that |α| ≤ s.
We mention some properties of the operator (1.20); see [ZhPas1, Lemmas 1.1 and 1.2]

or [PSu2, Propositions 3.1, 3.2].

Proposition 1.7. For any u ∈ H1(Rd;Cm) we have

‖Sεu− u‖L2(Rd) ≤ εr1‖Du‖L2(Rd).

Proposition 1.8. Let f(x) be a Γ-periodic function in Rd such that f ∈ L2(Ω). Let
[fε] be the operator of multiplication by the function f(ε−1x). Then the operator [fε]Sε

is continuous in L2(R
d;Cm) and

‖[fε]Sε‖L2(Rd)→L2(Rd) ≤ |Ω|−1/2‖f‖L2(Ω), ε > 0.

§2. Properties of the matrix-valued function Λ

In what follows, we need estimates for the norms of the matrix-valued function Λ (see
[KuSu, Corollary 5.8]):

‖Λ‖L2(Ω) ≤ |Ω|1/2C(1)
Λ , C

(1)
Λ = m1/2α

−1/2
0 (2r0)

−p‖g‖1/2L∞
‖g−1‖1/2L∞

,(2.1)

‖b(D)Λ‖L2(Ω) ≤ |Ω|1/2C(2)
Λ , C

(2)
Λ = m1/2‖g‖1/2L∞

‖g−1‖1/2L∞
,(2.2)

‖Λ‖Hp(Ω) ≤ |Ω|1/2CΛ, CΛ = C
(2)
Λ α

−1/2
0

( ∑
|β|≤p

(2r0)
−2(p−|β|)

)1/2

.(2.3)

The following lemma is a generalization of Lemma 8.3 in [BSu4] to the case of higher-
order operators.
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Lemma 2.1. Let Λ(x) be a Γ-periodic solution of problem (1.10) and rg(x) the matrix-
valued function (1.12). Then for any u ∈ C∞

0 (Rd) we have

(2.4)

∫
Rd

|Dp(Λ(x)u(x))|2 dx

≤ β1

∫
Rd

|u|2 dx+ β2

∑
|α|=p

∑
β≤α : |β|≥1

∫
Rd

(
|Dα−βΛ|2 + |rg|2

)
|Dβu|2 dx

+ β3

∑
|α|=p

∑
β≤α : |β|≥1

∑
γ≤α−β:|γ|≥1

∫
Rd

|Dα−β−γΛ|2|Dγu|2 dx.

The constants βl, l = 1, 2, 3, depend only on d, p, m, α0, α1, ‖g‖L∞ , and ‖g−1‖L∞ .

Proof. Let e1, . . . , em be the standard orthonormal basis in Cm. Denote the columns
of Λ(x) by vj(x), j = 1, . . . ,m. By (1.10), the Γ-periodic vector-valued function vj(x)
belongs to Hp

loc(R
d;Cn) and satisfies the identity

(2.5)

∫
Rd

〈g(x)(b(D)vj(x) + ej), b(D)η(x)〉 dx = 0

for any function η ∈ Hp(Rd;Cn) such that η(x) = 0 for |x| > R (with some R > 0).
Clearly, it suffices to check (2.4) for a real-valued function u. So, let u(x) be a real-

valued function such that u ∈ C∞
0 (Rd). We put η(x) = vj(x)u(x)

2. By (1.3), we have

b(D)η = ub(D)(vju) +
∑
|α|=p

bα
∑

β≤α : |β|≥1

Cβ
αD

α−β(vju)D
βu

= ub(D)(vju) + u
∑
|α|=p

bα
∑

β≤α : |β|≥1

Cβ
α(D

α−βvj)D
βu

+
∑
|α|=p

bα
∑

β≤α:|β|≥1

Cβ
αD

βu
∑

γ≤α−β:|γ|≥1

Cγ
α−β(D

α−β−γvj)D
γu.

Substituting this expression in (2.5), we arrive at the identity∫
Rd

〈g(b(D)vj)u, b(D)(vju)〉 dx+
∑
|α|=p

∑
β≤α:|β|≥1

Cβ
α

∫
Rd

〈g(b(D)vj)u, bα(D
α−βvj)D

βu〉 dx

+ J1 + J2 + J3 = 0,

where

J1 :=

∫
Rd

〈geju, b(D)(vju)〉 dx,

J2 :=
∑
|α|=p

∑
β≤α:|β|≥1

Cβ
α

∫
Rd

〈geju, bα(Dα−βvj)D
βu〉 dx,

J3 :=
∑
|α|=p

∑
β≤α:|β|≥1

∑
γ≤α−β:|γ|≥1

Cβ
αC

γ
α−β

∫
Rd

〈g(b(D)vj + ej), bα(D
α−β−γvj)D

βuDγu〉 dx.

Next, employing the formula

(b(D)vj)u = b(D)(vju)−
∑
|α|=p

bα
∑

β≤α:|β|≥1

Cβ
αD

α−βvjD
βu

and denoting
J :=

∫
Rd

〈gb(D)(vju), b(D)(vju)〉 dx,

we rewrite the above identity as

J = −J1 − J2 − J3 + J4 − J5 + J6,
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where

J4 :=
∑
|α|=p

∑
β≤α:|β|≥1

Cβ
α

∫
Rd

〈gbα(Dα−βvj)D
βu, b(D)(vju)〉 dx,

J5 :=
∑
|α|=p

∑
β≤α:|β|≥1

Cβ
α

∫
Rd

〈gb(D)(vju), bα(D
α−βvj)D

βu〉 dx,

J6 :=
∑

|α|=|α′|=p

∑
β≤α:|β|≥1

β′≤α′:|β′|≥1

Cβ
αC

β′

α′

∫
Rd

〈
gbα′(Dα′−β′

vj)D
β′
u, bα(D

α−βvj)D
βu

〉
dx.

The term J1 is estimated with the help of the Cauchy inequality:

|J1| ≤ ‖g1/2eju‖L2(Rd)‖g1/2b(D)(vju)‖L2(Rd) ≤
1

4
J + ‖g‖L∞‖u‖2L2(Rd).

By (1.5), the term J2 satisfies

|J2| ≤ c
(2)
1 ‖u‖2L2(Rd) + c

(2)
2

∑
|α|=p

∑
β≤α:|β|≥1

∫
Rd

|Dα−βvj |2|Dβu|2 dx,

where c
(2)
l = κl(d, p)‖g‖L∞α

1/2
1 , l = 1, 2, and the constants κl(d, p) depend only on d

and p.
Next, the vectors rgj(x) := g(x)(b(D)vj(x)+ej), j = 1, . . . ,m, are the columns of the

matrix rg(x) defined by (1.12). By (1.5), the term J3 satisfies

|J3| ≤ c(3)
∑
|α|=p

∑
β≤α:|β|≥1

∑
γ≤α−β:|γ|≥1

∫
Rd

|rgj ||Dα−β−γvj ||Dβu||Dγu| dx

≤ c(3)
∑
|α|=p

∑
β≤α:|β|≥1

∑
γ≤α−β:|γ|≥1

∫
Rd

|Dα−β−γvj |2|Dγu|2 dx

+ c(4)
∑
|α|=p

∑
β≤α:|β|≥1

∫
Rd

|rgj |2|Dβu|2 dx,

where c(3) = κ3(d, p)α
1/2
1 and c(4) = κ4(d, p)α

1/2
1 .

The terms J4 and J5 are estimated in the same way. We have

|J4|+ |J5| ≤
1

4
J + c(5)

∑
|α|=p

∑
β≤α:|β|≥1

∫
Rd

|Dα−βvj |2|Dβu|2 dx,

where c(5) = κ5(d, p)α1‖g‖L∞ . Finally, the term J6 admits the estimate

|J6| ≤ c(6)
∑
|α|=p

∑
β≤α:|β|≥1

∫
Rd

|Dα−βvj |2|Dβu|2 dx,

where c(6) = κ6(d, p)α1‖g‖L∞ .
As a result, we arrive at the inequality

J ≤ qβ1‖u‖2L2(Rd) +
qβ2

∑
|α|=p

∑
β≤α:|β|≥1

∫
Rd

(|Dα−βvj |2 + |rgj |2)|Dβu|2 dx

+ qβ3

∑
|α|=p

∑
β≤α:|β|≥1

∑
γ≤α−β:|γ|≥1

∫
Rd

|Dα−β−γvj |2|Dγu|2 dx,

where qβ1 = 2‖g‖L∞ + 2c
(2)
1 , qβ2 = 2(c

(2)
2 + c(4) + c(5) + c(6)), and qβ3 = 2c(3).

Taking the lower estimate (1.8) (with ε = 1) into account and summing over j, we
arrive at the desired inequality (2.4). �
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Corollary 2.2. For u ∈ C∞
0 (Rd) and ε > 0 we have

(2.6)

ε2p
∫
Rd

|Dp(Λεu)|2 dx

≤ β1

∫
Rd

|u|2 dx+ β2

∑
|α|=p

∑
β≤α:|β|≥1

ε2|β|
∫
Rd

(
|(Dα−βΛ)ε|2 + |rgε|2

)
|Dβu|2 dx

+ β3

∑
|α|=p

∑
β≤α:|β|≥1

∑
γ≤α−β:|γ|≥1

ε2|γ|
∫
Rd

|(Dα−β−γΛ)ε|2|Dγu|2 dx.

Proof. Let u ∈ C∞
0 (Rd). We substitute x = εy and u(x) = v(y). Then

ε2p
∫
Rd

|Dp
x(Λ

ε(x)u(x))|2 dx = εd
∫
Rd

|Dp
y(Λ(y)v(y))|2 dy.

Applying (2.4) to the integral on the right and using the inverse change, we arrive at
estimate (2.6). �

§3. Results for the homogenization problem in R
d

In this section, we formulate the results on homogenization for the operator Aε in
L2(R

d;Cn) obtained in [KuSu], and obtain yet another result (involving the Steklov
smoothing operator).

3.1. Approximation of the resolvent of Aε in the L2(R
d;Cn)-operator norm. A

point ζ ∈ C\R+ is regular for both operators Aε and A0. We put ζ = |ζ|eiϕ, ϕ ∈ (0, 2π),
and denote

(3.1) c(ϕ) =

{
| sinϕ|−1 if ϕ ∈ (0, π/2) ∪ (3π/2, 2π),

1 if ϕ ∈ [π/2, 3π/2].

The following theorem was proved in [KuSu, Theorem 8.1].

Theorem 3.1. Suppose that Aε is the operator (1.1) and A0 is the effective opera-
tor (1.13). Let ζ = |ζ|eiϕ ∈ C \ R+, and let c(ϕ) be given by (3.1). Then for ε > 0 we
have ∥∥(Aε − ζI)−1 − (A0 − ζI)−1

∥∥
L2(Rd)→L2(Rd)

≤ C1c(ϕ)
2ε|ζ|−1+1/2p.

The constant C1 depends only on d, p, α0, α1, ‖g‖L∞ , ‖g−1‖L∞ , and the parameters of
the lattice Γ.

3.2. Approximation of the resolvent of Aε in the (L2 → Hp)-operator norm.
In order to approximate the resolvent (Aε − ζI)−1 in the norm of operators acting from
L2(R

d;Cn) to the Sobolev space Hp(Rd;Cn), we need to introduce the corrector

(3.2) K(ζ; ε) := [Λε]Πεb(D)(A0 − ζI)−1.

Recall that Λ is the periodic solution of problem (1.10) and Πε is the smoothing opera-
tor (1.19). The operator (3.2) is a continuous mapping of L2(R

d;Cn) into Hp(Rd;Cn).

This can easily be checked by using Proposition 1.6 and the relation Λ ∈ rHp(Ω). Here-
with, ‖K(ζ; ε)‖L2→Hp = O(ε−p).

The following result was obtained in [KuSu, Theorem 8.2].
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Theorem 3.2. Under the assumptions of Theorem 3.1, let K(ζ; ε) be the operator (3.2),
and let rg(x) be the matrix-valued function (1.12). Then for ε > 0 we have∥∥(Aε − ζI)−1 − (A0 − ζI)−1 − εpK(ζ; ε)

∥∥
L2(Rd)→Hp(Rd)

≤ C2c(ϕ)
2ε|ζ|−1/2+1/2p

(
1 + |ζ|−1/2

)
,

(3.3)

∥∥gεb(D)(Aε − ζI)−1 − rgεΠεb(D)(A0 − ζI)−1
∥∥
L2(Rd)→L2(Rd)

≤ C3c(ϕ)
2ε|ζ|−1/2+1/2p.

(3.4)

The constants C2 and C3 depend only on m, d, p, α0, α1, ‖g‖L∞ , ‖g−1‖L∞ , and the
parameters of the lattice Γ.

3.3. Another approximation of the resolvent of Aε in the (L2 → Hp)-operator
norm. We put

(3.5) rK(ζ; ε) := [Λε]Sεb(D)(A0 − ζI)−1,

where Sε is the Steklov smoothing operator defined by (1.20). The operator (3.5) is a
continuous mapping of L2(R

d;Cn) into Hp(Rd;Cn) (this can easily be checked by using

Proposition 1.8 and the relation Λ ∈ rHp(Ω)). Herewith, ‖ rK(ζ; ε)‖L2→Hp = O(ε−p).
Along with Theorem 3.2, the following result is true; this result turns out to be more

convenient for further application to the study of problems in a bounded domain.

Theorem 3.3. Under the assumptions of Theorem 3.1, let rK(ζ; ε) be the operator (3.5),
and let rg(x) be the matrix-valued function (1.12). Then for ε > 0 we have∥∥(Aε − ζI)−1 − (A0 − ζI)−1 − εp rK(ζ; ε)

∥∥
L2(Rd)→Hp(Rd)

≤
(
C4c(ϕ)

2ε|ζ|−1/2+1/2p + C5c(ϕ)ε
p
)(
1 + |ζ|−1/2

)
,

(3.6)

∥∥gεb(D)(Aε − ζI)−1 − rgεSεb(D)(A0 − ζI)−1
∥∥
L2(Rd)→L2(Rd)

≤ C6c(ϕ)
2ε|ζ|−1/2+1/2p + C7c(ϕ)ε

p.
(3.7)

The constants C4, C5, C6, and C7 depend only on m, d, p, α0, α1, ‖g‖L∞ , ‖g−1‖L∞ ,
and the parameters of the lattice Γ.

Theorem 3.3 is deduced from Theorem 3.2 with the help of the following lemma.

Lemma 3.4. For any u ∈ H2p(Rd;Cn) and ε > 0 we have

(3.8) ε2p
∫
Rd

|Dp(Λεzε)|2 dx ≤ β1

∫
Rd

|zε|2 dx+ β2Iε
2 [zε] + β3Iε

3 [zε],

where zε := (Πε − Sε)b(D)u,

Iε
2 [zε] :=

∑
|α|=p

∑
β≤α:|β|≥1

ε2|β|
∫
Rd

(
|(Dα−βΛ)ε|2 + |rgε|2

)
|Dβzε|2 dx,

Iε
3 [zε] :=

∑
|α|=p

∑
β≤α:|β|≥1

∑
γ≤α−β:|γ|≥1

ε2|γ|
∫
Rd

|(Dα−β−γΛ)ε|2|Dγzε|2 dx.

The constants βl, l = 1, 2, 3, depend only on d, p, m, α0, α1, ‖g‖L∞ , and ‖g−1‖L∞ .

Proof. By Propositions 1.6, 1.8 and the relations Λ ∈ rHp(Ω), rg ∈ L2(Ω), all terms
in inequality (3.8) are continuous functionals of u in the H2p(Rd;Cn)-norm. Since
C∞

0 (Rd;Cn) is dense in H2p(Rd;Cn), it suffices to prove (3.8) for u ∈ C∞
0 (Rd;Cn).
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Fixing a function χ ∈ C∞(R+) such that 0 ≤ χ(t) ≤ 1, χ(t) = 1 for 0 ≤ t ≤ 1, and
χ(t) = 0 for t ≥ 2, we put χR(x) := χ(R−1|x|), x ∈ Rd, R > 0. Let u ∈ C∞

0 (Rd;Cn),
and let zε = (Πε − Sε)b(D)u. Then χRzε ∈ C∞

0 (Rd;Cm) and, by Corollary 2.2,

ε2p
∫
Rd

|Dp(ΛεχRzε)|2 dx ≤ β1

∫
Rd

|χRzε|2 dx+ β2Iε
2 [χRzε] + β3Iε

3 [χRzε].

Combining this with the estimates max |DαχR| ≤ cR−|α| (for any α) and applying the
Lebesgue theorem, we obtain inequality (3.8) by the limit procedure as R → ∞. �

Relation (3.8) and the Leibnitz formula

(DαΛε)zε = Dα(Λεzε)−
∑

β≤α:|β|≥1

Cβ
α(D

α−βΛε)Dβzε

directly imply the following statement.

Corollary 3.5. Under the assumptions of Lemma 3.4, we have∑
|α|=p

∫
Rd

|(DαΛ)εzε|2 dx ≤ rβ1

∫
Rd

|zε|2 dx+ rβ2Iε
2 [zε] +

rβ3Iε
3 [zε].

The constants rβl, l = 1, 2, 3, depend only on d, p, m, α0, α1, ‖g‖L∞ , and ‖g−1‖L∞ .

Proof of Theorem 3.3. Note that

(3.9) ‖v‖2Hp(Rd) ≤ qcp
(
‖v‖2L2(Rd) + ‖Dpv‖2L2(Rd)

)
, v ∈ Hp(Rd;Cn),

where qcp depends only on d and p.
We estimate the difference of the operators (3.2) and (3.5). Let F ∈ L2(R

d;Cn), and
let u0 = (A0 − ζI)−1F. By (3.9), we have

(3.10)

∥∥(K(ζ; ε)− rK(ζ; ε)
)
F
∥∥2
Hp(Rd)

=
∥∥Λε(Πε − Sε)b(D)u0

∥∥2
Hp(Rd)

≤ qcp
∥∥Dp (Λε(Πε − Sε)b(D)u0)

∥∥2
L2(Rd)

+qcp
∥∥Λε(Πε − Sε)b(D)u0

∥∥2
L2(Rd)

.

The second term on the right-hand side of (3.10) is estimated with the help of Propo-
sitions 1.6 and 1.8. Taking (2.1) into account, we obtain

(3.11)

∥∥Λε(Πε − Sε)b(D)u0

∥∥
L2(Rd)

≤ 2|Ω|−1/2‖Λ‖L2(Ω)‖b(D)u0‖L2(Rd) ≤ 2C
(1)
Λ ‖b(D)u0‖L2(Rd).

To estimate the first term on the right-hand side of (3.10), we apply Lemma 3.4.
Estimate (3.8) with zε = (Πε − Sε)b(D)u0 is satisfied. The first summand on the right
in (3.8) is estimated by using Propositions 1.5 and 1.7:

(3.12)

∫
Rd

|zε|2 dx ≤ C ′
1ε

2‖Db(D)u0‖2L2(Rd),

where C ′
1 = (r−1

0 + r1)
2. The terms Iε

2 [zε] and Iε
3 [zε] are estimated with the help of

Propositions 1.6 and 1.8. We have∫
Rd

(
|(Dα−βΛ)ε|2 + |rgε|2

)
|Dβzε|2 dx

≤ 4|Ω|−1
(
‖Dα−βΛ‖2L2(Ω) + ‖rg‖2L2(Ω)

)
‖Dβb(D)u0‖2L2(Rd).

Combining this with (2.2) and (2.3), we obtain

(3.13) Iε
2 [zε] ≤ C ′

2

p∑
l=1

ε2l‖Dlb(D)u0‖2L2(Rd),
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where C ′
2 = κ′

2(d, p)
(
C2

Λ + ‖g‖2L∞
(1 + C

(2)
Λ )2

)
. Similarly,

(3.14) Iε
3 [zε] ≤ C ′

3

p∑
l=1

ε2l‖Dlb(D)u0‖2L2(Rd),

where C ′
3 = κ′

3(d, p)C
2
Λ. As a result,

(3.15) ε2p
∫
Rd

|Dp (Λε(Πε − Sε)b(D)u0) |2 dx ≤ C ′
p∑

l=1

ε2l‖Dlb(D)u0‖2L2(Rd),

where C ′ = β1C
′
1 + β2C

′
2 + β3C

′
3. From (3.10), (3.11), and (3.15) it follows that

(3.16)

ε2p
∥∥(K(ζ; ε)− rK(ζ; ε)

)
F
∥∥2
Hp(Rd)

≤ 4qcp(C
(1)
Λ )2ε2p‖b(D)u0‖2L2(Rd) +qcpC

′
p∑

l=1

ε2l‖Dlb(D)u0‖2L2(Rd).

Let us estimate the norms ‖Dlb(D)u0‖L2(Rd), l = 0, 1, . . . , p. We have∥∥Dlb(D)(A0 − ζI)−1
∥∥
L2(Rd)→L2(Rd)

≤
∥∥Dlb(D)(A0)−1/2−l/2p

∥∥
L2→L2

∥∥(A0)1/2+l/2p(A0 − ζI)−1
∥∥
L2→L2

.

Taking (1.4) and (1.14) into account, we obtain∥∥Dlb(D)(A0)−1/2−l/2p
∥∥
L2(Rd)→L2(Rd)

≤ α
1/2
1 c

−1/2−l/2p
0 .

Next,∥∥(A0)1/2+l/2p(A0 − ζI)−1
∥∥
L2→L2

≤ sup
x≥0

x1/2+l/2p|x− ζ|−1

≤
(
sup
x≥0

x|x− ζ|−1
)1/2+l/2p(

sup
x≥0

|x− ζ|−1
)1/2−l/2p

.

Calculating the suprema

sup
x≥0

x|x− ζ|−1 ≤ c(ϕ), sup
x≥0

|x− ζ|−1 = c(ϕ)|ζ|−1,

we arrive at the inequality∥∥(A0)1/2+l/2p(A0 − ζI)−1
∥∥
L2→L2

≤ c(ϕ)|ζ|−1/2+l/2p, l = 0, 1, . . . , p.

Thus,

(3.17) ‖Dlb(D)u0‖L2(Rd) ≤ qClc(ϕ)|ζ|−1/2+l/2p‖F‖L2(Rd), l = 0, 1, . . . , p,

where qCl = α
1/2
1 c

−1/2−l/2p
0 . Together with (3.16), this implies

(3.18)

εp‖K(ζ; ε)− rK(ζ; ε)‖L2(Rd)→Hp(Rd)

≤ C
(1)
K c(ϕ)εp|ζ|−1/2 + C

(2)
K c(ϕ)|ζ|−1/2

p∑
j=1

(
ε|ζ|1/2p

)j
,

where C
(1)
K = 2qc

1/2
p C

(1)
Λ

qC0 and C
(2)
K = qc

1/2
p (C ′)1/2 max1≤l≤p

qCl. Obviously, we have∑p
j=1

(
ε|ζ|1/2p

)j ≤ p(ε|ζ|1/2p + εp|ζ|1/2). Combining this with (3.18), we obtain

(3.19) εp
∥∥K(ζ; ε)− rK(ζ; ε)

∥∥
L2(Rd)→Hp(Rd)

≤ CKc(ϕ)
(
εp|ζ|−1/2 + ε|ζ|−1/2+1/2p + εp

)
,

where CK = max{C(1)
K , pC

(2)
K }.

Finally, relations (3.3) and (3.19) imply the required inequality (3.6) with the constants
C4 = C2 + CK and C5 = CK .
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We proceed to the proof of inequality (3.7). By (1.3), (1.5), and (1.12), we have∥∥
rgε(Πε − Sε)b(D)u0

∥∥
L2(Rd)

≤ ‖g‖L∞

∥∥(Πε − Sε)b(D)u0

∥∥
L2(Rd)

+
∑
|α|=p

‖g‖L∞α
1/2
1

∥∥(DαΛ)ε(Πε − Sε)b(D)u0

∥∥
L2(Rd)

.

The first summand on the right is estimated with the help of (3.12), and for the second
we can use Corollary 3.5 (cf. (3.12)–(3.14)). We arrive at

∥∥
rgε(Πε − Sε)b(D)u0

∥∥
L2(Rd)

≤ C ′′
p∑

l=1

εl‖Dlb(D)u0‖L2(Rd),

where C ′′ = ‖g‖L∞(r−1
0 + r1) + κ′′(d, p)‖g‖L∞α

1/2
1

(
rβ1C

′
1 +

rβ2C
′
2 +

rβ3C
′
3

)1/2
. Together

with (3.17), this implies

(3.20)
∥∥

rgε(Πε − Sε)b(D)u0

∥∥
L2(Rd)

≤ rC ′′c(ϕ)
(
ε|ζ|−1/2+1/2p + εp

)
‖F‖L2(Rd),

where rC ′′ = pC ′′ max1≤l≤p
qCl. Now, (3.4) and (3.20) yield the required inequality (3.7)

with the constants C6 = C3 + rC ′′ and C7 = rC ′′. �

3.4. Removal of the smoothing operator. It turns out that, under some additional
assumptions about the properties of the matrix-valued function Λ(x), it is possible to
remove the smoothing operator from the corrector.

Condition 3.6. We assume that the Γ-periodic solution Λ of problem (1.10) is bounded
and is a multiplier from Hp(Rd;Cm) to Hp(Rd;Cn):

Λ ∈ L∞(Rd) ∩M(Hp(Rd;Cm) → Hp(Rd;Cn)).

Due to the periodicity of the matrix-valued function Λ, Condition 3.6 is equivalent to
the relation Λ ∈ L∞(Ω)∩M(Hp(Ω;Cm) → Hp(Ω;Cn)). The norm of the operator [Λ] of
multiplication by the matrix-valued function Λ(x) is denoted by

(3.21) MΛ := ‖[Λ]‖Hp(Rd)→Hp(Rd).

A description of the spaces of multipliers in the Sobolev classes can be found in the
book [MSh]. Some sufficient conditions ensuring Condition 3.6 are known (see [KuSu,
Proposition 7.10]).

Proposition 3.7. Suppose that at least one of the following assumptions is fulfilled:
1◦. 2p > d;
2◦. g0 = g, i.e., we have (1.18).
Then Condition 3.6 is satisfied, and ‖Λ‖L∞ and the multiplier norm (3.21) are con-

trolled in terms of m, n, d, p, α0, α1, ‖g‖L∞ , ‖g−1‖L∞ , and the parameters of the
lattice Γ.

Under Condition 3.6, instead of the corrector (3.2) (or the corrector (3.5)), one can
use the operator

(3.22) K0(ζ; ε) := Λεb(D)(A0 − ζI)−1,

which in this case is continuous from L2(R
d;Cn) to Hp(Rd;Cn). Note that the operator

(3.22) is the traditional corrector used in the homogenization theory.
The following statement is deduced from Proposition 7.12 of the paper [KuSu] by the

scaling transformation.
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Proposition 3.8. Under the assumptions of Theorem 3.1, suppose that Condition 3.6
is satisfied. Let K(ζ; ε) and K0(ζ; ε) be the operators defined by (3.2) and (3.22), respec-
tively. Then for ε > 0 we have

εp
∥∥K(ζ; ε)−K0(ζ; ε)

∥∥
L2(Rd)→Hp(Rd)

≤ C8c(ϕ)(ε
p + ε2p),∥∥

rgε(I −Πε)b(D)(A0 − ζI)−1
∥∥
L2(Rd)→L2(Rd)

≤ C9c(ϕ)ε
p.

The constants C8 and C9 depend only on m, d, p, α0, α1, ‖g‖L∞ , ‖g−1‖L∞ , the param-
eters of the lattice Γ, and also on ‖Λ‖L∞ and MΛ.

Combining Theorem 3.2 and Proposition 3.8, we arrive at the following result.

Theorem 3.9. Under Condition 3.6 and the assumptions of Theorem 3.1, let K0(ζ; ε) be
the operator (3.22), and let rg(x) be the matrix-valued function (1.12). Then for ε > 0
we have ∥∥(Aε − ζI)−1 − (A0 − ζI)−1 − εpK0(ζ; ε)

∥∥
L2(Rd)→Hp(Rd)

≤ C2c(ϕ)
2ε|ζ|−1/2+1/2p

(
1 + |ζ|−1/2

)
+ C8c(ϕ)(ε

p + ε2p),∥∥gεb(D)(Aε − ζI)−1 − rgεb(D)(A0 − ζI)−1
∥∥
L2(Rd)→L2(Rd)

≤ C3c(ϕ)
2ε|ζ|−1/2+1/2p + C9c(ϕ)ε

p.

The constants C2 and C3 depend only on m, d, p, α0, α1, ‖g‖L∞ , ‖g−1‖L∞ , and the
parameters of the lattice Γ. The constants C8 and C9 depend on the same parameters
and also on ‖Λ‖L∞ and MΛ.

Chapter 2. Homogenization of the Dirichlet problem

§4. The Dirichlet problem in a bounded domain

4.1. The statement of the problem. Let O ⊂ R
d be a bounded domain of class C2p.

In L2(O;Cn), we consider the operator AD,ε given formally by the differential expression
b(D)∗gεb(D) with the Dirichlet conditions on ∂O. The precise definition is as follows:
AD,ε is the selfadjoint operator in L2(O;Cn) generated by the quadratic form

(4.1) aD,ε[u,u] =

∫
O
〈gε(x)b(D)u, b(D)u〉 dx, u ∈ Hp

0 (O;Cn).

The form (4.1) is closed and positive definite. Indeed, let us extend u ∈ Hp
0 (O;Cn) by

zero to Rd \ O. Then u ∈ Hp(Rd;Cn). By (1.8), we have

(4.2) c0

∫
O
|Dpu|2 dx ≤ aD,ε[u,u] ≤ c1

∫
O
|Dpu|2 dx, u ∈ Hp

0 (O;Cn).

It remains to recall that the form ‖Dpu‖L2(O) determines a norm inHp
0 (O;Cn) equivalent

to the standard one. By the Friedrichs inequality, (4.2) implies that

(4.3) aD,ε[u,u] ≥ c2‖u‖2L2(O), u ∈ Hp
0 (O;Cn), c2 = c0(diamO)−2p.

Our goal is to approximate the generalized solution uε ∈ Hp
0 (O;Cn) of the Dirichlet

problem

(4.4)
b(D)∗gε(x)b(D)uε(x)− ζuε(x) = F(x), x ∈ O;

uε(x) = ∂νuε(x) = · · · = ∂p−1
ν uε(x) = 0, x ∈ ∂O,

where F ∈ L2(O;Cn), for small ε. Here ∂l
νu(x) stands for the normal derivative of u

of order l on ∂O. As in §3, we assume that ζ ∈ C \ R+. (The case of other admissible
values of ζ is studied below in §8.) We have uε = (AD,ε − ζI)−1F. In operator terms,
we study the behavior of the resolvent (AD,ε − ζI)−1.
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Lemma 4.1. Let ζ = |ζ|eiϕ ∈ C \ R+, and let c(ϕ) be defined by (3.1). Suppose that
uε is the generalized solution of problem (4.4). Then for ε > 0 we have

‖uε‖L2(O) ≤ c(ϕ)|ζ|−1‖F‖L2(O),(4.5)

‖Dpuε‖L2(O) ≤ C0c(ϕ)|ζ|−1/2‖F‖L2(O),(4.6)

where C0 = 21/2c
−1/2
0 . In operator terms,∥∥(AD,ε − ζI)−1

∥∥
L2(O)→L2(O)

≤ c(ϕ)|ζ|−1,(4.7) ∥∥Dp(AD,ε − ζI)−1
∥∥
L2(O)→L2(O)

≤ C0c(ϕ)|ζ|−1/2.

Proof. By (4.3), the spectrum of AD,ε is contained in [c2,∞) ⊂ R+. The norm of the
resolvent (AD,ε − ζI)−1 does not exceed the inverse distance from the point ζ to R+.
This implies (4.7).

To check (4.6), we write the integral identity for the solution uε ∈ Hp
0 (O;Cn) of

problem (4.4):

(4.8) (gεb(D)uε, b(D)η)L2(O) − ζ(uε,η)L2(O) = (F,η)L2(O), η ∈ Hp
0 (O;Cn).

Substituting η = uε in (4.8) and using (4.5), we obtain

(gεb(D)uε, b(D)uε)L2(O) ≤ 2c(ϕ)2|ζ|−1‖F‖2L2(O).

Combining this with (4.2), we arrive at (4.6). �

4.2. The effective operator A0
D. In L2(O;Cn), consider the selfadjoint operator A0

D

generated by the quadratic form

(4.9) a0D[u,u] =

∫
O
〈g0b(D)u, b(D)u〉 dx, u ∈ Hp

0 (O;Cn).

Here g0 is the effective matrix given by (1.11). Taking (1.16) into account, we see that
the form (4.9) satisfies estimates of the form (4.2) and (4.3) with the same constants.

Since ∂O ∈ C2p, the operator A0
D is given by the expression b(D)∗g0b(D) on the

domain H2p(O;Cn) ∩Hp
0 (O;Cn). We have

(4.10) ‖(A0
D)−1‖L2(O)→H2p(O) ≤ pc,

where the constant pc depends only on α0, α1, ‖g‖L∞ , ‖g−1‖L∞ , and the domain O. To
justify this fact, it suffices to refer to Theorems 2.2 and 2.3 of the paper [So].

Remark 4.2. Instead of the condition ∂O ∈ C2p, one could impose the following implicit
condition on the domain: suppose that O is a bounded Lipschitz domain such that
estimate (4.10) is true. The results of Chapter 2 remain valid for such domain. In the
case of scalar elliptic operators, wide sufficient conditions on ∂O ensuring estimate (4.10)
can be found in [KoE] and [MSh, Chapter 7] (in particular, it suffices that ∂O ∈ C2p−1,ν ,
ν > 1/2).

Let u0 = (A0
D − ζI)−1F, where F ∈ L2(O;Cn). Then u0 is the generalized solution

of the problem

(4.11)
b(D)∗g0b(D)u0(x)− ζu0(x) = F(x), x ∈ O;

u0(x) = ∂νu0(x) = · · · = ∂p−1
ν u0(x) = 0, x ∈ ∂O.
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Lemma 4.3. Let ζ ∈ C\R+. Let u0 be the generalized solution of problem (4.11). Then
for ε > 0 we have

‖u0‖L2(O) ≤ c(ϕ)|ζ|−1‖F‖L2(O),(4.12)

‖Dpu0‖L2(O) ≤ C0c(ϕ)|ζ|−1/2‖F‖L2(O),(4.13)

‖u0‖Hp(O) ≤ rC0c(ϕ)(|ζ|−1 + |ζ|−1/2)‖F‖L2(O),(4.14)

‖u0‖H2p(O) ≤ pcc(ϕ)‖F‖L2(O).

In operator terms,∥∥(A0
D − ζI)−1

∥∥
L2(O)→L2(O)

≤ c(ϕ)|ζ|−1,∥∥Dp(A0
D − ζI)−1

∥∥
L2(O)→L2(O)

≤ C0c(ϕ)|ζ|−1/2,∥∥(A0
D − ζI)−1

∥∥
L2(O)→Hp(O)

≤ rC0c(ϕ)(|ζ|−1 + |ζ|−1/2),∥∥(A0
D − ζI)−1

∥∥
L2(O)→H2p(O)

≤ pcc(ϕ).(4.15)

The constant rC0 depends only on d, p, α0, and ‖g−1‖L∞ .

Proof. Estimates (4.12) and (4.13) are proved as in the proof of Lemma 4.1. Since (3.9)
is extended to functions of class Hp

0 (O;Cn), relations (4.12) and (4.13) imply (4.14) with

the constant rC0 = qc
1/2
p max{1, C0}.

Estimate (4.15) follows from (4.10) and the inequality∥∥A0
D(A0

D − ζI)−1
∥∥
L2(O)→L2(O)

≤ sup
x≥0

x|x− ζ|−1 ≤ c(ϕ). �

4.3. Estimates near the boundary. In this subsection, we formulate two simple
auxiliary statements valid for bounded Lipschitz domains O. Precisely, we impose the
following condition.

Condition 4.4. Let O ⊂ Rd be a bounded domain. Denote (∂O)ε = {x ∈ Rd :
dist{x; ∂O} < ε}. Suppose that there exists a number ε0 ∈ (0, 1] such that the strip
(∂O)ε0 can be covered by a finite number of open sets admitting diffeomorphisms of class
C0,1 that rectify the boundary ∂O. Denote ε1 = ε0(1 + r1)

−1, where 2r1 = diamΩ.

Obviously, Condition 4.4 is less restrictive than the above assumption ∂O ∈ C2p.

Lemma 4.5. Suppose that Condition 4.4 is satisfied. Denote Bε = (∂O)ε ∩ O. Then
the following is true.

1◦. For any u ∈ H1(O) we have∫
Bε

|u|2 dx ≤ β0ε‖u‖H1(O)‖u‖L2(O), 0 < ε ≤ ε0.

2◦. For any u ∈ H1(Rd) we have∫
(∂O)ε

|u|2 dx ≤ β0ε‖u‖H1(Rd)‖u‖L2(Rd), 0 < ε ≤ ε0.

The constant β0 depends only on the domain O.

Lemma 4.6. Under Condition 4.4, suppose that f(x) is a Γ-periodic function in R
d

such that f ∈ L2(Ω). Let Sε be the operator given by (1.20). Denote β∗ = β0(1 + r1),
2r1 = diamΩ. Then for 0 < ε ≤ ε1 any function u ∈ H1(Rd;Cm) satisfies∫

(∂O)ε

|fε(x)|2|(Sεu)(x)|2 dx ≤ β∗ε|Ω|−1‖f‖2L2(Ω)‖u‖H1(Rd)‖u‖L2(Rd).
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Lemma 4.6 is an analog of Lemma 2.6 in [ZhPas1]. Lemmas 4.5 and 4.6 were checked
in [PSu2, §5] under the condition ∂O ∈ C1, but the proofs work also under Condition 4.4.

§5. The results for the Dirichlet problem

5.1. Approximation of the resolvent for |ζ| ≥ 1. Now we formulate our main
homogenization results for the operator AD,ε.

Theorem 5.1. Suppose that O ⊂ Rd is a bounded domain of class C2p. Let ζ = |ζ|eiϕ ∈
C \ R+ and |ζ| ≥ 1. Suppose that c(ϕ) is defined by (3.1). Let uε be the solution of
problem (4.4), and let u0 be the solution of problem (4.11) for F ∈ L2(O;Cn). Suppose
that the number ε1 is subject to Condition 4.4. Then for 0 < ε ≤ ε1 we have

(5.1) ‖uε − u0‖L2(O) ≤ C1c(ϕ)5
(
ε|ζ|−1+1/2p + ε2p

)
‖F‖L2(O).

In operator terms,

(5.2)
∥∥(AD,ε − ζI)−1 − (A0

D − ζI)−1
∥∥
L2(O)→L2(O)

≤ C1c(ϕ)5
(
ε|ζ|−1+1/2p + ε2p

)
.

The constant C1 depends only on d, p, m, α0, α1, ‖g‖L∞ , ‖g−1‖L∞ , the parameters of
the lattice Γ, and the domain O.

To approximate the solution in Hp(O;Cn), we need to introduce a corrector. We fix
a continuous linear extension operator

PO : Hs(O;Cn) → Hs(Rd;Cn), s = 0, 1, . . . , 2p.

Such an operator exists (see, e.g., [St]). Denote

(5.3) ‖PO‖Hs(O)→Hs(Rd) =: C
(s)
O , s = 0, 1, . . . , 2p.

The constants C
(s)
O depend only on the domain O and s. By RO we denote the operator

of restriction of functions on Rd to the domain O. We introduce a corrector

(5.4) KD(ζ; ε) = RO[Λ
ε]Sεb(D)PO(A

0
D − ζI)−1.

The operator KD(ζ; ε) maps L2(O;Cn) to Hp(O;Cn) continuously. Indeed, the oper-
ator b(D)PO(A

0
D − ζI)−1 is a continuous mapping of L2(O;Cn) into Hp(Rd;Cm), and

the operator [Λε]Sε is continuous from Hp(Rd;Cm) to Hp(Rd;Cn) (this follows from

Proposition 1.8 and the relation Λ ∈ rHp(Ω)).
Let u0 be the solution of problem (4.11). We denote ru0 := POu0 and put

rvε(x) = ru0(x) + εpΛε(x)(Sεb(D)ru0)(x), x ∈ R
d,(5.5)

vε := rvε|O.(5.6)

Then

(5.7) vε = (A0
D − ζI)−1F+ εpKD(ζ; ε)F.

Theorem 5.2. Under the assumptions of Theorem 5.1, let vε be defined by (5.4) and
(5.7). Then for 0 < ε ≤ ε1 we have

(5.8) ‖uε − vε‖Hp(O) ≤ C2c(ϕ)4
(
ε1/2|ζ|−1/2+1/4p + εp

)
‖F‖L2(O).

In operator terms,

(5.9)

∥∥(AD,ε − ζI)−1 − (A0
D − ζI)−1 − εpKD(ζ; ε)

∥∥
L2(O)→Hp(O)

≤ C2c(ϕ)4
(
ε1/2|ζ|−1/2+1/4p + εp

)
.

The flux pε = gεb(D)uε satisfies

(5.10)
∥∥pε − rgεSεb(D)ru0

∥∥
L2(O)

≤ C3c(ϕ)4
(
ε1/2|ζ|−1/2+1/4p + εp

)
‖F‖L2(O)
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for 0 < ε ≤ ε1. The constants C2 and C3 depend only on d, p, m, α0, α1, ‖g‖L∞ ,
‖g−1‖L∞ , the parameters of the lattice Γ, and the domain O.

Remark 5.3.
1) For fixed ζ ∈ C\R+, |ζ| ≥ 1, the estimates of Theorem 5.1 are of sharp order O(ε).
2) For fixed ζ ∈ C \ R+, |ζ| ≥ 1, the estimates of Theorem 5.2 are of order O(ε1/2).

This is explained by the boundary influence.
3) The error of approximations in Theorems 5.1 and 5.2 becomes smaller as |ζ| grows.
4) The estimates of Theorems 5.1 and 5.2 are uniform with respect to the angle ϕ in

a domain {ζ = |ζ|eiϕ : |ζ| ≥ 1, ϕ0 ≤ ϕ ≤ 2π − ϕ0} with arbitrarily small ϕ0 > 0.

5.2. The first step of the proof. The associated problem in Rd. The proof
of Theorems 5.1 and 5.2 is based on application of results for the problem in R

d and
introduction of the boundary layer correction term.

By Lemma 4.3 and (5.3), we have

‖ru0‖L2(Rd) ≤ C
(0)
O c(ϕ)|ζ|−1‖F‖L2(O),(5.11)

‖ru0‖Hp(Rd) ≤ C(p)c(ϕ)|ζ|−1/2‖F‖L2(O),(5.12)

‖ru0‖H2p(Rd) ≤ C(2p)c(ϕ)‖F‖L2(O),(5.13)

where C(p) = 2C
(p)
O

rC0 and C(2p) = C
(2p)
O pc. We have taken into account that |ζ| ≥ 1.

Interpolating between (5.12) and (5.13), we obtain

(5.14) ‖ru0‖Hp+k(Rd) ≤ C(p+k)c(ϕ)|ζ|−1/2+k/2p‖F‖L2(O), k = 0, 1, . . . , p.

Here C(p+k) = (C(p))1−k/p(C(2p))k/p.
We put

(5.15) rF := A0
ru0 − ζru0.

Then rF ∈ L2(R
d;Cn) and rF|O = F. From (1.14), (5.11), and (5.13) it follows that

(5.16) ‖rF‖L2(Rd) ≤ C∗‖ru0‖H2p(Rd) + |ζ|‖ru0‖L2(Rd) ≤ C4c(ϕ)‖F‖L2(O),

where C4 = C∗C
(2p)+C

(0)
O . Let ruε ∈ Hp(Rd;Cn) be the solution of the following equation

in Rd:

(5.17) Aεruε − ζruε = rF,

i.e., ruε = (Aε − ζI)−1
rF.

We can apply the results of §3. Combining Theorems 3.1 and 3.3 and relations (5.15)–
(5.17), for ε > 0 we get∥∥

ruε − ru0

∥∥
L2(Rd)

≤ C1c(ϕ)
2ε|ζ|−1+1/2p‖rF‖L2(Rd)

≤ C1C4c(ϕ)3ε|ζ|−1+1/2p‖F‖L2(O),
(5.18)

∥∥
ruε − rvε

∥∥
Hp(Rd)

≤
(
2C4c(ϕ)

2ε|ζ|−1/2+1/2p + 2C5c(ϕ)ε
p
)
‖rF‖L2(Rd)

≤
(
2C4C4c(ϕ)3ε|ζ|−1/2+1/2p + 2C5C4c(ϕ)2εp

)
‖F‖L2(O).

(5.19)

Next, by Proposition 1.8 and (2.1),

(5.20) ‖[Λε]Sε‖L2(Rd)→L2(Rd) ≤ C
(1)
Λ .

Together with (1.4) and (5.12), this yields

(5.21) ‖ΛεSεb(D)ru0‖L2(Rd) ≤ C
(1)
Λ α

1/2
1 ‖ru0‖Hp(Rd) ≤ C5c(ϕ)|ζ|−1/2‖F‖L2(O),
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where C5 = C
(1)
Λ α

1/2
1 C(p). By (5.18) and (5.21),

(5.22)
‖ruε − rvε‖L2(Rd) ≤ ‖ruε − ru0‖L2(Rd) + εp‖ΛεSεb(D)ru0‖L2(Rd)

≤
(
C1C4c(ϕ)3ε|ζ|−1+1/2p + C5c(ϕ)εp|ζ|−1/2

)
‖F‖L2(O).

5.3. The second step of the proof. Introduction of the correction term wε.
The first-order approximation vε of the solution uε does not satisfy the Dirichlet condi-
tions. We consider the “correction term” wε ∈ Hp(O;Cn) satisfying the integral identity

(5.23) (gεb(D)wε, b(D)η)L2(O) − ζ(wε,η)L2(O) = 0, η ∈ Hp
0 (O;Cn),

and the condition

(5.24) wε − εpΛεSεb(D)ru0 ∈ Hp
0 (O;Cn).

Lemma 5.4. Let uε be the solution of problem (4.4), and let vε be given by (5.7).
Suppose that wε ∈ Hp(O;Cn) satisfies (5.23) and (5.24). Then for ε > 0 we have

‖Dp(uε − vε +wε)‖L2(O) ≤ C6
(
c(ϕ)4ε|ζ|−1/2+1/2p + c(ϕ)3εp

)
‖F‖L2(O),(5.25)

‖uε − vε +wε‖L2(O) ≤ C7
(
c(ϕ)4ε|ζ|−1+1/2p + c(ϕ)3εp|ζ|−1/2

)
‖F‖L2(O).(5.26)

The constants C6 and C7 depend only on d, p, m, α0, α1, ‖g‖L∞ , ‖g−1‖L∞ , the parameters
of the lattice Γ, and the domain O.

Proof. Denote Vε := uε−vε+wε. By (4.8), (5.23), and (5.24), the function Vε belongs
to Hp

0 (O;Cn) and satisfies the identity

(5.27)
(
gεb(D)Vε, b(D)η

)
L2(O)

− ζ(Vε,η)L2(O) = Jε[η], η ∈ Hp
0 (O;Cn),

where Jε[η] := (F,η)L2(O) −
(
gεb(D)vε, b(D)η

)
L2(O)

+ ζ(vε,η)L2(O). We extend η by

zero to Rd \ O, keeping the same notation; then η ∈ Hp(Rd;Cn). Recall that rF is an
extension of F, and rvε is an extension of vε. Hence,

Jε[η] = (rF,η)L2(Rd) −
(
gεb(D)rvε, b(D)η

)
L2(Rd)

+ ζ(rvε,η)L2(Rd).

Combining this with (5.17), we arrive at

Jε[η] =
(
gεb(D)(ruε − rvε), b(D)η

)
L2(Rd)

− ζ
(
ruε − rvε,η

)
L2(Rd)

.

Applying (1.4), (5.19), and (5.22), we obtain the inequality

(5.28) |Jε[η]| ≤ k1(ζ, ε)‖F‖L2(O)

(
C8‖(gε)1/2b(D)η‖L2(O) + C9|ζ|1/2‖η‖L2(O)

)
.

Here k1(ζ, ε) := c(ϕ)3ε|ζ|−1/2+1/2p + c(ϕ)2εp, C8 = 2α
1/2
1 ‖g‖1/2L∞

C4 max{C4, C5}, and
C9 = max{C1C4, C5}.

We substitute η = Vε in (5.27), take the imaginary part of the corresponding identity,
and apply (5.28):

(5.29)
| Im ζ|‖Vε‖2L2(O) ≤ k1(ζ, ε)‖F‖L2(O)

×
(
C8‖(gε)1/2b(D)Vε‖L2(O) + C9|ζ|1/2‖Vε‖L2(O)

)
.

For Re ζ ≥ 0 (in this case Im ζ �= 0), we deduce the inequality

(5.30) |ζ|‖Vε‖2L2(O)≤ 2C8k2(ζ, ε)‖F‖L2(O)‖(gε)1/2b(D)Vε‖L2(O)+C2
9k2(ζ, ε)

2‖F‖2L2(O).

Here k2(ζ, ε) := c(ϕ)4ε|ζ|−1/2+1/2p + c(ϕ)3εp. If Re ζ < 0, we take the real part of the
corresponding identity and apply (5.28):

(5.31)
|Re ζ|‖Vε‖2L2(O) ≤ k1(ζ, ε)‖F‖L2(O)

×
(
C8‖(gε)1/2b(D)Vε‖L2(O) + C9|ζ|1/2‖Vε‖L2(O)

)
.
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Adding (5.29) and (5.31), we deduce an analog of (5.30). Finally, for all values of ζ under
consideration we get

(5.32)
|ζ|‖Vε‖2L2(O) ≤ 4C8k2(ζ, ε)‖F‖L2(O)‖(gε)1/2b(D)Vε‖L2(O)

+ 4C2
9k2(ζ, ε)

2‖F‖2L2(O).

Now, relations (5.27) with η = Vε, (5.28), and (5.32) imply that

aD,ε[Vε,Vε] ≤ 9C8k2(ζ, ε)‖F‖L2(O)‖(gε)1/2b(D)Vε‖L2(O) + 9C2
9k2(ζ, ε)

2‖F‖2L2(O).

We see that

(5.33) aD,ε[Vε,Vε] ≤ qC2
6k2(ζ, ε)

2‖F‖2L2(O),

where qC2
6 = 18C2

9+81C2
8 . Combining (5.33) with (4.2), we obtain estimate (5.25) with the

constant C6 = qC6c−1/2
0 . Finally, (5.32) and (5.33) imply (5.26) with the constant C7 =

2(C8 qC6 + C2
9)

1/2. �

Conclusions.
1) Relations (5.25) and (5.26) show that for ε > 0 we have

‖Dp(uε−vε)‖L2(O)≤ C6
(
c(ϕ)4ε|ζ|−1/2+1/2p+c(ϕ)3εp

)
‖F‖L2(O)+‖Dpwε‖L2(O),(5.34)

‖uε − vε‖L2(O) ≤ C7
(
c(ϕ)4ε|ζ|−1+1/2p + c(ϕ)3εp|ζ|−1/2

)
‖F‖L2(O) + ‖wε‖L2(O).(5.35)

Clearly, for the proof of Theorem 5.2 it remains to estimate the norm ‖wε‖Hp(O).

2) From (5.21) we deduce an estimate for the difference vε−u0 = εp(ΛεSεb(D)ru0)|O:
(5.36) ‖vε − u0‖L2(O) ≤ εp‖ΛεSεb(D)ru0‖L2(Rd) ≤ C5c(ϕ)εp|ζ|−1/2‖F‖L2(O).

Combining this with (5.35), for ε > 0 we get

(5.37) ‖uε − u0‖L2(O) ≤ rC7
(
c(ϕ)4ε|ζ|−1+1/2p + c(ϕ)3εp|ζ|−1/2

)
‖F‖L2(O) + ‖wε‖L2(O),

where rC7 = C7 + C5. Therefore, in order to prove Theorem 5.1, we need to obtain a
suitable estimate for the norm ‖wε‖L2(O).

§6. Estimates for the correction term wε.

Proof of Theorems 5.1 and 5.2

First, we estimate the norm of wε in Hp(O) and complete the proof of Theorem 5.2.
Next, using the already proved Theorem 5.2 and duality arguments, we estimate the
L2-norm of the correction term and prove Theorem 5.1.

6.1. Localization near the boundary. Suppose that the number ε0 ∈ (0, 1] is subject
to Condition 4.4. Let 0 < ε ≤ ε0. We fix a smooth cut-off function θε(x) in R

d such that

(6.1)
θε ∈ C∞

0 (Rd), supp θε ⊂ (∂O)ε, 0 ≤ θε(x) ≤ 1,

θε(x) = 1 for x ∈ (∂O)ε/2, εl|Dlθε(x)| ≤ κ, l = 1, . . . , p.

The constant κ depends only on the domain O. Consider the following function on Rd:

(6.2) φε(x) = εpθε(x)Λ
ε(x)(Sεb(D)ru0)(x).

Lemma 6.1. Suppose that wε ∈ Hp(O;Cn) satisfies conditions (5.23) and (5.24). Let
φε be defined by (6.2). Then for 0 < ε ≤ ε0 and ζ ∈ C \ R+, |ζ| ≥ 1, we have

‖Dpwε‖L2(O) ≤ C10c(ϕ)
(
|ζ|1/2‖φε‖L2(Rd) + ‖Dpφε‖L2(Rd)

)
,(6.3)

‖wε‖L2(O) ≤ C11c(ϕ)
(
‖φε‖L2(Rd) + |ζ|−1/2‖Dpφε‖L2(Rd)

)
.(6.4)

The constants C10 and C11 depend only on d, p, α0, α1, ‖g‖L∞ , and ‖g−1‖L∞ .
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Proof. By (5.23), (5.24), (6.1), and (6.2), the function ρε := wε − φε ∈ Hp
0 (O;Cn)

satisfies the identity

(6.5)

(
gεb(D)ρε, b(D)η

)
L2(O)

− ζ(ρε,η)L2(O)

= −
(
gεb(D)φε, b(D)η

)
L2(O)

+ ζ(φε,η)L2(O), η ∈ Hp
0 (O;Cn).

We substitute η = ρε in (6.5) and take the imaginary part in the corresponding
identity. Then

(6.6) | Im ζ|‖ρε‖2L2(O)≤C12‖Dpφε‖L2(Rd)‖(gε)1/2b(D)ρε‖L2(O)+|ζ|‖φε‖L2(O)‖ρε‖L2(O),

where C12 = c
1/2
p α

1/2
1 ‖g‖1/2L∞

. We have taken (1.4) and (1.7) into account. For Re ζ ≥ 0
(in this case Im ζ �= 0) we deduce the estimate

(6.7) |ζ| ‖ρε‖2L2(O) ≤ 2C12c(ϕ)‖Dpφε‖L2(Rd)‖(gε)1/2b(D)ρε‖L2(O) + c(ϕ)2|ζ|‖φε‖2L2(O).

If Re ζ < 0, we take the real part of the corresponding identity, obtaining

(6.8) |Re ζ|‖ρε‖2L2(O)≤C12‖Dpφε‖L2(Rd)‖(gε)1/2b(D)ρε‖L2(O)+|ζ|‖φε‖L2(O)‖ρε‖L2(O).

Adding (6.6) and (6.8), we deduce an analog of (6.7). As a result, for all values of ζ
under consideration we have

(6.9) |ζ|‖ρε‖2L2(O)≤ 4C12c(ϕ)‖Dpφε‖L2(Rd)‖(gε)1/2b(D)ρε‖L2(O)+ 4c(ϕ)2|ζ|‖φε‖2L2(O).

Now, from (6.5) with η = ρε and (6.9) it follows that

aD,ε[ρε,ρε] ≤ 9c(ϕ)2|ζ|‖φε‖2L2(O) + 9C12c(ϕ)‖Dpφε‖L2(Rd)‖(gε)1/2b(D)ρε‖L2(O).

We see that

(6.10) aD,ε[ρε,ρε] ≤ 18c(ϕ)2|ζ|‖φε‖2L2(O) + 81C2
12c(ϕ)

2‖Dpφε‖2L2(Rd).

By (6.10) and (4.2),

‖Dpρε‖L2(O) ≤ c
−1/2
0 c(ϕ)

(√
18|ζ|1/2‖φε‖L2(O) + 9C12‖Dpφε‖L2(Rd)

)
.

This implies (6.3) with the constant C10 = max{
√
18c

−1/2
0 , 9C12c−1/2

0 + 1}. Next, from
(6.9) and (6.10) it follows that

‖ρε‖L2(O) ≤ c(ϕ)
(√

22‖φε‖L2(O) +
√
85C12|ζ|−1/2‖Dpφε‖L2(Rd)

)
,

which yields (6.4) with the constant C11 = max{
√
22 + 1,

√
85C12}. �

6.2. Estimate of the function φε. Now, we estimate the function (6.2).

Lemma 6.2. Suppose that ε1 is subject to Condition 4.4. Let φε be defined by (6.2).
Then for 0 < ε ≤ ε1 and ζ ∈ C \ R+, |ζ| ≥ 1, we have

‖φε‖L2(Rd) ≤ C5c(ϕ)|ζ|−1/2εp‖F‖L2(O),(6.11)

‖Dpφε‖L2(Rd) ≤ C13c(ϕ)
(
εp + ε1/2|ζ|−1/2+1/4p

)
‖F‖L2(O).(6.12)

The constants C5 and C13 depend only on d, p, m, α0, α1, ‖g‖L∞ , ‖g−1‖L∞ , the param-
eters of the lattice Γ, and the domain O.

Proof. Estimate (6.11) follows from (5.21) and (6.1).
Consider the derivatives of φε for |α| = p:

(6.13) ∂αφε = εp
∑
β≤α

∑
γ≤α−β

Cβ
αC

γ
α−β(∂

γθε)(∂
α−β−γΛε)(Sεb(D)∂β

ru0).



348 T. A. SUSLINA

If k = |β| ≥ 1, we use (6.1), Proposition 1.8, (1.4), (2.3), and (5.14):

(6.14)

εp
∥∥(∂γθε)(∂

α−β−γΛε)(Sεb(D)∂β
ru0)

∥∥
L2(Rd)

≤ κεk
∥∥(∂α−β−γΛ)εSεb(D)∂β

ru0

∥∥
L2(Rd)

≤ κεkCΛα
1/2
1 ‖ru0‖Hp+k(Rd) ≤ C(k)εkc(ϕ)|ζ|−1/2+k/2p‖F‖L2(O).

Here C(k) = κCΛα
1/2
1 C(p+k).

If β = 0, we apply Lemma 4.6. Let 0 < ε ≤ ε1. Taking (6.1) into account, we have

εp
∥∥(∂γθε)(∂

α−γΛε)(Sεb(D)ru0)
∥∥
L2(Rd)

≤ κ
∥∥(∂α−γΛ)εSεb(D)ru0

∥∥
L2((∂O)ε)

≤ ε1/2κβ
1/2
∗ |Ω|−1/2‖∂α−γΛ‖L2(Ω)‖b(D)ru0‖1/2H1(Rd)

‖b(D)ru0‖1/2L2(Rd)
.

Combining this with (1.4) and (2.3), we obtain

(6.15)
εp
∥∥(∂γθε)(∂

α−γΛε)(Sεb(D)ru0)
∥∥
L2(Rd)

≤ ε1/2κβ
1/2
∗ CΛα

1/2
1 ‖ru0‖1/2Hp+1(Rd)

‖ru0‖1/2Hp(Rd)
.

Now, relations (5.12), (5.14), and (6.15) imply that

(6.16) εp
∥∥(∂γθε)(∂

α−γΛε)(Sεb(D)ru0)
∥∥
L2(Rd)

≤ C14ε1/2c(ϕ)|ζ|−1/2+1/4p‖F‖L2(O),

where C14 = κβ
1/2
∗ CΛα

1/2
1 (C(p)C(p+1))1/2.

Estimating the summands in (6.13) with k = |β| ≥ 1 with the help of (6.14), and the
summands with β = 0 by (6.16), we arrive at the inequality

(6.17) ‖∂αφε‖L2(Rd) ≤ C15c(ϕ)
(
ε1/2|ζ|−1/2+1/4p +

p∑
k=1

εk|ζ|−1/2+k/2p

)
‖F‖L2(O),

where C15 = κ7(d, p)max{C14, C(1), . . . , C(p)}. It is easily seen that the expression in
parentheses does not exceed 2p(ε1/2|ζ|−1/2+1/4p + εp). Then (6.17) implies (6.12) with
the constant C13 = κ8(d, p)C15. �

6.3. Completion of the proof of Theorem 5.2. From Lemmas 6.1 and 6.2 it follows
that

‖Dpwε‖L2(O) ≤ C16c(ϕ)2
(
εp + ε1/2|ζ|−1/2+1/4p

)
‖F‖L2(O),

‖wε‖L2(O) ≤ C17c(ϕ)2
(
εp|ζ|−1/2 + ε1/2|ζ|−1+1/4p

)
‖F‖L2(O),

where C16 = C10(C5 + C13) and C17 = C11(C5 + C13). Together with (5.34) and (5.35), for
0 < ε ≤ ε1 and ζ ∈ C \ R+, |ζ| ≥ 1, this yields

‖Dp(uε − vε)‖L2(O) ≤ C6
(
c(ϕ)4ε|ζ|−1/2+1/2p + c(ϕ)3εp

)
‖F‖L2(O)

+ C16c(ϕ)2
(
εp + ε1/2|ζ|−1/2+1/4p

)
‖F‖L2(O)

≤ C18
(
c(ϕ)2ε1/2|ζ|−1/2+1/4p + c(ϕ)4ε|ζ|−1/2+1/2p + c(ϕ)3εp

)
‖F‖L2(O)

≤ 2C18c(ϕ)4
(
ε1/2|ζ|−1/2+1/4p + εp

)
‖F‖L2(O),

(6.18)

‖uε − vε‖L2(O) ≤ C7
(
c(ϕ)4ε|ζ|−1+1/2p + c(ϕ)3εp|ζ|−1/2

)
‖F‖L2(O)

+ C17c(ϕ)2
(
εp|ζ|−1/2 + ε1/2|ζ|−1+1/4p

)
‖F‖L2(O)

≤ C19
(
c(ϕ)2ε1/2|ζ|−1+1/4p + c(ϕ)4ε|ζ|−1+1/2p + c(ϕ)3εp|ζ|−1/2

)
‖F‖L2(O)

≤ 2C19c(ϕ)4
(
ε1/2|ζ|−1+1/4p + εp|ζ|−1/2

)
‖F‖L2(O),

(6.19)
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where C18 = C6 + C16 and C19 = C7 + C17. Since

(6.20) ‖u‖Hp(O) ≤ C(p;O)
(
‖Dpu‖L2(O) + ‖u‖L2(O)

)
, u ∈ Hp(O;Cn),

where the constant C(p;O) depends only on p and O, inequalities (6.18) and (6.19) imply
(5.8) with the constant C2 = 2C(p;O)(C18 + C19).

It remains to check (5.10). From (5.8) and (1.3), (1.5) it follows that

(6.21) ‖pε − gεb(D)vε‖L2(O) ≤ C20c(ϕ)4
(
ε1/2|ζ|−1/2+1/4p + εp

)
‖F‖L2(O),

where C20 = κ9(d, p)‖g‖L∞α
1/2
1 C2. By (1.3) and (5.5), (5.6), we have

(6.22)

gεb(D)vε = gεb(D)u0 + gε(b(D)Λ)εSεb(D)ru0

+
∑
|α|=p

∑
β≤α:|β|≥1

gεbαC
β
αε

|β|(Dα−βΛ)εSεb(D)Dβ
ru0.

Proposition 1.7 implies that

(6.23)

∥∥gεb(D)u0 − gεSεb(D)ru0

∥∥
L2(O)

≤ ‖gε(I − Sε)b(D)ru0‖L2(Rd)

≤ ε‖g‖L∞r1‖Db(D)ru0‖L2(Rd).

The third term on the right-hand side of (6.22) is estimated by using (2.3) and Proposition
1.8. Taking (1.5) into account, we obtain

(6.24)

∥∥∥∥ ∑
|α|=p

∑
β≤α : |β|≥1

gεbαC
β
αε

|β|(Dα−βΛ)εSεb(D)Dβ
ru0

∥∥∥∥
L2(Rd)

≤ C21
p∑

l=1

εl‖Dlb(D)ru0‖L2(Rd),

where C21 = κ10(d, p)‖g‖L∞α
1/2
1 CΛ.

From (1.4) and (5.14) it follows that

(6.25) ‖Dlb(D)ru0‖L2(Rd) ≤ α
1/2
1 C(p+l)c(ϕ)|ζ|−1/2+l/2p‖F‖L2(O), l = 1, . . . , p.

Comparing (1.12) and (6.22)–(6.25), we arrive at

(6.26)
∥∥gεb(D)vε − rgεSεb(D)ru0

∥∥
L2(O)

≤ C22c(ϕ)
(
ε|ζ|−1/2+1/2p + εp

)
‖F‖L2(O),

where C22 = α
1/2
1

(
‖g‖L∞r1C

(p+1) + p C21 max1≤l≤p C
(p+l)

)
.

As a result, relations (6.21) and (6.26) imply the required inequality (5.10) with the
constant C3 = C20 + 2C22. �

6.4. Proof of Theorem 5.1. We estimate the L2-norm of the correction term wε.

Lemma 6.3. Suppose that wε ∈ Hp(O;Cn) satisfies (5.23) and (5.24). If ε1 is subject
to Condition 4.4, then for 0 < ε ≤ ε1 and ζ ∈ C \ R+, |ζ| ≥ 1, we have

(6.27) ‖wε‖L2(O) ≤ C23c(ϕ)5
(
ε|ζ|−1+1/2p + ε2p

)
‖F‖L2(O).

The constant C23 depends only on d, p, m, α0, α1, ‖g‖L∞ , ‖g−1‖L∞ , the parameters of
the lattice Γ, and the domain O.

Proof. In identity (6.5), we substitute a test function of the form η = ηε = (AD,ε −
sζI)−1Φ, where Φ ∈ L2(O;Cn). Then the left-hand side of (6.5) can be written as
(wε − φε,Φ)L2(O). Hence,

(6.28) (wε − φε,Φ)L2(O) = −(gεb(D)φε, b(D)ηε)L2(O) + ζ(φε,ηε)L2(O).
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To approximate the function ηε in Hp(O;Cn), we apply the already proved Theorem 5.2.
We put η0 = (A0

D − sζI)−1Φ and rη0 = POη0. An approximation for the function ηε is
given by η0 + εpΛεSεb(D)rη0. We rewrite (6.28) as

(6.29)

(wε − φε,Φ)L2(O)

=− (gεb(D)φε, b(D)(ηε−η0−εpΛεSεb(D)rη0))L2(O)−(gεb(D)φε, b(D)η0)L2(O)

− (gεb(D)φε, b(D)(εpΛεSεb(D)rη0))L2(O) + ζ(φε,ηε)L2(O).

Denote the consecutive terms on the right-hand side of (6.29) by Ij(ε, ζ), j = 1, 2, 3, 4.
The term I4(ε, ζ) can easily be estimated by using Lemma 4.1 and (6.11):

(6.30) |I4(ε, ζ)| ≤ |ζ|‖φε‖L2(O)‖ηε‖L2(O) ≤ C5c(ϕ)2εp|ζ|−1/2‖F‖L2(O)‖Φ‖L2(O).

Now, we estimate I1(ε, ζ). By (1.3) and (1.5),

|I1(ε, ζ)| ≤ ‖g‖L∞κ11(d, p)α1‖Dpφε‖L2(O)

∥∥Dp(ηε − η0 − εpΛεSεb(D)rη0)
∥∥
L2(O)

.

Applying Theorem 5.2 (precisely, the analog of estimate (6.18) for ηε) and (6.12), we
arrive at

|I1(ε, ζ)| ≤ 2‖g‖L∞κ11(d, p)α1C13C18c(ϕ)5
(
ε1/2|ζ|−1/2+1/4p + εp

)2‖F‖L2(O)‖Φ‖L2(O).

Consequently,

(6.31) |I1(ε, ζ)| ≤ γ1c(ϕ)
5
(
ε|ζ|−1+1/2p + ε2p

)
‖F‖L2(O)‖Φ‖L2(O),

where γ1 = 4‖g‖L∞κ11(d, p)α1C13C18.
To estimate I2(ε, ζ), we recall that the function φε is supported in the ε-neighborhood

of the boundary and apply Lemma 4.5. By (1.3) and (1.5), we have

(6.32)
|I2(ε, ζ)| ≤ ‖g‖L∞κ11(d, p)α1‖Dpφε‖L2(O)‖Dpη0‖L2(Bε)

≤ ‖g‖L∞κ11(d, p)α1‖Dpφε‖L2(O)β
1/2
0 ε1/2‖Dpη0‖

1/2
H1(O)‖D

pη0‖
1/2
L2(O).

To estimate ‖Dpη0‖L2(O), we use Lemma 4.3:

(6.33) ‖Dpη0‖L2(O) ≤ C0c(ϕ)|ζ|−1/2‖Φ‖L2(O).

Next, from (4.15) it follows that

‖Dpη0‖Hp(O) ≤ pcc(ϕ)‖Φ‖L2(O).

Since H1(O) coincides with the interpolational space [L2(O), Hp(O)]1/p and the corre-
sponding norms are equivalent, we use interpolation to obtain

(6.34) ‖Dpη0‖H1(O) ≤ C24c(ϕ)|ζ|−1/2+1/2p‖Φ‖L2(O),

where C24 = qC(p;O)C1−1/p
0 pc1/p. Now, relations (6.32)–(6.34) and (6.12) imply that

|I2(ε, ζ)| ≤ ‖g‖L∞κ11(d, p)α1C13c(ϕ)
(
εp + ε1/2|ζ|−1/2+1/4p

)
× β

1/2
0 ε1/2(C0C24)1/2c(ϕ)|ζ|−1/2+1/4p‖F‖L2(O)‖Φ‖L2(O).

Hence,

(6.35) |I2(ε, ζ)| ≤ γ2c(ϕ)
2
(
ε|ζ|−1+1/2p + ε2p

)
‖F‖L2(O)‖Φ‖L2(O),

where γ2 = 2‖g‖L∞κ11(d, p)α1β
1/2
0 C13(C0C24)1/2.
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It remains to estimate the term I3(ε, ζ). By (1.3), we have

I3(ε, ζ) = −I(1)
3 (ε, ζ)− I(2)

3 (ε, ζ),(6.36)

I(1)
3 (ε, ζ) =

∑
|α|=p

∑
β≤α:|β|≥1

Cβ
αε

|β|(gεb(D)φε, bα(D
α−βΛ)εSεb(D)Dβ

rη0

)
L2(O)

,(6.37)

I(2)
3 (ε, ζ) =

(
gεb(D)φε, (b(D)Λ)εSεb(D)rη0

)
L2(O)

.(6.38)

To estimate the term (6.37), we use (1.4), (1.5), Proposition 1.8, and (2.3):

|I(1)
3 (ε, ζ)| ≤ κ12(d, p)‖g‖L∞α

3/2
1 CΛ‖Dpφε‖L2(Rd)

( p∑
k=1

εk‖rη0‖Hp+k(Rd)

)
.

Combined with (6.12) and an analog of estimate (5.14) for rη0, this implies

|I(1)
3 (ε, ζ)| ≤ κ12(d, p)‖g‖L∞α

3/2
1 CΛC13c(ϕ)

(
εp + ε1/2|ζ|−1/2+1/4p

)
×
( p∑

k=1

εkC(p+k)c(ϕ)|ζ|−1/2+k/2p

)
‖F‖L2(O)‖Φ‖L2(O).

Then it is easy to deduce that

(6.39) |I(1)
3 (ε, ζ)| ≤ γ

(1)
3 c(ϕ)2

(
ε|ζ|−1+1/2p + ε2p

)
‖F‖L2(O)‖Φ‖L2(O),

where γ
(1)
3 = 2pκ12(d, p)‖g‖L∞α

3/2
1 CΛC13 max1≤k≤pC

(p+k).
The term (6.38) is estimated with the help of (1.4), (1.7), Lemma 4.6, and (2.2):

(6.40)
|I(2)

3 (ε, ζ)| ≤ ‖g‖L∞(cpα1)
1/2‖Dpφε‖L2(Rd)

(∫
(∂O)ε

|(b(D)Λ)εSεb(D)rη0|2 dx
)1/2

≤ ‖g‖L∞(cpα1)
1/2‖Dpφε‖L2(Rd)β

1/2
∗ ε1/2C

(2)
Λ ‖b(D)rη0‖

1/2

H1(Rd)
‖b(D)rη0‖

1/2

L2(Rd)
.

Like in (5.12) and (5.14), we have

‖rη0‖Hp(Rd) ≤ C(p)c(ϕ)|ζ|−1/2‖Φ‖L2(O),(6.41)

‖rη0‖Hp+1(Rd) ≤ C(p+1)c(ϕ)|ζ|−1/2+1/2p‖Φ‖L2(O).(6.42)

Relations (6.40)–(6.42), (1.4), and (6.12) yield

|I(2)
3 (ε, ζ)| ≤ C25c(ϕ)2

(
εp + ε1/2|ζ|−1/2+1/4p

)
ε1/2|ζ|−1/2+1/4p‖F‖L2(O)‖Φ‖L2(O),

where C25 = ‖g‖L∞c
1/2
p α1β

1/2
∗ C13C(2)

Λ (C(p)C(p+1))1/2. Hence,

(6.43) |I(2)
3 (ε, ζ)| ≤ γ

(2)
3 c(ϕ)2

(
ε|ζ|−1+1/2p + ε2p

)
‖F‖L2(O)‖Φ‖L2(O),

where γ
(2)
3 = 2C25.

Finally, combining (6.29), (6.30), (6.31), (6.35), (6.36), (6.39), and (6.43), we see that

|(wε − φε,Φ)L2(O)| ≤ γc(ϕ)5
(
ε|ζ|−1+1/2p + ε2p

)
‖F‖L2(O)‖Φ‖L2(O)

for any Φ ∈ L2(O;Cn), where γ = C5 + γ1 + γ2 + γ
(1)
3 + γ

(2)
3 . Hence,

(6.44) ‖wε − φε‖L2(O) ≤ γc(ϕ)5
(
ε|ζ|−1+1/2p + ε2p

)
‖F‖L2(O).

Now, relations (6.44) and (6.11) directly imply the required estimate (6.27) with the
constant C23 = γ + C5. �
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Completion of the proof of Theorem 5.1. By (5.37) and (6.27),

‖uε − u0‖L2(O) ≤ rC7
(
c(ϕ)4ε|ζ|−1+1/2p + c(ϕ)3εp|ζ|−1/2

)
‖F‖L2(O)

+ C23c(ϕ)5
(
ε|ζ|−1+1/2p + ε2p

)
‖F‖L2(O)

for 0 < ε ≤ ε1 and ζ ∈ C \ R+, |ζ| ≥ 1. This implies estimate (5.1) with the constant

C1 = 2rC7 + C23. �

§7. Removal of the smoothing operator.

Special cases

7.1. Removal of the smoothing operator. Under Condition 3.6, instead of the cor-
rector (5.4) one can use the standard corrector

(7.1) K0
D(ζ; ε) := Λεb(D)(A0

D − ζI)−1,

which in this case is a continuous mapping of L2(O;Cn) to Hp(O;Cn). Accordingly,
instead of the function (5.7), one can take the function

(7.2) v0
ε := (A0

D − ζI)−1F+ εpK0
D(ζ; ε)F = u0 + εpΛεb(D)u0

as an approximation to the solution of problem (4.4).

Theorem 7.1. Suppose that the assumptions of Theorem 5.1 and Condition 3.6 are
satisfied. Let K0

D(ζ; ε) be the operator (7.1), and let v0
ε be the function (7.2). Then for

0 < ε ≤ ε1 we have

(7.3) ‖uε − v0
ε‖Hp(O) ≤ rC2c(ϕ)4

(
ε1/2|ζ|−1/2+1/4p + εp

)
‖F‖L2(O),

or, in operator terms,

(7.4)

∥∥(AD,ε − ζI)−1 − (A0
D − ζI)−1 − εpK0

D(ζ; ε)
∥∥
L2(O)→Hp(O)

≤ rC2c(ϕ)4
(
ε1/2|ζ|−1/2+1/4p + εp

)
.

For 0 < ε ≤ ε1, the flux pε = gεb(D)uε satisfies

(7.5) ‖pε − rgεb(D)u0‖L2(O) ≤ rC3c(ϕ)4
(
ε1/2|ζ|−1/2+1/4p + εp

)
‖F‖L2(O).

The constants rC2 and rC3 depend only on m, d, p, α0, α1, ‖g‖L∞ , ‖g−1‖L∞ , the parameters
of the lattice Γ, the domain O, and also on ‖Λ‖L∞ and MΛ.

To prove Theorem 7.1, we need the following lemma.

Lemma 7.2.
1◦. Suppose that Λ is a multiplier from Hp(Rd;Cm) to Hp(Rd;Cn) and MΛ is the

norm of this multiplier. For any u∈Hp(Rd;Cm) and ε > 0, we have

(7.6) ε2p
∫
Rd

|Dp(Λε(x)u(x))|2 dx ≤ qcpM
2
Λ

∫
Rd

(
|u(x)|2 + ε2p|Dpu(x)|2

)
dx.

2◦. Suppose that Condition 3.6 is fulfilled. Then the matrix-valued function (1.12) is
a multiplier from Hp(Rd;Cm) to L2(R

d;Cm), and the norm of this multiplier does not
exceed a constant M

rg depending only on d, p, ‖g‖L∞ , α1, ‖Λ‖L∞ , and MΛ. Moreover,
for any u ∈ Hp(Rd;Cm) and ε > 0 we have

(7.7)

∫
Rd

|rgε(x)u(x)|2 dx ≤ qcpM
2
rg

∫
Rd

(
|u(x)|2 + ε2p|Dpu(x)|2

)
dx.



HOMOGENIZATION OF THE DIRICHLET PROBLEM 353

Proof. Let u ∈ Hp(Rd;Cm). The change of variables x = εy, u(x) = v(y) yields

(7.8) ε2p
∫
Rd

|Dp
x(Λ

ε(x)u(x))|2 dx = εd
∫
Rd

|Dp
y(Λ(y)v(y))|2 dy ≤ M2

Λε
d‖v‖2Hp(Rd).

By (3.9),

εd‖v‖2Hp(Rd) ≤ qcpε
d

∫
Rd

(
|v(y)|2 + |Dp

yv(y)|2
)
dy = qcp

∫
Rd

(
|u(x)|2 + ε2p|Dp

xu(x)|2
)
dx.

Together with (7.8), this implies (7.6).
Now, we prove assertion 2◦. By Lemma 1 in Subsection 1.3.2 of the book [MSh], Con-

dition 3.6 implies that DαΛ with |α| = p is a multiplier from Hp(Rd;Cm) to L2(R
d;Cn),

and the norm of this multiplier is controlled in terms of ‖Λ‖L∞ and MΛ. Then, by (1.3)
and (1.5), the matrix-valued function rg = g(b(D)Λ+1m) is a multiplier from Hp(Rd;Cm)
to L2(R

d;Cm), and the norm of this multiplier does not exceed a constant M
rg depending

only on d, p, ‖g‖L∞ , α1, ‖Λ‖L∞ , and MΛ. Inequality (7.7) is proved by the changes
x = εy, u(x) = v(y) (as in the proof of estimate (7.6)). �

Proof of Theorem 7.1. Let the functions vε and v0
ε be defined by (5.7) and (7.2), respec-

tively. We estimate their difference in the Hp(O;Cn)-norm. By (3.9), we have

(7.9)
‖vε − v0

ε‖2Hp(O) ≤ ε2p‖Λε(I − Sε)b(D)ru0‖2Hp(Rd)

≤ qcpε
2p
(∥∥Λε(I − Sε)b(D)ru0

∥∥2
L2(Rd)

+
∥∥Dp(Λε(I − Sε)b(D)ru0)

∥∥2
L2(Rd)

)
.

Combining Condition 3.6, inequality ‖Sε‖L2→L2
≤ 1, and (1.4), we obtain

(7.10)
∥∥Λε(I − Sε)b(D)ru0

∥∥
L2(Rd)

≤ 2‖Λ‖L∞α
1/2
1 ‖ru0‖Hp(Rd).

Next, Lemma 7.2 implies that

(7.11)
ε2p

∥∥Dp(Λε(I − Sε)b(D)ru0)
∥∥2
L2(Rd)

≤ qcpM
2
Λ

(
‖(I − Sε)b(D)ru0‖2L2(Rd) + ε2p‖(I − Sε)D

pb(D)ru0‖2L2(Rd)

)
.

By Proposition 1.7 and (1.4),

(7.12) ‖(I − Sε)b(D)ru0‖L2(Rd) ≤ εr1α
1/2
1 ‖ru0‖Hp+1(Rd).

From the inequality ‖Sε‖L2→L2
≤ 1 and (1.4) it follows that

(7.13) ‖(I − Sε)D
pb(D)ru0‖L2(Rd) ≤ 2α

1/2
1 ‖ru0‖H2p(Rd).

Combining (7.9)–(7.13) and (5.12)–(5.14), we arrive at

(7.14) ‖vε − v0
ε‖Hp(O) ≤ C26c(ϕ)

(
ε|ζ|−1/2+1/2p + εp

)
‖F‖L2(O),

where C26 = α
1/2
1 max{qcpMΛr1C

(p+1), 2qc
1/2
p ‖Λ‖L∞C(p) + 2qcpMΛC

(2p)}.
Now, (5.8) and (7.14) imply the required estimate (7.3) with the constant rC2 = C2 +

2C26.
We proceed to the proof of inequality (7.5). By (7.7),

(7.15)

∥∥
rgεb(D)u0 − rgεSεb(D)ru0

∥∥2
L2(O)

≤
∥∥

rgε(I − Sε)b(D)ru0

∥∥2
L2(Rd)

≤ qcpM
2
rg

(
‖(I − Sε)b(D)ru0‖2L2(Rd) + ε2p‖(I − Sε)D

pb(D)ru0‖2L2(Rd)

)
.

Together with (7.12), (7.13), (5.13), and (5.14), this yields

(7.16) ‖rgεb(D)u0 − rgεSεb(D)ru0‖L2(O) ≤ C27c(ϕ)
(
ε|ζ|−1/2+1/2p + εp

)
‖F‖L2(O),

where C27 = qc
1/2
p M

rgα
1/2
1 max{r1C(p+1), 2C(2p)}.
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Now, (5.10) and (7.16) imply the required inequality (7.5) with the constant rC3 =
C3 + 2C27. �

Comparing Theorem 7.1 and Proposition 3.7, we arrive at the following statement.

Corollary 7.3. Under the assumptions of Theorem 5.1, let K0
D(ζ; ε) be the operator

(7.1), and let v0
ε be given by (7.2). Let pε = gεb(D)uε, and let rg(x) be the matrix-valued

function (1.12). Suppose that at least one of the following conditions is fulfilled:
1◦. 2p > d;
2◦. g0 = g (i.e., the representations (1.18) are valid).

Then for 0 < ε ≤ ε1 we have estimates (7.3)–(7.5), and the constants rC2 and rC3
depend only on m, n, d, p, α0, α1, ‖g‖L∞ , ‖g−1‖L∞ , the parameters of the lattice Γ,
and the domain O.

Remark 7.4.
1) For fixed ζ ∈ C \ R+, |ζ| ≥ 1, the estimates of Theorem 7.1 are of order O(ε1/2).

The error becomes smaller as |ζ| grows.
2) The estimates of Theorem 7.1 are uniform with respect to the angle ϕ in a domain

{ζ = |ζ|eiϕ : |ζ| ≥ 1, ϕ0 ≤ ϕ ≤ 2π − ϕ0} with arbitrarily small ϕ0 > 0.
3) The assumptions of Corollary 7.3 are valid in the following cases, which are of

interest for applications: a) if p = 2 and d = 2 or d = 3, we have 2p > d; b) if m = n,
then g0 = g. For instance, this condition is fulfilled for the operator Aε = Δgε(x)Δ in

L2(R
d) for arbitrary dimension.

7.2. Special cases. If g0 = sg (i.e., relations (1.17) are valid), then the Γ-periodic
solution of problem (1.10) is equal to zero: Λ(x) = 0. In this case, we have vε = u0 and
wε = 0. Lemma 5.4 together with (3.9) implies the following result.

Proposition 7.5. Under the assumptions of Theorem 5.1, if g0 = sg (i.e., relations
(1.17) are valid), then for 0 < ε ≤ ε1 we have

‖uε − u0‖Hp(O) ≤ rC6
(
c(ϕ)4ε|ζ|−1/2+1/2p + c(ϕ)3εp

)
‖F‖L2(O),

where rC6 = qc
1/2
p (C6 + C7).

By Remark 1.4, if g0 = g, then the matrix-valued function (1.12) is constant: rg(x) =

g0 = g. Applying the statement of Corollary 7.3 concerning fluxes, we arrive at the
following result.

Proposition 7.6. Under the assumptions of Theorem 5.1, if g0 = g (i.e., the represen-
tations (1.18) are valid), then for 0 < ε ≤ ε1 the flux pε = gεb(D)uε satisfies

‖pε − g0b(D)u0‖L2(O) ≤ rC3c(ϕ)4
(
ε1/2|ζ|−1/2+1/4p + εp

)
‖F‖L2(O).

§8. Approximation of the resolvent (AD,ε − ζI)−1
for ζ ∈ C \ [c∗,∞)

8.1. The general case. In the theorems of §5 and §7, it was assumed that ζ ∈ C \R+

and |ζ| ≥ 1. In the present section, we obtain a result on approximation for the resolvent
(AD,ε − ζI)−1 valid in a wider set of the parameter ζ. For bounded values of |ζ| and for
points ζ with small ϕ or 2π − ϕ, this result may be preferable.

Theorem 8.1. Let O be a bounded domain of class C2p. Let ζ ∈ C \ [c∗,∞), where
c∗ > 0 is a common lower bound of the operators AD,ε and A0

D. Let ζ − c∗ = |ζ − c∗|eiψ.
Denote

ρ∗(ζ) =

{
c(ψ)2|ζ − c∗|−2, |ζ − c∗| < 1,

c(ψ)2, |ζ − c∗| ≥ 1,



HOMOGENIZATION OF THE DIRICHLET PROBLEM 355

where c(ψ) is given by (3.1). Let uε be the solution of problem (4.4), and let u0 be the
solution of problem (4.11) with F ∈ L2(O;Cn). Suppose that the operator KD(ζ; ε) is
given by (5.4), and the function vε is defined by (5.7). Let ε1 be subject to Condition 4.4.
Then for 0 < ε ≤ ε1 we have

‖uε − u0‖L2(O) ≤ C1ερ∗(ζ)‖F‖L2(O),

‖uε − vε‖Hp(O) ≤ C2ε
1/2ρ∗(ζ)‖F‖L2(O).

(8.1)

In operator terms, ∥∥(AD,ε − ζI)−1 − (A0
D − ζI)−1

∥∥
L2(O)→L2(O)

≤ C1ερ∗(ζ),(8.2) ∥∥(AD,ε − ζI)−1 − (A0
D − ζI)−1 − εpKD(ζ; ε)

∥∥
L2(O)→Hp(O)

≤ C2ε
1/2ρ∗(ζ).(8.3)

For 0 < ε ≤ ε1 the flux pε = gεb(D)uε satisfies

(8.4) ‖pε − rgεSεb(D)ru0‖L2(O) ≤ C3ε
1/2ρ∗(ζ)‖F‖L2(O),

where rg(x) is the matrix-valued function (1.12). The constants C1, C2, and C3 depend
only on m, d, p, α0, α1, ‖g‖L∞ , ‖g−1‖L∞ , the parameters of the lattice Γ, and the
domain O.

Remark 8.2.
1) The quantity c(ψ)2|ζ − c∗|−2 is inverse to the square of the distance from the point

ζ to [c∗,∞).
2) One may take c∗ = c2, where c2 is defined by (4.3).
3) Let ν > 0 be an arbitrarily small number. If ε is sufficiently small, then one may

take c∗ = λ0
1 − ν, where λ0

1 is the first eigenvalue of the operator A0
D.

4) It is easy to give an upper bound for c∗: from (4.2) it is seen that c∗ ≤ c1μ
0
1, where

μ0
1 is the first eigenvalue of the operator Bp =

∑
|α|=p D

2α with the Dirichlet conditions.

Therefore, c∗ does not exceed a number depending only on d, p, ‖g‖L∞ , α1, and the
domain O.

Proof. We apply Theorem 5.1 with ζ = −1. By (5.2),

(8.5)
∥∥(AD,ε + I)−1 − (A0

D + I)−1
∥∥
L2(O)→L2(O)

≤ 2C1ε, 0 < ε ≤ ε1.

We use the identity

(8.6)
(AD,ε − ζI)−1 − (A0

D − ζI)−1

= (AD,ε+ I)(AD,ε− ζI)−1
(
(AD,ε+ I)−1− (A0

D+ I)−1
)
(A0

D+ I)(A0
D− ζI)−1.

From (8.5) and (8.6) it follows that

(8.7)
∥∥(AD,ε − ζI)−1 − (A0

D − ζI)−1
∥∥
L2(O)→L2(O)

≤ 2C1ε sup
x≥c∗

(x+ 1)2|x− ζ|−2

for 0 < ε ≤ ε1. A calculation shows that

(8.8) sup
x≥c∗

(x+ 1)2|x− ζ|−2 ≤ qcρ∗(ζ),

where qc = (c∗+2)2. By Remark 8.2(4), qc does not exceed a number depending only on d,
p, α1, ‖g‖L∞ , and the domain O. Relations (8.7) and (8.8) imply the required estimate
(8.2) with the constant C1 = 2C1qc.

Now, we apply Theorem 5.2 with ζ = −1. By (5.9), for 0 < ε ≤ ε1 we have

(8.9)
∥∥(AD,ε + I)−1 − (A0

D + I)−1 − εpKD(−1; ε)
∥∥
L2(O)→Hp(O)

≤ 2C2ε1/2.

Using Lemma 6.2 with ζ = −1 and (6.20), we see that

(8.10) ‖εpθεKD(−1; ε)‖L2(O)→Hp(O) ≤ C4ε
1/2
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for 0 < ε ≤ ε1, where C4 = C(p;O)(C5 + 2C13). From (8.9) and (8.10) it follows that

(8.11)
∥∥(AD,ε + I)−1 − (A0

D + I)−1 − εp(1− θε)KD(−1; ε)
∥∥
L2(O)→Hp(O)

≤ C5ε
1/2

for 0 < ε ≤ ε1, where C5 = 2C2 + C4. We use the identity

(8.12)

(AD,ε − ζI)−1 − (A0
D − ζI)−1 − εp(1− θε)KD(ζ; ε)

= (AD,ε+I)(AD,ε− ζI)−1
(
(AD,ε+I)−1− (A0

D+I)−1−εp(1−θε)KD(−1; ε)
)

× (A0
D + I)(A0

D − ζI)−1 + εp(ζ + 1)(AD,ε − ζI)−1(1− θε)KD(ζ; ε).

Since the range of the operators in (8.12) is contained in Hp
0 (O;Cn), we can multiply by

A
1/2
D,ε from the left. Taking (8.8) into account, we obtain

(8.13)

∥∥A1/2
D,ε

(
(AD,ε − ζI)−1 − (A0

D − ζI)−1 − εp(1− θε)KD(ζ; ε)
)∥∥

L2→L2

≤ qcρ∗(ζ)
∥∥A1/2

D,ε

(
(AD,ε + I)−1 − (A0

D+ I)−1 − εp(1− θε)KD(−1; ε)
)∥∥

L2→L2

+ εp|ζ + 1| sup
x≥c∗

x1/2|x− ζ|−1‖(1− θε)KD(ζ; ε)‖L2→L2
.

Denote the summands on the right-hand side of (8.13) by L1(ζ; ε) and L2(ζ; ε). Relations
(4.2) and (8.11) imply the following estimate for the first term:

(8.14) L1(ζ; ε) ≤ qcC5c
1/2
1 ε1/2ρ∗(ζ), 0 < ε ≤ ε1.

SinceKD(ζ; ε) = RO[Λ
ε]Sεb(D)PO(A

0
D)−1/2(A0

D)1/2(A0
D−ζI)−1, we can use (1.4), (5.3),

(5.20), and (6.1) to show that

(8.15)

‖(1− θε)KD(ζ; ε)‖L2(O)→L2(O)

≤ C
(1)
Λ α

1/2
1 C

(p)
O ‖(A0

D)−1/2‖L2(O)→Hp(O) sup
x≥c∗

x1/2|x− ζ|−1.

Combining (3.9) with analogs of estimates (4.2) and (4.3) for the operator A0
D, we get

(8.16) ‖(A0
D)−1/2‖L2(O)→Hp(O) ≤ qc

1/2
p (c

−1/2
0 + c

−1/2
2 ).

By (8.15) and (8.16), the second term on the right-hand side of (8.13) admits the estimate

(8.17) L2(ζ; ε) ≤ C6ε
p|ζ + 1| sup

x≥c∗

x|x− ζ|−2,

where C6 = C
(1)
Λ α

1/2
1 C

(p)
O qc

1/2
p (c

−1/2
0 + c

−1/2
2 ). In accordance with [Su5, (8.17)],

(8.18) |ζ + 1| sup
x≥c∗

x|x− ζ|−2 ≤ (c∗ + 2)(c∗ + 1)ρ∗(ζ).

Now, from (8.17) and (8.18) it follows that

(8.19) L2(ζ; ε) ≤ C6(c∗ + 2)(c∗ + 1)εpρ∗(ζ).

As a result, inequalities (8.13), (8.14), and (8.19) imply∥∥A1/2
D,ε

(
(AD,ε − ζI)−1 − (A0

D − ζI)−1 − εp(1− θε)KD(ζ; ε)
)∥∥

L2→L2
≤ C7ε

1/2ρ∗(ζ),

0 < ε ≤ ε1,

where C7 = qcC5c
1/2
1 + C6(c∗ + 2)(c∗ + 1). Combining this with (4.2), (4.3), and (3.9), we

obtain

(8.20)

∥∥(AD,ε− ζI)−1− (A0
D− ζI)−1− εp(1−θε)KD(ζ; ε)

∥∥
L2(O)→Hp(O)

≤ C8ε
1/2ρ∗(ζ),

0 < ε ≤ ε1,
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where C8 = qc
1/2
p (c

−1/2
0 + c

−1/2
2 )C7. Finally, by (8.8) and (8.10),

‖εpθεKD(ζ; ε)‖L2(O)→Hp(O)

≤ ‖εpθεKD(−1; ε)‖L2(O)→Hp(O)

∥∥(A0
D + I)(A0

D − ζI)−1
∥∥
L2(O)→L2(O)

≤ qc1/2C4ε
1/2ρ∗(ζ)

1/2, 0 < ε ≤ ε1.

Together with (8.20), this yields the required inequality (8.3) with the constant C2 =
C8 + qc1/2C4.

It remains to check (8.4). From (8.1), (1.3), and (1.5) it follows that

(8.21) ‖pε − gεb(D)vε‖L2(O) ≤ κ9(d, p)‖g‖L∞α
1/2
1 C2ε

1/2ρ∗(ζ)‖F‖L2(O)

for 0 < ε ≤ ε1. Next, like in (6.22)–(6.24), we have

(8.22)

∥∥gεb(D)vε − rgεSεb(D)ru0

∥∥
L2(O)

≤ ε‖g‖L∞r1‖Db(D)ru0‖L2(Rd) + C21
p∑

l=1

εl‖Dlb(D)ru0‖L2(Rd)

≤ C9ε‖ru0‖H2p(Rd),

where C9 = ‖g‖L∞r1α
1/2
1 + p C21α1/2

1 .
From (4.10) and (8.8) it follows that

‖(A0
D − ζI)−1‖L2(O)→H2p(O) ≤ pc sup

x≥c∗

x|x− ζ|−1 ≤ qc1/2pcρ∗(ζ)
1/2.

Hence, by (5.3),

(8.23) ‖ru0‖H2p(Rd) ≤ C
(2p)
O ‖u0‖H2p(O) ≤ C

(2p)
O qc1/2pcρ∗(ζ)

1/2‖F‖L2(O).

Combining this with (8.22), we obtain

‖gεb(D)vε − rgεSεb(D)ru0‖L2(O) ≤ C10ερ∗(ζ)
1/2‖F‖L2(O),

where C10 = C9C
(2p)
O qc1/2pc. Together with (8.21), this yields (8.4) with the constant

C3 = κ9(d, p)‖g‖L∞α
1/2
1 C2 + C10. �

8.2. Removal of the smoothing operator.

Theorem 8.3. Under Condition 3.6 and the assumptions of Theorem 8.1, suppose that
the operator K0

D(ζ; ε) is given by (7.1), and the function v0
ε is given by (7.2). Then for

0 < ε ≤ ε1 we have

(8.24) ‖uε − v0
ε‖Hp(O) ≤ rC2ε

1/2ρ∗(ζ)‖F‖L2(O),

or, in operator terms,

(8.25)
∥∥(AD,ε − ζI)−1 − (A0

D − ζI)−1 − εpK0
D(ζ; ε)

∥∥
L2(O)→Hp(O)

≤ rC2ε
1/2ρ∗(ζ).

For 0 < ε ≤ ε1 the flux pε = gεb(D)uε satisfies

(8.26) ‖pε − rgεb(D)u0‖L2(O) ≤ rC3ε
1/2ρ∗(ζ)‖F‖L2(O).

The constants rC2 and rC3 depend only on m, d, p, α0, α1, ‖g‖L∞ , ‖g−1‖L∞ , the param-
eters of the lattice Γ, the domain O, and also on ‖Λ‖L∞ and MΛ.

Proof. As in (7.9)–(7.13), we have

(8.27) ‖vε − v0
ε‖Hp(O) ≤ C11ε‖ru0‖H2p(Rd),

where C11 = α
1/2
1 (2qc

1/2
p ‖Λ‖L∞ +qcpMΛ(r1 + 2)). From (8.23) and (8.27) it follows that
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(8.28) ‖vε − v0
ε‖Hp(O) ≤ C12ερ∗(ζ)

1/2‖F‖L2(O),

where C12 = C
(2p)
O qc1/2pcC11.

Inequalities (8.1) and (8.28) imply the required estimate (8.24) with the constant
rC2 = C2 + C12.

It remains to check (8.26). As in (7.12), (7.13), and (7.15), we have

(8.29) ‖rgεb(D)u0 − rgεSεb(D)ru0‖L2(O) ≤ C13ε‖ru0‖H2p(Rd),

where C13 = qc
1/2
p M

rgα
1/2
1 (r1 + 2). From (8.23) and (8.29) it follows that

(8.30) ‖rgεb(D)u0 − rgεSεb(D)ru0‖L2(O) ≤ C14ερ∗(ζ)
1/2‖F‖L2(O),

where C14 = C
(2p)
O qc1/2pcC13. Comparing (8.4) and (8.30), we arrive at the required

estimate (8.26) with the constant rC3 = C3 + C14. �

Theorem 8.3 and Proposition 3.7 directly imply the following statement.

Corollary 8.4. Under the assumptions of Theorem 8.1, let the operator K0
D(ζ; ε) be

given by (7.1) and the function v0
ε by (7.2). Let pε = gεb(D)uε, and let rg(x) be the

matrix-valued function (1.12). Suppose that at least one of the following conditions is
fulfilled:

1◦. 2p > d;
2◦. g0 = g (i.e., the representations (1.18) are valid).

Then for 0 < ε ≤ ε1 we have estimates (8.24)–(8.26), and the constants rC2 and rC3

depend only on m, n, d, p, α0, α1, ‖g‖L∞ , ‖g−1‖L∞ , the parameters of the lattice Γ,
and the domain O.

8.3. Special cases. The following statement easily follows from Proposition 7.5 and
identity (8.6).

Proposition 8.5. Under the assumptions of Theorem 8.1, if g0 = sg (i.e., relations (1.17)
are valid), then

‖uε − u0‖Hp(O) ≤ C15ερ∗(ζ)‖F‖L2(O)

for 0 < ε ≤ ε1. Here C15 = 2qc
1/2
p c

1/2
1 qc(c

−1/2
0 + c

−1/2
2 )rC6.

The proof of following statement is similar to that of Proposition 7.6.

Proposition 8.6. Under the assumptions of Theorem 8.1, if g0 = g (i.e., the represen-
tations (1.18) are valid), then for 0 < ε ≤ ε1 the flux pε = gεb(D)uε satisfies

‖pε − g0b(D)u0‖L2(O) ≤ rC3ε
1/2ρ∗(ζ)‖F‖L2(O).

§9. Added in proof

In the present section, we improve estimates of Theorems 5.1, 5.2, 7.1 and Propositions
7.5, 7.6, refining the dependence on the angle ϕ = arg ζ. For this, we use arguments
suggested in the paper [MeSu, §10].

Theorem 9.1. Under the assumptions of Theorem 5.1, for ζ ∈ C \ R+, |ζ| ≥ 1, and
0 < ε ≤ ε1 we have

(9.1)
∥∥(AD,ε − ζI)−1 − (A0

D − ζI)−1
∥∥
L2(O)→L2(O)

≤ pC1c(ϕ)2ε|ζ|−1+1/2p.

The constant pC1 depends only on d, p, m, α0, α1, ‖g‖L∞ , ‖g−1‖L∞ , the parameters of
the lattice Γ, and the domain O.
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Proof. We apply estimate (5.2) at a point pζ ∈ C, |pζ| ≥ 1, Re pζ ≤ 0:

(9.2)
∥∥(AD,ε − pζI)−1 − (A0

D − pζI)−1
∥∥
L2(O)→L2(O)

≤ C1
(
ε|pζ|−1+1/2p + ε2p

)
.

If ε ≤ |pζ|−1/2p, then ε2p ≤ ε|pζ|−1+1/2p, whence the right-hand side of (9.2) does not

exceed 2C1ε|pζ|−1+1/2p. In the case where ε > |pζ|−1/2p, we apply Lemmas 4.1 and 4.3.

Then the left-hand side of (9.2) does not exceed 2|pζ|−1 ≤ 2ε|pζ|−1+1/2p. As a result, we
obtain

(9.3)
∥∥(AD,ε − pζI)−1 − (A0

D − pζI)−1
∥∥
L2(O)→L2(O)

≤ C′
1ε|pζ|−1+1/2p,

where C′
1 = 2max{1, C1}. This proves estimate (9.1) in the case where the point pζ lies in

the left half-plane.

Now, suppose that ζ ∈ C \ R+, |ζ| ≥ 1, and Re ζ > 0. We put pζ = −Re ζ + iIm ζ.

Note that |ζ| = |pζ|. As in (8.6), we have

(9.4)
(AD,ε − ζI)−1 − (A0

D − ζI)−1 = (AD,ε − pζI)(AD,ε − ζI)−1

×
(
(AD,ε − pζI)−1 − (A0

D − pζI)−1
)
(A0

D − pζI)(A0
D − ζI)−1.

From (9.3) and (9.4) it follows that

(9.5)
∥∥(AD,ε − ζI)−1 − (A0

D − ζI)−1
∥∥
L2(O)→L2(O)

≤ C′
1ε|ζ|−1+1/2p sup

x≥0

|x− pζ|2
|x− ζ|2 .

A calculation shows that

(9.6) sup
x≥0

|x− pζ|2
|x− ζ|2 ≤ 4c(ϕ)2.

As a result, (9.5) and (9.6) imply estimate (9.1) with the constant pC1 = 4C′
1. �

Theorem 9.2. Under the assumptions of Theorem 5.2, for ζ ∈ C \ R+, |ζ| ≥ 1, and
0 < ε ≤ ε1 we have

(9.7)

∥∥(AD,ε − ζI)−1 − (A0
D − ζI)−1 − εpKD(ζ; ε)

∥∥
L2(O)→Hp(O)

≤ pC2c(ϕ)2
(
ε1/2|ζ|−1/2+1/4p + εp

)
.

The flux pε = gεb(D)uε satisfies

(9.8) ‖pε − rgεSεb(D)ru0‖L2(O) ≤ pC3c(ϕ)2
(
ε1/2|ζ|−1/2+1/4p + εp

)
‖F‖L2(O).

The constants pC2 and pC3 depend only on d, p, m, α0, α1, ‖g‖L∞ , ‖g−1‖L∞ , the parameters
of the lattice Γ, and the domain O.

Proof. We apply estimate (5.9) at a point pζ ∈ C, |pζ| ≥ 1, Re pζ ≤ 0:

(9.9)

∥∥(AD,ε − pζI)−1 − (A0
D − pζI)−1 − εpKD(pζ; ε)

∥∥
L2(O)→Hp(O)

≤ C2
(
ε1/2|pζ|−1/2+1/4p + εp

)
.

Now, suppose that ζ ∈ C \ R+, |ζ| ≥ 1, and Re ζ > 0, and let pζ = −Re ζ + i Im ζ.
Recall that θε(x) is a cut-off function satisfying (6.1). Denote

T (ζ; ε) := (AD,ε − ζI)−1 − (A0
D − ζI)−1 − εp(1− θε)KD(ζ; ε).

By (4.2), Lemma 6.2, and (9.9), we have

(9.10)
∥∥A1/2

D,εT (
pζ; ε)

∥∥
L2(O)→L2(O)

≤ C′
2

(
ε1/2|pζ|−1/2+1/4p + εp

)
,



360 T. A. SUSLINA

where C′
2 = c

1/2
1

(
C2 + C13

)
. The following identity is similar to (8.12):

(9.11)
T (ζ; ε) = (AD,ε − pζI)(AD,ε − ζI)−1T (pζ; ε)(A0

D − pζI)(A0
D − ζI)−1

+ εp(ζ − pζ)(AD,ε − ζI)−1(1− θε)KD(ζ; ε).

Applying the operator A
1/2
D,ε to the two sides of (9.11) and using (9.6) and (9.10), we

obtain∥∥A1/2
D,εT (ζ; ε)

∥∥
L2(O)→L2(O)

≤ 4c(ϕ)2C′
2

(
ε1/2|ζ|−1/2+1/4p + εp

)
+ εp|ζ − pζ|

∥∥A1/2
D,ε(AD,ε − ζI)−1

∥∥
L2→L2

∥∥(1− θε)KD(ζ; ε)
∥∥
L2→L2

.
(9.12)

As in (8.15) and (8.16), we have

‖(1− θε)KD(ζ; ε)‖L2(O)→L2(O) ≤ C6 sup
x≥0

√
x

|x− ζ| .

A calculation shows that

sup
x≥0

x

|x− ζ|2 ≤ c(ϕ)2|ζ|−1.

Since |ζ − pζ| ≤ 2|ζ|, we see that the second term on the right-hand side of (9.12) does
not exceed 2C6c(ϕ)

2εp. Combining this with (9.12), (3.9), (4.2), and (4.3), we obtain

(9.13) ‖T (ζ; ε)‖L2(O)→Hp(O) ≤ C′′
2 c(ϕ)

2
(
ε1/2|ζ|−1/2+1/4p + εp

)
,

where C′′
2 = qc

1/2
p

(
c
−1/2
0 + c

−1/2
2

)
(4C′

2 + 2C6). It remains to use the inequality

εp‖θεKD(ζ; ε)‖L2(O)→Hp(O) ≤ C(p;O)(C5 + C13)c(ϕ)
(
ε1/2|ζ|−1/2+1/4p + εp

)
,

which follows from Lemma 6.2 and (6.20). Together with (9.13), this yields the required

estimate (9.7) with the constant pC2 = C′′
2 + C(p;O)(C5 + C13).

Next, as in (6.21), inequality (9.7) implies that

(9.14) ‖pε − gεb(D)vε‖L2(O) ≤ C′
3c(ϕ)

2
(
ε1/2|ζ|−1/2+1/4p + εp

)
‖F‖L2(O),

where C′
3 = κ9(d, p)‖g‖L∞α

1/2
1

pC2. Relations (6.26) and (9.14) yield (9.8) with the con-

stant pC3 = C′
3 + C22. �

Theorem 9.3. Under the assumptions of Theorem 7.1, for ζ ∈ C \ R+, |ζ| ≥ 1, and
0 < ε ≤ ε1 we have

(9.15)

∥∥(AD,ε − ζI)−1 − (A0
D − ζI)−1 − εpK0

D(ζ; ε)
∥∥
L2(O)→Hp(O)

≤ C◦
2c(ϕ)

2
(
ε1/2|ζ|−1/2+1/4p + εp

)
.

The flux pε = gεb(D)uε satisfies

(9.16) ‖pε − rgεb(D)u0‖L2(O) ≤ C◦
3c(ϕ)

2
(
ε1/2|ζ|−1/2+1/4p + εp

)
‖F‖L2(O).

The constants C◦
2 and C◦

3 depend only on d, p, m, α0, α1, ‖g‖L∞ , ‖g−1‖L∞ , the param-
eters of the lattice Γ, the domain O, and also on ‖Λ‖L∞ and MΛ.

Proof. Estimate (9.15) with the constant C◦
2 = pC2 + C26 directly follows from (9.7) and

(7.14). Inequality (9.16) with the constant C◦
3 = pC3 + C27 is a consequence of (9.8)

and (7.16). �

Proposition 9.4. Under the assumptions of Proposition 7.5, for ζ ∈ C \ R+, |ζ| ≥ 1,
and 0 < ε ≤ ε1 we have

(9.17) ‖uε − u0‖Hp(O) ≤ C◦
6c(ϕ)

2ε|ζ|−1/2+1/2p‖F‖L2(O).
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The constant C◦
6 depends only on d, p, m, α0, α1, ‖g‖L∞ , ‖g−1‖L∞ , the parameters of

the lattice Γ, and the domain O.

Proof. Suppose that pζ ∈ C, |pζ| ≥ 1, and Re pζ ≤ 0. By Proposition 7.5, under our
assumptions we have

(9.18)
∥∥(AD,ε − pζI)−1 − (A0

D − pζI)−1
∥∥
L2(O)→Hp(O)

≤ rC6
(
ε|pζ|−1/2+1/2p + εp

)
.

If ε ≤ |pζ|−1/2p, then εp ≤ ε|pζ|−1/2+1/2p, whence the right-hand side of (9.18) does not

exceed 2rC6ε|pζ|−1/2+1/2p. In the case where ε > |pζ|−1/2p, we apply Lemmas 4.1 and 4.3.

Then the left-hand side of (9.18) does not exceed 4rC0|pζ|−1/2 ≤ 4rC0ε|pζ|−1/2+1/2p. Hence,

(9.19)
∥∥(AD,ε − pζI)−1 − (A0

D − pζI)−1
∥∥
L2(O)→Hp(O)

≤ C′
6ε|pζ|−1/2+1/2p,

where C′
6 = max{2rC6, 4rC0}. This proves estimate (9.17) in the case where the point pζ lies

in the left half-plane.

For ζ ∈ C \ R+, |ζ| ≥ 1, Re ζ > 0, we put pζ = −Re ζ + iIm ζ and use identity (9.4).

Applying the operator A
1/2
D,ε to the two sides of (9.4) and taking (4.2), (9.6), and (9.19)

into account, we arrive at∥∥A1/2
D,ε

(
(AD,ε − ζI)−1 − (A0

D − ζI)−1
)∥∥

L2(O)→L2(O)
≤ 4c

1/2
1 C′

6c(ϕ)
2ε|ζ|−1/2+1/2p.

Combining this with (3.9), (4.2), and (4.3), we obtain estimate (9.17) with the constant

C◦
6 = 4c

1/2
1 qc

1/2
p (c

−1/2
0 + c

−1/2
2 )C′

6. �

The following statement is deduced from Theorem 9.3; the proof is similar to that of
Proposition 7.6.

Proposition 9.5. Under the assumptions of Proposition 7.6, for ζ ∈ C \ R+, |ζ| ≥ 1,
and 0 < ε ≤ ε1 we have

‖pε − g0b(D)u0‖L2(O) ≤ C◦
3c(ϕ)

2
(
ε1/2|ζ|−1/2+1/4p + εp

)
‖F‖L2(O).
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Birkhäuser, Basel, 2001, pp. 71–107. MR1882692

[BSu2] , Second order periodic differential operators. Threshold properties and homogenization,
Algebra i Analiz 15 (2003), no. 5, 1–108; English transl., St. Petersburg Math. J. 15 (2004),
no. 5, 639–714. MR2068790

[BSu3] , Homogenization with corrector term for periodic elliptic differential operators, Algebra
i Analiz 17 (2005), no. 6, 1–104; English transl., St. Petersburg Math. J. 17 (2006), no. 6,
897–973. MR2202045

[BSu4] , Homogenization with corrector for periodic differential operators. Approximation of
solutions in the Sobolev class H1(Rd), Algebra i Analiz 18 (2006), no. 6, 1–130; Englishs
transl., St. Petersburg Math. J. 18 (2007), no. 6, 857–955. MR2307356

[V] N. A. Veniaminov, Homogenization of higher-order periodic differential operators, Algebra i
Analiz 22 (2010), no. 5, 69–103; English transl., St. Petersburg Math. J. 22 (2011), no. 5,
751–775. MR2828827

[Gr1] G. Griso, Error estimate and unfolding for periodic homogenization, Asymptot. Anal. 40
(2004), no. 3–4, 269–286. MR2107633

http://www.ams.org/mathscinet-getitem?mr=0797571
http://www.ams.org/mathscinet-getitem?mr=0797571
http://www.ams.org/mathscinet-getitem?mr=1112788
http://www.ams.org/mathscinet-getitem?mr=503330
http://www.ams.org/mathscinet-getitem?mr=1882692
http://www.ams.org/mathscinet-getitem?mr=2068790
http://www.ams.org/mathscinet-getitem?mr=2202045
http://www.ams.org/mathscinet-getitem?mr=2307356
http://www.ams.org/mathscinet-getitem?mr=2828827
http://www.ams.org/mathscinet-getitem?mr=2107633


362 T. A. SUSLINA

[Gr2] , Interior error estimate for periodic homogenization, Anal. Appl. (Singap.) 4 (2006),
no. 1, 61–79. MR2199793

[Zh] V. V. Zhikov, On operator estimates in homogenization theory, Dokl. Akad. Nauk 403 (2005),
no. 3, 305–308; English transl., Dokl. Math. 72 (2005), no. 1, 534–538. MR2164541

[ZhKO] V. V. Zhikov, S. M. Kozlov, and O. A. Olĕınik, Homogenization of differential operators,
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