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HOMOGENIZATION OF THE DIRICHLET PROBLEM
FOR HIGHER-ORDER ELLIPTIC EQUATIONS
WITH PERIODIC COEFFICIENTS

T. A. SUSLINA

To the memory of Viadimir Savel’evich Buslaev

ABSTRACT. Let O C R? be a bounded domain of class C2P. The object under study
is a selfadjoint strongly elliptic operator Ap . of order 2p, p > 2, in L2(O;C"™), given
by the expression b(D)*g(x/e)b(D), € > 0, with the Dirichlet boundary conditions.
Here g(x) is a bounded and positive definite (m x m)-matrix-valued function in R%,
periodic with respect to some lattice; b(D) = Z‘a‘:p baD® is a differential operator
of order p with constant coefficients; and the b, are constant (m X mn)-matrices. It
is assumed that m > mn and the symbol b(£€) has maximal rank. Approximations
are found for the resolvent (Ap . — ¢I)~! in the Ly(O;C™)-operator norm and in
the norm of operators acting from Lo2(O;C™) to HP(O;C"), with error estimates
depending on € and ¢.

INTRODUCTION

An extensive literature is devoted to homogenization problems for differential opera-
tors (DOs) with periodic rapidly oscillating coefficients. To start with, we mention the
books [BeLPal BaPan! [ZhKO].

0.1. Operator error estimates for homogenization problems in R?. In a series of
papers [BSull [BSu2, [BSu3,[BSu4] by Birman and Suslina, an operator-theoretic approach
to homogenization problems was suggested and developed. This approach was applied to
the study of a wide class of matrix selfadjoint strongly elliptic second order DOs acting
in Ly(R%;C") and admitting a factorization of the form

(0.1) A. = b(D)*g(x/e)b(D), &> 0.

Here an (m x m)-matrix-valued function g(x) is bounded, uniformly positive definite,
and periodic with respect to some lattice I' ¢ R?. Next, b(D) is a first order DO of
the form b(D) = Z?:l b;D;, where the b; are constant (m x n)-matrices. It is assumed
that m > n and that the symbol b(€) has rank n for any 0 # £ € R%. The simplest
example of an operator like (0) is the acoustics operator — div g(x/e)V; the operator
of elasticity theory can also be written in the required form. These and other examples
were considered in [BSu2] in detail.

In [BSull BSu2], it was shown that, as ¢ — 0, the resolvent (A.+1)~! converges in the
Ly(R4; C™)-operator norm to the resolvent of the effective operator A° = b(D)*g"b(D).
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Here ¢° is a constant effective matriz. The following estimate was proved:
(0.2) [(Ae + D)7 = (A" + D7 1 gy £ ey < Ce

In [BSu3|, a sharper approximation for the resolvent (A. + I)~! in the Ly(R%;C")-
operator norm with error O(g?) was found. In [BSud], an approximation for the resol-
vent (A. + I)~! in the norm of operators acting from Lo(R?; C") to the Sobolev space
H'(R%; C") was obtained. It was proved that

(0.3) (A + D)7 = (A + D)7 = eK(0)|| 1 ety ety < O

Here K(¢) is the so-called corrector. The operator K(e) contains rapidly oscillating factors
and so depends on ¢; herewith, ||K(¢)||r, g = O(e™1).

Estimates of the form ([0.2) and (03] are called operator error estimates. They are
order-sharp. The method of [BSull BSu2l, BSu3l [BSud] is based on the scaling transfor-
mation, the Floquet—Bloch theory, and analytic perturbation theory.

We also mention the recent papers [Sudl [Su5|, where two-parametric analogs of esti-
mates ([0.2) and ([0.3)) (depending on ¢ and () for the resolvent (A.—(I)~! at an arbitrary
point ¢ € C\ R, were obtained.

A different approach to operator error estimates (the modified method of first-order
approzimation or the shift method) was suggested by Zhikov; in [Zh| and [ZhPasl], this
method was employed to get estimates of the form (02) and (@3] for the acoustics
operator and the elasticity operator. Concerning further results, see the recent survey
[ZhPas2] by Zhikov and Pastukhova and the references therein.

A homogenization problem for periodic elliptic DOs of high even order is of separate
interest. The operator-theoretic approach of Birman and Suslina was developed for such
operators in the paper [V] by Veniaminov and in the recent paper [KuSu] by Kukushkin
and Suslina.

In [V], operators of the form B. = (DP)*g(x/e)D? were studied. Here g(x) is a
symmetric positive definite and bounded tensor of order 2p, periodic with respect to a
lattice I'. Such an operator with p = 2 arises in the theory of elastic plates (see [ZhKOQ]).
The effective operator is given by B° = (D?)*¢°DP, where ¢° is the effective tensor.
In [V], the following analog of estimate ((.2)) was proved:

1B+ 17" = (B + )7y g Ly mey < €

In [KuSul, a more general class of higher-order elliptic DOs acting in Ly(R¢; C") and
admitting a factorization of the form

(0.4) A. = b(D)"g(x/e)b(D)

was studied. Here g(x) is a bounded and uniformly positive definite (m x m)-matrix-
valued function, periodic with respect to I'. The operator b(D) of order p > 2 is of the
form b(D) = >, baD®, where the b, are constant (m X n)-matrices. It is assumed
that m > n and that the symbol b(¢) has rank n for any 0 # £ € RY. The main results
of [KuSu] are approximations of the resolvent (A. — ¢I)~!, where ¢ € C\ R, in various
operator norms with two-parametric error estimates (depending on ¢ and (). It was
shown that the resolvent (A. — ¢I)~! converges in the Ly(R%; C")-operator norm to the
resolvent of the effective operator A° = b(D)*g(D) (where ¢° is the constant effective
matrix), and

(0.5) (A = <D™ = (A = CD) Y|, gy oy < 1O
Approximation was obtained for the resolvent in the “energy” norm (i. e., the norm of
operators acting from Lo(R?; C™) to HP(R%; C")), with the corrector taken into account:

(0.6) [(Ae = ¢I)7H = (A% = CI) ™ = K (G o) 1y oy oy < C2(C)e-



HOMOGENIZATION OF THE DIRICHLET PROBLEM 327

The corrector K((;e) contains rapidly oscillating factors; we have ||K((;¢€)||p,—mr =
O(e™P). The dependence of C;(¢) and C5(¢) on ( is searched out.

Similar results on homogenization of higher-order elliptic operators were obtained in
the recent papers [Pasll [Pas2] by Pastukhova with the help of the shift method (in those
papers, estimates are one-parametric, it was assumed that ¢ = —1).

0.2. Operator error estimates for homogenization problems in a bounded
domain. Operator error estimates were also studied for second order elliptic operators
with rapidly oscillating coefficients in a bounded domain © C R? with sufficiently smooth
boundary. In [Zhl [ZhPas]], the acoustics operator and the operator of elasticity theory
with the Dirichlet or Neumann conditions on the boundary 0O were studied; analogs of
estimates (2) and ((.3), but with error terms of order O(¢'/?), were obtained. The error
deteriorates because of the boundary influence. (In the case of the Dirichlet problem for
the acoustics operator, the (Ly — Lg)-estimate was improved in [ZhPasl], but the order
was not sharp.)

Similar results for the operator —div g(x/¢)V in a bounded domain with the Dirichlet
or Neumann conditions were obtained in the papers [Grll [Gr2] by Griso with the help
of the “unfolding” method. In [Gr2], an analog of estimate (0.2]) of sharp order O(g) for
the same operator was obtained for the first time.

For the second order matrix operators Ap . and Ay . given by expression (0.I)) with
the Dirichlet or Neumann conditions, respectively, operator error estimates were obtained
in the papers [PSull [PSu2l [Sull [Su2l [Su3|]. In [PSull [PSu2], the Dirichlet problem was
studied and the following estimate was obtained:

(0.7) [AD = (AD) ™" = eKp @1, 0 m(0) < O/

Here A} is the effective operator with the Dirichlet condition, and Kp(g) is the cor-
responding corrector. In [Sull [Su2|, a sharp-order estimate in the Lo(O;C™)-operator
norm was proved:

(0.8) 5% = (AD) "l 0) a0y < CF

Similar results for the Neumann problem were obtained in [Su3]. The method of [PSull,
PSu2l [Sull, [Su2l [Su3] was based on using the results for the problem in R?, introduction
of the boundary layer correction term, and estimation of this term in H'(O;C") and in
L2(O;C™). Some technical tricks were borrowed from [ZhPasl].

In the recent papers [Sudl [Suf], approximations for the resolvents (Ap . — ¢I)~! and
(An.e—CI)~! at an arbitrary point ¢ € C\R, (two-parametric analogs of estimates ((0.7])
and (0.8])) were obtained.

Independently, an estimate of the form (0.8 for uniformly elliptic second order systems
with the Dirichlet or Neumann conditions, under some regularity assumptions on the
coefficients, was obtained by a different method in the paper [KeLiS] by Kenig, Lin, and
Shen.

0.3. Main results. In the present paper, we study the operator Ap . of order 2p in a
bounded domain O of class C?P. This operator is given in a factorized form (.4 under
the Dirichlet conditions on the boundary 0. Our goal is to find approximations for the
resolvent (Ap . — ¢I)~! at a regular point ¢ with error estimates depending on & and (.

Now we describe the main results. Let ¢ = [(|e’? € C\ R be such that [¢| > 1. It is
proved that

(0.9)  [[(Ape = <D™ = (Ah — DY 1 01 Lao) < Crl9) (elg] T2 4 £77),
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(0.10)
|4 =D ™ = (A = ¢ = Kn(Gi2) |1, 0, ran(o) < Cal) (€224 4. 27)

for 0 < € < &7 (where ¢; is a sufficiently small number depending on the domain @ and
the lattice I'). Here AY is the effective operator given by the expression b(D)*¢°b(D) with
the Dirichlet conditions. The corrector Kp((;e) involves rapidly oscillating factors, and
IKp(¢;e)llny,—me = O(e™P). The dependence of the constants Ci(¢) and Ca(¢p) on the
angle ¢ is traced; estimates ((L9) and (0I0) are uniform with respect to ¢ in any sector
© € [po, 2m — o] with arbitrarily small g > 0. For fixed (, estimate (0.9 is of sharp
order O(g), while estimate (0I0) is of order O(g'/2) (the order deteriorates because of
the boundary influence). Estimates (0L9]) and (0I0) show that the error becomes smaller
as |C| grows.

In the general case, the corrector Kp((;e) involves an auxiliary smoothing operator.
We distinguish an additional condition under which the standard corrector (without
smoothing) can be used.

Besides approximation for the resolvent, we find approximation for the operator
g(x/e)b(D)(Ap,. —¢I)~* (corresponding to the “flux”) in the (Ly — Lo)-operator norm.

For completeness, we also find approximation for the resolvent (Ap. — ¢I)~! in a
larger domain of the parameter (; the character of dependence of estimates on ¢ in this
case is different. Let us describe these results. The operators Ap . and A} are positive
definite. Let ¢, > 0 be their common lower bound. Suppose that ¢ € C\ [cs, 00). We
put ¢ — ¢, = | — c.|e’¥. For 0 < & < &1 we have

(0'11) H(AD,S - CI)_l - (AOD - CI)_lHLQ(O)HLQ(@) < C(C)a,
(0.12) [(Ape —¢D)™" = (A =)™ = PKp(Ge < ()2,

where C(¢) = C(¥)|¢ — cx| 72 for | — ¢i| < 1 and C(¢) = C(v) for |¢ —ci| > 1. The
dependence of C(v) on the angle 1 is traced. Estimates (ILII) and (0I2]) are uniform
with respect to ¢ in any sector of the form i € [tbg, 2w —1)p] with arbitrarily small ¢y > 0.

)||L2(O)—>HP(O)

0.4. Method. We rely on the results for operator (0.4) of order 2p in Ly(R%; C™) ob-
tained in [KuSu| (estimates (0.5) and (0.6)). First, we deduce yet another result for
the problem in R? (which is similar to ((.6))), where the Steklov smoothing is involved;
see Theorem B.3] below.

The method of investigation of the operator Ap . is similar to the case of the second
order operators: it is based on consideration of the associated problem in R?, intro-
duction of the boundary layer correction term, and a careful analysis of this term. An
important technical role is played by the Steklov smoothing (like in the paper [ZhPasl])
and estimates in the e-neighborhood of the boundary. First, estimate ((ILI0) is proved.
Next, we prove estimate (0.9), using the already proved inequality (0I0) and duality
arguments.

Estimates (@11 and (.I12) are deduced (in a relatively simple way) from the already
proved estimates at the point { = —1 and suitable identities for the resolvents.

0.5. Plan of the paper. The paper consists of two chapters. Chapter 1 (§§1-3) is
devoted to the problem in R?. In §1, we introduce the class of operators A, in Lo(R%; C"),
describe the effective operator A°, and introduce smoothing operators of two types. In §2,
we describe the properties of the matrix-valued function A(x) that is a periodic solution
of the auxiliary problem (II0). In §3, the results of the paper [KuSu] on approximation
of the resolvent (A, — ¢I)~! (Theorems B.1] and B.2) are given, and another version of
approximation for the resolvent in the “energy” norm involving the Steklov smoothing
(Theorem B.3)) is obtained. Chapter 2 (§§4-8) is devoted to the Dirichlet problem. §4
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contains the statement of the problem, description of the effective operator, and auxiliary
statements. In §5, the main results for the Dirichlet problem, namely, estimates (0.9,
([@I0) are formulated (see Theorems 51l and [B2)). The first two steps of the proofs are
presented: the associated problem in R? is considered, and the boundary layer correction
term w,. is introduced; the problem is reduced to estimation of the correction term in
HP(O;C™) and in Ls(O;C™). In §6, we prove the required estimates for the correction
term and complete the proof of Theorems B and In §7, we distinguish the case
where the smoothing operator can be removed and the standard corrector can be used.
Some special cases are considered. In §8, approximation for the resolvent (Ap . — ¢I)~!
for ¢ € C\ [ex, 00) is obtained (estimates (.11 and (0.12) are proved).

0.6. Notation. Let $ and & be complex separable Hilbert spaces. The symbols || - |5
and (-, -)g stand for the norm and the inner product in ), respectively; the symbol
|| - lls—e denotes the norm of a continuous linear operator acting from  to &.

The inner product and the norm in C" are denoted by (-, -) and | - |, respectively.
Next, 1 = 1,, stands for the unit (n x n)-matrix. If a is a matrix of size m x n, then |a|
denotes the norm of the matrix a viewed as an operator from C" to C™. The classes L,
of C"-valued functions in a domain O C R? are denoted by L,(O;C"), 1 < g < co. The
Sobolev classes of C"-valued functions in a domain @ C R are denoted by H*(O;C"),
s € R. Next, H(O;C") is the closure of the class C§°(O;C™) in the space H*(O;C").
If n = 1, we write simply Lq,(O) and H*(O), but sometimes we use this simpler notation
also for spaces of vector-valued or matrix-valued functions.

The vectors are denoted by the bold font. We denote x = (1,...,74) € R, iD; =
0; =0/0z;,j=1,...,d,and D = =iV = (D1,...,Dyg). If @ = (a1,...,04q) € Zi is a
multiindex, then |a| = 2421 a; and D* = D" ... D3?. For two multiindices a and /3,

J
we write 8 < o if 8; < «aj4, j = 1,...,d; the binomial coeflicients are denoted by

cl=ch ... Cha
We use the notation Ry =[0,00). By C, ¢, ¢, C, € (possibly, with indices and marks)
we denote various constants in estimates.

CHAPTER 1. HOMOGENIZATION OF OPERATORS IN RY
§1. PERIODIC ELLIPTIC OPERATORS IN Lo(R%;C")

1.1. Lattices in R?. Let I" be the lattice in R? generated by a basis ny,...,ng:

d
F—{neRd : n—Zlini,liel},

i=1
and let 2 be the elementary cell of the lattice I':

d
1 1
Q= ERd: = ting, —— <t; < = p.
frcrs e Soum den <)

i=1
The basis si,...,s84 in R? dual to the basis ni,...,ng is defined by the relations
(si,nj)ga = 2md;;. This basis gives rise to a lattice I' dual to the lattice I':

d
f‘z{seRd : s:Zqisi,qiEZ}.

i=1
Instead of the cell of the dual lattice, it is more convenient to consider the central Brillouin
zone

QO={keR?: k|<|k—s[,0#secT},
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which is a fundamental domain of I'. Below we use the notation |2] = meas (),

1 1
ro=— min |s|, 7 = - diamQ.
0#£sel’ 2

By H*(;C") we denote the subspace of all functions in H*(Q; C") whose I'-periodic
extension to R? belongs to Hf (R4 C"). If ¢(x) is a [-periodic function on RY, we

denote

1

©°(x) == p(e7x), &>0.

1.2. The class of operators. In Ly(R%; C"), consider the DO A, of order 2p formally
given by the differential expression
(1.1) A: =b(D)*¢°(x)b(D), &> 0.

Here g(x) is a uniformly positive definite and bounded (m x m)-matrix-valued function
(in general, g(x) is a Hermitian matrix with complex entries):

(1.2) 9. 97" € Lo(RY); g(x) > 0.

The operator b(D) is given by

(1.3) b(D) = Y b.D,
la|=p

where the b, are constant (m x n)-matrices (in general, with complex entries). It is
assumed that m > n and that the symbol b(§) = 3_,_, ba&” satisfies

rankb(¢) =n, 0#€&eRL
This condition is equivalent to the inequalities
(1.4) aol, <b(O)*b(0) < ail,, 0S¥ 0<ag<a < oo,

with some positive constants oy and «1. Without loss of generality we assume that the
norms of the matrices b, do not exceed the constant a}/ %

(15) bal <1, ol =p.
The precise definition of the operator A, is given in terms of the quadratic form
(1.6) ac[u,u] = /]Rd (9°(x)b(D)u, b(D)u) dx, u <€ HP(R%CM).
Note that the following elementary inequalities are valid:
(17) D <IEr < Y €7, geRY,
loe|=p lo]=p

where ¢, depends only on d and p. Using the Fourier transformation and relations (L2),
([C4), and ([I70), it is easy to check that

(1.8) co/ |DPul? dx < a. [u,u] < cl/ |DPul?dx, ue HP(R%CM),
R Rd
where |DPul? := > jal=p |D®ul?. Here

(1.9) co=aollg Izl e =canllglr..

Hence, the form (6] is closed and nonnegative. The selfadjoint operator in Ly(R%;C™)
corresponding to this form is denoted by A..
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1.3. The effective operator. In order to formulate our results, we need to introduce
the effective operator A°. Let an (n x m)-matrix-valued function A € HP(Q) be the
(weak) I'-periodic solution of the problem

(1.10) b(D)*g(x) ((D)A(x) + 1,,) =0, /QA(X) dx = 0.
The so-called effective matriz g° of size m x m is defined as follows:
(111) 8 =19 [ 3x)ax

where "

(1.12) 9(x) == g(x) (b(D)A(X) + 1) -

It turns out that the matrix ¢° is positive definite. The effective operator A° for the
operator ([LI)) is given by the differential expression

(1.13) A% = b(D)*¢°b(D)

on the domain H?P(R%; C"). Below we need the following estimates for the symbol
L(€) = b(€)*g°b(¢&) of the effective operator:

(1.14) col€|?P1, < L(E) < C.|€[*1,, €eRY,

where ¢ is defined by ([L9) and Cy = a1]|g||r... These estimates follow from (4] and
the properties of the effective matrix (its positivity and estimates ([I6I)).

1.4. Properties of the effective matrix. The following properties of the effective
matrix were checked in [KuSul Proposition 5.3].

Proposition 1.1. Denote

7= 1907 [ alyix, g:- (m‘l /Qg<x>—1dx)_1-

The effective matriz ¢° satisfies the estimates
(1.15) g<¢’ <y
If m =n, then ¢g° = g-

In homogenization theory for specific DOs, estimates (I.I5)) are known as the Voight—
Reuss bracketing. From ([LT3)) it follows that

(1.16) 9°1 < llgllzw: 1) < Ml zwe-

Now we distinguish the cases where one of the inequalities in (II5) becomes an iden-
tity. The following two statements were checked in [KuSu, Propositions 5.4 and 5.5].

Proposition 1.2. Let gi(x), k = 1,...,m, be the columns of the matriz g(x). The
identity ¢° = g is equivalent to the relations

(1.17) b(D)*ge(x) =0, k=1,...,m.

Proposition 1.3. Let 1,(x), k = 1,...,m, be the columns of the matriz g(x)~'. The
identity ¢° = g 1s equivalent to the relations

(1.18) L(x) =19 +b(D)vip(x), 19eC™ v,eH(CY); k=1,...,m.
The following property was mentioned in [KuSul Remark 5.6].
Remark 1.4. If g° = g, then the matrix (LI2) is constant: §(x) = ¢° = g.
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1.5. Smoothing operators. In what follows, we need two smoothing operators of dif-
ferent types. The first of them acts in Lo(R%; C™) as follows:

(1.19) (Iou) (x) = (2m) /2 / G(¢) de,

Q/e

where U(€) is the Fourier image of the function u(x). In other words, II. is the pseu-
dodifferential operator whose symbol is the characteristic function xg /E(f) of the set

Q/E. Obviously, II. is the orthogonal projection in H*(R% C™) for any s > 0. We have
D°II.u = [I.D%u for u € H*(R% C™) and any multiindex o such that |a| < s.
The following statement was checked in [PSu2, Proposition 1.4].

Proposition 1.5. For any u € H(R% C™) we have
Teu — u|| 1, ey < 57‘0_1||D11HL2(Rd)-
The next statement was obtained in [BSudl Subsection 10.2].

Proposition 1.6. Suppose that f(x) is a I'-periodic function on R? such that f € Lo().
Let [f¢] be the operator of multiplication by the function f(¢~'x). Then the operator
[fe)1L. is continuous in Lo(R% C™) and

M| o ) Loy < 1QAY2 0 flla), € > 0.

The second operator in question is called the Steklov smoothing operator and is denoted
by S.. It acts in Ly(RY;C™) as follows:

(1.20) (S.u)(x) = Q! /Q u(x — ez) dz.

Note that [|Sc||L,®d)—L,re) < 1. Obviously, D*S.u = S.D%u for u € H® (R4;C™) and
any multiindex « such that |a| < s.

We mention some properties of the operator (L20); see [ZhPasll Lemmas 1.1 and 1.2]
or [PSu2l Propositions 3.1, 3.2].

Proposition 1.7. For any u € H'(R% C™) we have
[Scu — |, @ey < eri||Dullz, way-

Proposition 1.8. Let f(x) be a I'-periodic function in R such that f € Ly(). Let
[f¢] be the operator of multiplication by the function f(e~1'x). Then the operator [f¢]S.
is continuous in Lo(R%; C™) and

ILE1SEl Lo ey s Loy < 1212 fllLo0), € > 0.

§2. PROPERTIES OF THE MATRIX-VALUED FUNCTION A

In what follows, we need estimates for the norms of the matrix-valued function A (see
[KuSul Corollary 5.8)):

1 1 —1/2 _ 1/2 _ 1/2
21)  [Al@ <1720, o =m2ag 2 2r) gl 2 llg
(22)  [IbD)All ) < Q2. CF =m gl 2llg M2
1/2
(2.3) Aoy < [QY2Ch, Ca = c}f)ao_l/z< > (2ro)2<P|ﬁl>> ,
[B|<p

The following lemma is a generalization of Lemma 8.3 in [BSud] to the case of higher-
order operators.
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Lemma 2.1. Let A(x) be a T'-periodic solution of problem ([[LI0) and g(x) the matriz-
valued function (LI2). Then for any u € C§°(RY) we have

[, D"t ax

(2.4) <51/ P dx+8 Y Y] / (ID*PA2 + [3]2) |DPul? dx

la|=p B<a:|B]>1
8y D > / D=7 A]2Du)? dx.
la|=p B<a: |B|>1 y<a—B:|v|>1

The constants B, | = 1,2,3, depend only on d, p, m, ag, a1, |9l , and ||g7 ||z,

00!

Proof. Let eq,..., e, be the standard orthonormal basis in C™. Denote the columns
of A(x) by v;(x), j =1,...,m. By (1.10), the I'-periodic vector-valued function v;(x)
belongs to H” (R%; C™) and satisfies the identity

loc
(2.5) /Rd (9(x)(b(D)v;(x) + €;),b(D)n(x)) dx = 0

for any function n € H?(R?;C") such that n(x) = 0 for |x| > R (with some R > 0).
Clearly, it suffices to check ([Z4]) for a real-valued function u. So, let u(x) be a real-
valued function such that v € C§°(R?). We put n(x) = v;(x)u(x)?. By ([3)), we have

b(D)n = ub(D)(vju) + > ba Y. CED*P(v;u)D’u

lal=p  B<a:|f|=1

= ub(D)(vju) +u ¥ bo > CHD*Pv;) Dy

lal=p  B<La:|B|>1
+ Z ba Z CPDPu Z 5(D* v )Du.
lal=p  B<a:|B|>1 <alBihlz

Substituting this expression in (Z3]), we arrive at the identity

[ (o)) ubD) v dx+ 3 S €[ (gD ba(D P Do) dx
R lal=p f<a:Bl>1 R e T 0
1 2 3—Y

where

Jy = /Rd<geju,b(D)(vju)> dx,
=> > 05/ (ge;u, b (D*"Pv ;) DPu) dx,

lo|=p B<o:|B]21
=Y YT e [ 0D, + e ba(D I, DD i
la]=p B<e:|B|>1 y<a—B:|v[>1
Next, employing the formula
(bD)v))u=bD)(vju) = > bo > CID*Pv;Du
lal=p  B<a:(B|>1
and denoting
7i= [ {6(D)(v;0).bD) () .
we rewrite the above identity as
J=—-J1—Jo—Jd3s+Jy— J5 + Jg,
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where

Ji=Y Y cg/ (gba (DY Py )DPu, b(D)(vju)) dx,

d
la|=p B<a:|B]>1 R

Jsi= Y. Y. Ch / (gh(D)(vju), bo (D*Pv;)DPu) dx,

d
la|=p B<a:|B]>1 R

Joi= > > Cgcg:/Rd<gba/(Do‘/_ﬂlvj)Dﬂ/u,ba(DO‘_Bv]—)DBu>dx.

lol=la’|=p B<o:|B|21
B'<a’:|B|21

The term .J; is estimated with the help of the Cauchy inequality:
1
] < llg*?ejull o g™ 2bD) (vl oy < 77 + 9l lullL, ey
By (LH), the term J, satisfies

1l < Pl + e Y S0 [ DD ax
lal=p B<ai 21"

where cl(z) = /ﬂ(d,p)HgHLwaim, I = 1,2, and the constants x;(d,p) depend only on d

and p.

Next, the vectors g;(x) := g(x)(b(D)v;(x) +e;), j =1,...,m, are the columns of the

matrix g(x) defined by (LI2). By (LH), the term J3 satisfies

Jal < ®) / & DB v. IDPulD ul d
DYDY N -1 v, D7 ul[D7] dx

la=p B<a:|B|21 y<a—pF:|y|21

<Y Y 3 /Rd\Da‘ﬁ‘ij\QIDWulzdx

la|=p B<a:|B]>1 y<a—B:|y|>1
DY / 1&;[2DPul? dx,
lal=p f<a:|p|>1 7
where ¢® = r3(d, p)at’? and @ = ky(d, p)ai’?
The terms Jy and J5 are estimated in the same way. We have
1 _
I+ < T+ 3 Y /R D P, P|Duf? dx,
la|=p B<a:|B|>1
where ¢®) = k5(d, p)aillg||r.. Finally, the term Js admits the estimate
T <@ Y S [ DT DR ax
jal=p <a:(B]>17 B

where ¢ = kg(d, p)aq |9l -
As a result, we arrive at the inequality

I Bl + B S S [ D gD P dx

lal=p B<o:|B|>1

LD YD SRNED SN I L ol

lal=p B<o:|B|21 y<a—p:]v|>1

where 81 = 2||g||1.. + 2(:52), By = 2(cg2) + @ 40 4 ¢9) and fz = 2c3).

Taking the lower estimate (L8] (with ¢ = 1) into account and summing over j, we

arrive at the desired inequality (2.4]).

O
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Corollary 2.2. For u € Cg°(R?) and ¢ > 0 we have
82p/ |DP(A%u)|? dx
R4

< 51/ |u‘2 dX—i—BQ Z Z €2|,3|/ (‘(D&_ﬁA)E‘Q_i_ |§a|2) |D/3u|2 dx
R4 Rd

lor|=p B< x| B|>1

LD YD SRS SR S VA RS

la|=p B<a:|B|Z1 y<a—pB:ly[=1

(2.6)

Proof. Let u € C3°(R%). We substitute x = ey and u(x) = v(y). Then
= [ DR Pax =< [ D (Ao Pay.

Applying (Z4) to the integral on the right and using the inverse change, we arrive at
estimate (Z.0]). 0

3. RESULTS FOR THE HOMOGENIZATION PROBLEM IN R?

In this section, we formulate the results on homogenization for the operator A. in
Ly(R4;C") obtained in [KuSu], and obtain yet another result (involving the Steklov
smoothing operator).

3.1. Approximation of the resolvent of A, in the Ly(R? C")-operator norm. A
point ¢ € C\ Ry is regular for both operators A, and A°. We put ¢ = |(|e®*, € (0,27),
and denote

sinp[~1 i T x/2. 9%
(3.1) c(p) = {I o7t if @€ (0,7/2) U (3m/2,2n),

)1 if ¢ e [r/2,37/2).
The following theorem was proved in [KuSul Theorem 8.1].

Theorem 3.1. Suppose that A. is the operator (L) and A° is the effective opera-
tor (LI3). Let ¢ = |¢|e®¥ € C\ Ry, and let c(p) be given by @BI). Then for e > 0 we
have

||(A8 - CI)il - (AO - CI)AHLz(Rd)aLQ(Rd) = Clc(@)%\{rlﬂ/%-

The constant Cy depends only on d, p, ag, a1, ||9llL., |97 .., and the parameters of

the lattice I'.

oo !

3.2. Approximation of the resolvent of A. in the (L, — HP)-operator norm.
In order to approximate the resolvent (A. — ¢I)~! in the norm of operators acting from
Ly (R4;C™) to the Sobolev space HP(R%;C"), we need to introduce the corrector

(3.2) K(C;e) := [AZILb(D)(A° — )",

Recall that A is the periodic solution of problem (IO and II. is the smoothing opera-
tor (LI9). The operator ([B.2)) is a continuous mapping of Lo(R%; C") into HP(R%; C™).
This can easily be checked by using Proposition and the relation A € fIP(Q). Here-
with, [ K(C )|, —nr = O(e™P).

The following result was obtained in [KuSul Theorem 8.2].
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Theorem 3.2. Under the assumptions of Theorem BT, let K((;¢e) be the operator (B.2),
and let §(x) be the matriz-valued function (LI2). Then for € > 0 we have

[(Ac =¢D)™H = (A = ¢~ = P K (Ge HLQ(R‘!)HHP(RJ)
< Cac(i)?e|¢| 7212 (14 | 7H2),
|9°b(D)(A: — ¢I)~! — FFILb(D)(A° — CI)AHLQ(WHLQ(R‘!)
< Cac(p)?el¢| /24120,

(3.3)

(3.4)

The constants Co and Cs depend only on m, d, p, ao, a1, ||gle, g7 o, and the
parameters of the lattice T.

3.3. Another approximation of the resolvent of A, in the (L, — HP)-operator
norm. We put

(3.5) K(Ce) := [A)S.b(D)(A° —¢I) 7!

where S, is the Steklov smoothing operator defined by (L20). The operator [B.5]) is a
continuous mapping of Ly(R% C") into H?(R?;C") (this can easily be checked by using
Proposition [[8 and the relation A € H?(€2)). Herewith, || K (C; )|, a» = O(e 7).
Along with Theorem [B.2] the following result is true; this result turns out to be more
convenient for further application to the study of problems in a bounded domain.

Theorem 3.3. Under the assumptions of Theorem [B.1], let f(((; €) be the operator ([3.3)),
and let §(x) be the matriz-valued function (LI2). Then for € > 0 we have

||(As - CI)il - (AO - CI) - ng C’ ||L2(]Rd)—>HP(RC’)
< (Caclp)?el¢|~H/2H2 4 Coe(p)e) (14 [¢]7),
l97b(D)(As = ¢I) ™1 = F°SbDY(A° = (D) 1, oty
< Cocl)’el¢| /212 4 Cre(p)e”

(3.6)

(3.7)

The constants Cy, Cs, Cg, and C7 depend only on m, d, p, ap, a1, |9z, 197 |z,
and the parameters of the lattice T'.

Theorem B3] is deduced from Theorem with the help of the following lemma.

Lemma 3.4. For any u € H*(R% C") and ¢ > 0 we have
(3.8) 21’/ IDP(A°z.)[* dx < 51/ |z |* dx + BoT5 (2] + B3T3 2],
d

where z. := (II. — S:)b(D)u,

2= Y @[ (AR ) D

lal=p B<o:|B|>1

£ . [v] a—pB— €
Tilze =Y Y. > EM/WKD YA 2Dz |? dx.

lal=p f<a:|B| 21 y<a—pF:|y|>1

The constants B, | = 1,2,3, depend only on d, p, m, ag, a1, ||9|l., and |lg7 ||z,

00!

Proof. By Propositions [[.6], .8 and the relations A € ﬁp(Q), g € Ly(Q), all terms
in inequality (B.8)) are continuous functionals of u in the H?P(R?; C")-norm. Since
Cs°(R%; C™) is dense in H?P(R%;C"), it suffices to prove [B.8) for u € C§°(R4; C™).
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Fixing a function x € C*°(R4) such that 0 < x(¢) <1, x(t) =1 for 0 < ¢ < 1, and
x(t) = 0 for t > 2, we put Yr(x) ;= x(R7!|x]), x € R, R > 0. Let u € C5°(R%; C"),
and let z. = (IL. — S.)b(D)u. Then ygrz. € C°(R?; C™) and, by Corollary 221

%P /d |DP(AEXRZE)|2 dx < 3 /d \XRZa|2 dx + B215 [XRZa] + B33 [XRZa]-
R R

Combining this with the estimates max [D®yz| < cR~1®l (for any a) and applying the
Lebesgue theorem, we obtain inequality ([B.8]) by the limit procedure as R — oo. |

Relation (B8] and the Leibnitz formula
(D*A%)z. =D*(A°z.) — > CHD*PA)DPz
B<a:(B|>1
directly imply the following statement.
Corollary 3.5. Under the assumptions of Lemma B4, we have
S [ oo ayafix < [ la ix+ ATl + AT,
la|=p
The constants Bl, 1 =1,2,3, depend only on d, p, m, ag, a1, |lgllr., and ||g7 ||z
Proof of Theorem B3l Note that

(3.9) VI ey < G (IVIZ, Ry + IDPVIL,@ey), v € HP(REC),

oo oo *

where ¢, depends only on d and p.
We estimate the difference of the operators [3.2)) and (B.5). Let F € Ly(R%;C"), and
let up = (A° — QI)_IF. By (B4), we have
( 2
gy NG = RGPy = AT = 5D
: - - 2
< cpHDp (AS(II. — S.)b(D)uy) ||L2(Rd) + || A% (1L - Ss)b(D)uOHM(Rd).

The second term on the right-hand side of ([3I0) is estimated with the help of Propo-
sitions [LA and [[L8 Taking (ZT]) into account, we obtain

(3.11) 14%(1e = S)b(D)uo]| ., gy
< 2\Q|71/2||A\|L2(Q)||b( Yol L, me) < 20(1)||b(D)uO”L2(Rd)~

To estimate the first term on the right-hand side of (BI0l), we apply Lemma B4l
Estimate (88) with z. = (II. — S:)b(D)uy is satisfied. The first summand on the right
in (B8) is estimated by using Propositions and [T

(3.12) / el dx < O [Db(D)o[,

where C] = (ry ' +r1)%. The terms Z5[z.] and Z§[z.] are estimated with the help of
Propositions and [[L8) We have

(DAY + [37[2) D[ dx
d
< 4|9 (ID*PA, ) + 1911Z, () D BD) 0|7, e
Combining this with [22) and (23)), we obtain

p
(3.13) T5[z]) < C5 Y e D'B(D)ugll7, ma),
=1
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where C4 = k5(d, p) (CF + |lgll7 _ (1 + C/(\2))2). Similarly,

p
(3.14) I5[z.] < Cy 252l||le(D)u0”2L2(]Rd)’
=1

where C% = k}(d,p)C3. As a result,

p
(315) [ DP(A(IL. — S)b(D)uo) [Fdx < €D DDl e
R =1

where C" = 3,C] + B2C% + 3C%. From ([B.10), (310, and B.I7) it follows that
~ 2
) (K (Gse) — RGN

P
~ 1 ~
< 45,(C{0)%?|[D(D)uo |2, oy + EC S e |DIB(D)uo 12, gy
=1

(3.16)

Let us estimate the norms ||D'b(D)ug| 1, ray, I =0,1,...,p. We have
! 0 —1
HD b(D)(A” - <) HLQ(Rd)aLQ(Rd)
! 0y—1/2—1/2 0V1/2+1/2p( A0 —1
< HD b(D)(A") /2 pHL2—>L2H(A ) G P(A” =) HL2—>L2'
Taking (L4) and (I4) into account, we obtain

Hle(D)(AO) 1/20071/271/2;).

—1/2-1/2
/2 pHLg(Rd)—>L2(Rd) S
Next,

[CADEA° = DT, < sup T —

< (sup x|z — C|’1)1/2H/2p(sup |z — C|’1)1/24/2p.

x>0 x>0

Calculating the suprema

supz|z — (7! < elyp), suplz— {7t = ()¢
x>0 z>0

we arrive at the inequality
1A 22 (A0 — (D)7, Ly, S el@ICTVEHZ =01, p.
Thus,
(3.17) ID'B(D) g || 1 mety < Cre(p) S|/ > T/ 2P|F |y ey, 1=0,1,...,p,
where C) = ai/Qcal/%l/zp. Together with (3.I6]), this implies
P K(Ge) — K(G )|l L, (rt)— HP (R

p
3.18 _ _ i
(3.18) < CWe(p)e|c] 72 + CPe(@)IC) V2 S (el¢V2P),
j=1

where Cg) = 2?117/201(\1)5'0 and Cg) = 511,/2(0')1/2 max;<;<, C;. Obviously, we have
1;:1 (€|C|1/2p)] < p(e|¢|M?P + €P|¢['/?). Combining this with (BI8), we obtain

(3.19) €[[K(G€) = RGO gty ooy < Crel) (16172 + el 724120 4 cv),

where Cx = maX{Cg),ng)}.
Finally, relations (8:3) and (8:19) imply the required inequality (8:6) with the constants
Cy=Cy+ Ck and C5 = Ck.
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We proceed to the proof of inequality (3.7). By (L3), (L), and (LI2]), we have
HgE(HE - SE)b(D)U‘OHLQ(]Rd) <llgllz. H(HE — 5 )b(D)UOHL (R4)
+ 2 llglzeer[[(D*A) (L = So)b(D)uo]| -

lee|=p
The first summand on the right is estimated with the help of ([312), and for the second
we can use Corollary (cf. BI2)-BI4)). We arrive at

57 (1. — ) uoHLQ(Rd)_C”ZelHle D)up||z, me),

/2
where C” = ||g|lr (ro* +71) + " (d, ) |9l .. al (6101 + B,Ch + 5303) . Together
with ([BI7), this imphes

(3.20) 9= (1L — < C"c(p) (el¢|~V/HH2P 4 P ||F| 1, ey,

uOHL (R9)

where C” = pC” maxi<i<p C). Now, (34) and B20) yicld the required inequality (&7
with the constants Cg = Cs + C” and C, = C"'. O

3.4. Removal of the smoothing operator. It turns out that, under some additional
assumptions about the properties of the matrix-valued function A(x), it is possible to
remove the smoothing operator from the corrector.

Condition 3.6. We assume that the T'-periodic solution A of problem ([LI0) is bounded
and is a multiplier from HP(R?;C™) to HP(R%; C"):

A € Loo(RY) N M(HP(R%; C™) — HP(R?,C)).

Due to the periodicity of the matrix-valued function A, Condition is equivalent to
the relation A € Lo () N M (HP(Q2;C™) — HP(£2;C™)). The norm of the operator [A] of
multiplication by the matrix-valued function A(x) is denoted by

(3.21) M = | [A] sty 110 -

A description of the spaces of multipliers in the Sobolev classes can be found in the
book |[MSh|. Some sufficient conditions ensuring Condition are known (see [KuSul
Proposition 7.10]).

Proposition 3.7. Suppose that at least one of the following assumptions is fulfilled:

1°. 2p > d;

2°. g" =g, i.e., we have (LIY).

Then Condition is satisfied, and ||A||L., and the multiplier norm B2I)) are con-
trolled in terms of m, n, d, p, ao, a1, |lgllz, |97 |L.., and the parameters of the
lattice T'.

Under Condition Bl instead of the corrector (B:2) (or the corrector ([BH)), one can
use the operator

(3.22) K% e) := Ah(D)(A° —¢I)~!

which in this case is continuous from Ly(R%;C") to HP(R%; C"). Note that the operator
B22) is the traditional corrector used in the homogenization theory.

The following statement is deduced from Proposition 7.12 of the paper [KuSu| by the
scaling transformation.
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Proposition 3.8. Under the assumptions of Theorem 3.1, suppose that Condition
is satisfied. Let K((;e) and K°(C;¢€) be the operators defined by (3.2) and [B3.22), respec-

tively. Then for e > 0 we have
eP||K (¢ e) — KO(Cie < Cge(p)(eP +%P),

< Cyc(p)e?

|‘L2(Rd)—>Hp(Rd)
[55(7 = T)b(D)(A® = )| 1, oy ety

The constants Cs and Co depend only on m, d, p, ao, a1, ||9llo.., 197 |2, the param-
eters of the lattice T, and also on ||A||L., and My.

Combining Theorem and Proposition B8 we arrive at the following result.

Theorem 3.9. Under Condition and the assumptions of Theorem Bl let K°(¢; ) be
the operator (B22), and let §(x) be the matriz-valued function (LI2). Then for e > 0
we have

[(Ae =)™ = (A% =D = KOGl 1y oy oy

< Coc(p) el |72V (L4 [¢]7Y2) + Csel) (€7 + %),
l9°6(D)(Ae = ¢I)™" = GDDYA® = D 7| oy o ey

< Cse(p)?el¢| 7220 4 Coe(p)e?

The constants Cy and Cs depend only on m, d, p, ag, a1, ||9lle., |97 ., and the
parameters of the lattice I'. The constants Cs and Cy depend on the same parameters
and also on ||A||r., and My.

CHAPTER 2. HOMOGENIZATION OF THE DIRICHLET PROBLEM
84. THE DIRICHLET PROBLEM IN A BOUNDED DOMAIN

4.1. The statement of the problem. Let @ € R? be a bounded domain of class C?P.
In Ly(O;C™), we consider the operator Ap . given formally by the differential expression
b(D)*¢g°b(D) with the Dirichlet conditions on dO. The precise definition is as follows:
Ap . is the selfadjoint operator in La(O; C™) generated by the quadratic form

(4.1) ap[u,u] = /O<g€(x)b(D)u, b(D)u)dx, wue HF(O;C").

The form (@I is closed and positive definite. Indeed, let us extend u € Hf(O;C") by
zero to R4\ O. Then u € HP(R?; C"). By (LJ), we have

(4.2) co/ |DPul? dx < ap .[u,u] < cl/ |DPul?dx, ue€ HJ(O;C™).

It remains to recall that the form |[DPu]| 1, (o) determines a norm in H{(O; C") equivalent
to the standard one. By the Friedrichs 1nequahty, (#£2) implies that

(4.3) apcfu,u] > efulf, o), u€ HF(O;C"),  ca = co(diam O) >

Our goal is to approximate the generalized solution u. € H}(O;C™) of the Dirichlet
problem

b(D)*¢° (x)b(D)u.(x) — Cu.(x) = F(x), x € O;
u.(x) = dpu.(x) =--- =0 tu(x) =0, x¢€d9O,
where F € Ly(O;C"), for small . Here 9, u(x) stands for the normal derivative of u
of order [ on 00. As in §3 we assume that ( € C\ Ry. (The case of other admissible

values of ¢ is studied below in §8) We have u. = (Ap . — ¢I)"'F. In operator terms,
we study the behavior of the resolvent (Ap . — ¢I)~!

(4.4)
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Lemma 4.1. Let ¢ = [(|e? € C\ Ry, and let c(p) be defined by @BIl). Suppose that
u. is the generalized solution of problem ([@4). Then for e > 0 we have

(4.5) [ucl Loy < c(@)ICIHIF L, (0,

(4.6) IDPuc || Ly(o) < Coc) ISl L 0),

where Cy = 21/2051/2. In operator terms,

(4.7) [(Ape = DM 10y Loy < @
||DP(AD7E - CI)71||L2(0)—>L2(O) < COC(@KFW'

Proof. By (@.3]), the spectrum of Ap . is contained in [cp,00) C Ry. The norm of the
resolvent (Ap . — ¢I)~! does not exceed the inverse distance from the point ¢ to R.

This implies (7).
To check ([G), we write the integral identity for the solution u. € HE(O;C") of

problem (@4]):
(4.8) (9°0(D)uc, b(D)n) 1, 0) — (U=, M) 1y0) = (FiM)r0), M€ HY(O;C).
Substituting n = u, in @3] and using (I, we obtain

(9°b(D)uc, b(D)ue) (0 < 2¢(9)?I¢| T HIFII, 0)-

Combining this with [@2), we arrive at (LH). O

4.2. The effective operator A}. In Ly(O;C"), consider the selfadjoint operator A%
generated by the quadratic form

(4.9) a%u,u] = /O<gob(D)u,b(D)u) dx, ueHJO;C").

Here ¢° is the effective matrix given by (L.II). Taking (LI6) into account, we see that
the form (@) satisfies estimates of the form [{2) and {3) with the same constants.

Since dO € C?P, the operator AY is given by the expression b(D)*g°(D) on the
domain H?P(0O;C") N HY(O;C™). We have

(4.10) 1(AD) Loy m2v0) £ 2,

where the constant ¢ depends only on ag, a1, ||9llz, |7 |z, and the domain O. To
justify this fact, it suffices to refer to Theorems 2.2 and 2.3 of the paper [Sa].

Remark 4.2. Instead of the condition O € C?P, one could impose the following implicit
condition on the domain: suppose that O is a bounded Lipschitz domain such that
estimate (£I0) is true. The results of Chapter 2 remain valid for such domain. In the
case of scalar elliptic operators, wide sufficient conditions on 0O ensuring estimate (ZI0])
can be found in [KoE] and [MSh, Chapter 7] (in particular, it suffices that 00 € C?P~1v
v>1/2).

Let ug = (A% — ¢I)~'F, where F € Ly(O;C™). Then uy is the generalized solution
of the problem

b(D)*¢°b(D)up(x) — Cug(x) = F(x), x € O;

(4.11) o
u(x) = dpug(x) =--- =05 "up(x) =0, x€9O.
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Lemma 4.3. Let ( € C\R,. Let ug be the generalized solution of problem [@I1). Then
for e > 0 we have

(4.12) [uollz,0) < ( )T HIF L (0)

(4.13) PPl ,(0) < Cocl) |2 F |y (0),

(4.14) laollzr 0 §C~ (@)™ + ST IF ) Loco)
luoll z2r () < Cc(D)[|F| 2, (0)-

In operator terms,

H(AO ¢I) IHLQ(O)—>L2(O) c(e)lel™

)
D7 (A% = D7, 0y a0y < Cocl)ICI T2,
1(AD = DM 0y mnoy < Cocl@)(CITH + 16172,
(4.15) |(AY — g])—luh(OHH%(O) < ec(p).

The constant Co depends only on d, p, ag, and ||g7 |1,

Proof. Estimates ([{I2]) and ([@I3]) are proved as in the proof of Lemma [l Since (39)
is extended to functions of class H (O;C"), relations (£12) and (@I3)) imply (@I4) with
the constant Co = f,l/Q max{1,Co}.

Estimate (£I5) follows from (£I0) and the inequality

HA(IJD(AOD - CI)_IHLQ(O)aLQ(O) < Sg}gwIw - C\_l < c(p). U

4.3. Estimates near the boundary. In this subsection, we formulate two simple
auxiliary statements valid for bounded Lipschitz domains O. Precisely, we impose the
following condition.

Condition 4.4. Let O C R? be a bounded domain. Denote (00). = {x € R :
dist{x; 00} < e}. Suppose that there exists a number €9 € (0,1] such that the strip
(00), can be covered by a finite number of open sets admitting diffeomorphisms of class
C%1 that rectify the boundary O. Denote 1 = eo(1 4+ 71)~ 1, where 2r; = diam Q.

Obviously, Condition {4l is less restrictive than the above assumption 90 € C?P.

Lemma 4.5. Suppose that Condition L4 is satisfied. Denote B, = (00). N O. Then
the following is true.
1°. For any u € H*(O) we have

/ lul? dx < Boelull o lullyio) 0 < e < <.

B,

2°. For any u € HY(R?) we have
/(d e < ol ey, 0< € <o
"0

The constant By depends only on the domain O.

Lemma 4.6. Under Condition d4l, suppose that f(x) is a T-periodic function in R%
such that f € La(QY). Let S. be the operator given by (L20). Denote B, = Fo(1 + r1),
2r; = diam Q. Then for 0 < ¢ < &1 any function u € H'(R%; C™) satisfies

/(30) |2 () PI(Sew) (x) 2 dx < Bl QT FI1L, o l1ull 1 ey [l £ -
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Lemma [£6 is an analog of Lemma 2.6 in [ZhPasl]. Lemmas [ and 6] were checked
in [PSu2| §5] under the condition O € C*, but the proofs work also under Condition 4l

§5. THE RESULTS FOR THE DIRICHLET PROBLEM

5.1. Approximation of the resolvent for |(| > 1. Now we formulate our main
homogenization results for the operator Ap ..

Theorem 5.1. Suppose that O C R is a bounded domain of class C?P. Let ¢ = |(|e'¥ €
C\ Ry and [¢| > 1. Suppose that c(p) is defined by BI)). Let u. be the solution of
problem (&4, and let ug be the solution of problem [@II)) for F € L2(O;C™). Suppose
that the number &1 is subject to Condition 4. Then for 0 < e < &7 we have

(5.1) [ue = wol| o) < Cre(e)® (el¢| T2 4 2%) [F|l 1y 0)-

In operator terms,
(652 [[(Ape— D)™ — (A~ D) 7| 0oy < Crel@) (I TP 42%).

The constant C; depends only on d, p, m, a0, s, gllz., g™ 1, the parameters of
the lattice T, and the domain O.

To approximate the solution in H?(O;C™), we need to introduce a corrector. We fix
a continuous linear extension operator

Po : H*(O;C") — H*(R%:CY), s=0,1,...,2p.

Such an operator exists (see, e.g., [St]). Denote
(5.3) | Poll s (0)— brs (ray = Y, s=0,1,...,2p.

The constants C'((QS ) depend only on the domain O and s. By Rp we denote the operator
of restriction of functions on R to the domain ©. We introduce a corrector

(5.4) Kp(¢se) = Ro[A®]S:b(D) Po(Ap — CI) ™.

The operator Kp(¢;e) maps Lo(O;C") to HP(O;C™) continuously. Indeed, the oper-
ator b(D)Po (A% — ¢I)~! is a continuous mapping of Ly(O;C") into HP(R?;C™), and
the operator [A®]S. is continuous from HP(R%;C™) to HP(R%;C") (this follows from

Proposition [§ and the relation A € H?(€2)).
Let ug be the solution of problem ([ITI]). We denote Uy := Poug and put

(5.5) Vo (x) = o(x) + " A% (x)(S-b(D)p) (x), x € R,
(5.6) Ve = V<o

Then

(5.7) ve = (AY —CI)'F 4+ P Kp(¢;e)F.

Theorem 5.2. Under the assumptions of Theorem [l let v. be defined by [&4) and
E). Then for 0 < e < &1 we have

(5.8) [ue = vell (o) < Cacl)* (e"2[C|71/2FH/4 4+ &) [P 1, (0)-
In operator terms,
-1 0 -1 .
(5.9) ||(AD’E B CI) - (AD N CI) o EPKD(C7 5)“L2(O)—>HP(O)
< Coclp) (/2|7 1/2H/4P 4 eP).
The flux p. = g°b(D)u. satisfies

(5.10) [P = §°S-b(D)to| , ) < Cacli0)* (/216|724 4 €P) [F|| 1, 0)
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for 0 < & < e1. The constants Cy and C3 depend only on d, p, m, ag, a1, ||9|r..,
llg~ Iz, the parameters of the lattice T, and the domain O.

Remark 5.3.
1) For fixed ¢ € C\ Ry, [¢| > 1, the estimates of Theorem [l are of sharp order O(g).
2) For fixed ¢ € C\ Ry, || > 1, the estimates of Theorem are of order O(g'/?).
This is explained by the boundary influence.
3) The error of approximations in Theorems [5.1]and B2l becomes smaller as || grows.
4) The estimates of Theorems [5.1] and are uniform with respect to the angle ¢ in
a domain {¢ = |C[e?? : [¢| > 1,0 < ¢ < 27 — g} with arbitrarily small ¢o > 0.

5.2. The first step of the proof. The associated problem in R¢. The proof
of Theorems [5.1] and is based on application of results for the problem in R? and
introduction of the boundary layer correction term.

By Lemma [3] and (53), we have

~ 0 _
(5.11) [Toll £y ey < CS ()< IF ] Laco)s
(5.12) 8ol v ey < CPe()|C] 72| 1,0y,
(5.13) [[Tol| zr2r (ray < C(Qp)c(@)HFHLz(O),

where CP) = 208))50 and C?P) = Cgp)/d We have taken into account that |¢| > 1.
Interpolating between (5I12)) and (B13]), we obtain

(514) ‘|ﬁ0HH7’+’“(Rd) < C(p—HC)C((p)|C|_1/2+k/2p”FHL2(O)7 k=0,1,...,p.
Here CP1F) = (CP))1=k/p(CEP))k/p,

‘We put
(5.15) F = A% — (.

Then F € Ly(R% C") and F|p = F. From ([14), (5.11), and (5.13) it follows that
(5.16) IF|l L, may < Cullto |l g2 ey + [ClI[00]| £, re) < Cac(@)|F 1,0,

where C; = C,C(?P) +C’((90 ) Letii. € H P(R%; C") be the solution of the following equation
in R%:

(5.17) AN, — (U, =F,

ie., U, = (A. — CI)"'F.
We can apply the results of §8l Combining Theorems BTl and 33l and relations (G150
EI0), for € > 0 we get

[ = 8]l ey < Cre(@)2elcl /2|
< C1Cac(9)’el¢| 2P| B L, (0),
Vell sy < (2Caclp)eld] V24120 + 2C5e()e”) | B Laqasy
< (2C4Cac(p)e|¢| 72 H1/2 4 2C5Cc(0)2eP) || 1y 0) -
Next, by Proposition [[.§ and (2.1]),
(5.20) NAISe 2ty 1oy < CR-
Together with (T4) and (5.12), this yields

(5.21) 1A Sb(D) o]l ey < CV ey [[W0]| 1 (ray < Cse()I<]™V2(IF |10

(5.18)

B —
(5.19)
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where C5 = Cj(\l)oz}/zC(p). By (I8)) and (B21)),
U — Vel Loy < [[Ue = Uol| £, (ray + €P[|A°Sb(D) o || £, (ray
< (C1Cac(p) el |72 + Coe(0)eP [ 2) 1P| o 0)-

5.3. The second step of the proof. Introduction of the correction term w..
The first-order approximation v, of the solution u. does not satisfy the Dirichlet condi-
tions. We consider the “correction term” w. € HP(QO; C") satisfying the integral identity

(5.22)

(523) (geb(D)W?Ev b(D)"?)LQ(O) - C(Waa 77)L2(O) = 07 ne Hg(ov Cn)a
and the condition
(5.24) we — ePATSH(D)yg € Hg(@;(C").

Lemma 5.4. Let u. be the solution of problem (@), and let v. be given by ([BT).
Suppose that w. € HP(O; C™) satisfies (5.23) and (B24). Then for e > 0 we have

(5.25)  DP(ue = ve + W)l Ly0) < Co(e(p) 'elC| ™22 4 ¢(0)°eP) | F| Ly o),
(5.26) lue = ve +Wellz,0) < Cr(e(@) el¢| 2 + c(9) P 1|7 2)|F | s (0)-

The constants Cg and C; depend only ond, p, m, ag, a1, ||9lln., |97 |, the parameters
of the lattice T', and the domain O.

Proof. Denote V. :=u. —v.+w.. By [&8), (£23), and (5.24)), the function V. belongs
to H{(O;C") and satisfies the identity

(527) (gsb(D)VS’ b(D)T’) Ly(0) C(V& 77)[&((9) =Je [77]7 ne H(Z))(Oa (Cn)v

where J.[n] := (F,n)r,0) — (geb(D)va,b(D)n)Lz(O) +¢(ve, M) 1,(0)- We extend n by

zero to R%\ O, keeping the same notation; then n € H?(R% C"). Recall that F is an
extension of F, and v, is an extension of v.. Hence,

Je[n] = (F, n)Lz(Rd) - (gab(D)‘N/& b(D)T[) Lo (R9) + ((Ve, n)Lz(Rd)'
Combining this with (5.17), we arrive at
Jen] = (9°b(D)(Ae = ¥2),b(D)M) ;, oy = C(We = Vo) ., -
Applying (L), (E19), and ([B22]), we obtain the inequality
(5.28) |- [n]] < k(¢ @)[F |0 (Csll(9%) DDl L) + Col<I 2 Ml aco)) -
Here ki(C,€) i= c()el¢| /212 + c(p)e?, Cs = 20,%|g]}/2Camax{Cy, C5}, and
Cg = max{01C4,C5}.
We substitute n = V. in (5.27)), take the imaginary part of the corresponding identity,
and apply (B28):
[T ¢ VellZ, o) < k1 (o) IF a0
x (Csll(9)"*b(D) V| o) + Col¢| Vel Lo(0))-
For Re¢ > 0 (in this case Im ¢ # 0), we deduce the inequality
(5.30) [¢[IVEll7, 0 < 2Cska (¢, @) IF | Lo(0) | (99)/2B(D) Ve 1y 0)+ Coka (¢, ) IF 17, 0)-

Here ky((, ) := c(p)*e[¢|~V/2H1/2P 4 ¢(p)3eP. If Re( < 0, we take the real part of the
corresponding identity and apply (B.28)):

[ Re ¢ Vell7, o) < k(¢ ) IFlLoco)
x (Cs[l(g%)*b(D) Vel 1,0y + Col¢|2 [ Vel Ly (0))-

(5.29)

(5.31)
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Adding (529) and (B31]), we deduce an analog of (B:30). Finally, for all values of { under
consideration we get

CIIVellZ, o) < 4Cska(C,e)IF | L,(0) 1 (9%) /2D Vel Ly 0)
+4C3ka (¢, )* |17, 0y
Now, relations (5.27)) with n = V., (528)), and (532) imply that
ap£[Ve, V] < 9Cska((, &) | F |y (0)]1(9%)2(D) Vel 0y + 9C3E2(C,€)2(IF|F, 0 -
We see that
(5.33) ap Ve, V] < Ceka (G, €)°|FI17 0
where C2 = 18C2+81C2. Combining (5.33) with (@), we obtain estimate (5.25) with the

constant Cg = 5608 2 Finally, E32) and (B33) imply (B26) with the constant C7 =
2(CsCs + C2)'/2. O

(5.32)

Conclusions.
1) Relations (5.25]) and (5.206) show that for ¢ > 0 we have

(5:34) |DP(u:=ve)llLo(0) < Co(c() el /22 4e(p)°e?) | Bl 1y 0) +IDPWe L (0)
(5:35) [lus = Vell,0) < Crle(e) elg| ™12 + (@)’ ICI2) IR a0 + IWell a0y

Clearly, for the proof of Theorem it remains to estimate the norm ||w.|| g»(0)-
2) From (52I)) we deduce an estimate for the difference v. —ug = e?(A°S.b(D)Up)|o:

(5.36) Ve = wolly0) < €”[[A°Sb(D) o] 1, (ra) < Coe()e?CI 2Ry (0)-
Combining this with (535), for ¢ > 0 we get
(5:37) J[ue = woll o0 < Cr(el@) el¢| 12 + e(0)*P ¢ ) IF | 1a0) + IWell a0,

where 57 = C7 + C5. Therefore, in order to prove Theorem [B.Il we need to obtain a
suitable estimate for the norm |[w.||z,(0)-

§6. ESTIMATES FOR THE CORRECTION TERM W,.
PRrROOF OF THEOREMS [5.J] AND

First, we estimate the norm of w. in H?(O) and complete the proof of Theorem
Next, using the already proved Theorem and duality arguments, we estimate the
La-norm of the correction term and prove Theorem [B.11

6.1. Localization near the boundary. Suppose that the number ¢q € (0, 1] is subject

to Condition 4l Let 0 < ¢ < g9. We fix a smooth cut-off function 6. (x) in R? such that
(6.1) 0. € C3°(RY), suppb. C (00)., 0<6.(x)<1,
' 0-(x) =1 for x € (00). /3, €'|D0.(x)| <5, I=1,...,p.

The constant s depends only on the domain ©. Consider the following function on R:
(6.2) ¢ (x) = 0= (x) A% (x)(Scb(D) o) (x).

Lemma 6.1. Suppose that w. € H?(O;C") satisfies conditions (5.23) and ([5.24]). Let
¢, be defined by [G2). Then for 0 <e <gy and ¢ € C\ Ry, |¢] > 1, we have

(6.3) IDPW. |1, (0) < Cioc(#) (IC]" 2Bl 1y may + DP I 1y (re))
(6.4) [Well o0y < Crie() (1@l o ay + 1|72 D, 1y Rty ) -

The constants C1o and C11 depend only on d, p, ag, o, ||9llL., and |lg7 ||, -

o0 ?
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Proof. By (5.23), (5:24), (61), and (G2), the function p, := w. — ¢, € HY(O;C™)

satisfies the identity
(ggb(D)pE, b(D)n) L2 (0) - C(psa n)Lg(O)
= _(gab(D)d)m b(D)n)L2(O) + <(¢57 n)LQ(O)u ne Hg(07 (Cn)

We substitute 7 = p, in (G0) and take the imaginary part in the corresponding
identity. Then

(6.6) |Tm(][lp. )12, (0) <Cr2lDP¢. |l b, ma) (9°)/26(D) el 0y H el L) 1Pl 220

where Ci3 = c;/2a1/2||g||1/2. We have taken (L4) and (7)) into account. For Re¢ > 0

(in this case Im ¢ # 0) we deduce the estimate

6.7) [ 1lp:N17,(0) < 2C12¢(9)IDP .| oy ll(9°)*6(D)p. | o 0) + () [CI D7, 0
If Re{ < 0, we take the real part of the corresponding identity, obtaining

(68) | Re C| ||pa ||%2(O) < 012 ||Dpd)€ ||L2 (R4) || (gg)l/zb(D)ps ||L2(O)+|<| ||¢€ ||L2((9) ||p€ ||L2(O)

Adding ([€8) and (G8)), we deduce an analog of ([G7). As a result, for all values of ¢
under consideration we have

(6.9) [¢ll1p:]|7, (0 < 4C12¢(9) IDP bl ) | (97 20(D) o | 1 0) + 4e(@) €| B2 |7 0)-
Now, from (G.35) with 7 = p, and (6.9) it follows that

apelp.. p) < 9e(9)*[Cl 7,0y + 9C12¢(0) IDP .| 12y | (9)/2B(D) . || o) -
We see that
(6.10) ap.c[pe; p) < 18¢(9)*[C[|D: 17, 0) + 81CT2c(#)?IDP @7, a)-
By (GI0) and @2,
ID”p |1, 00) < o/ 2e(0) (VIBICIY2 (| 1y (0) + 912l DP .| 1 (ra))-

This implies (6.3]) with the constant C1p = max{v/ 180(; 9C12071/ + 1}. Next, from
©9) and (GI0) it follows that

||p€||L2(O) < C((p) (\/ﬁud)E”LQ(O) + \/%612|<|_1/2||Dp¢€||L2(Rd))7
which yields (G4 with the constant Cy; = max{\/ﬁ +1, \/%cm}. O

(6.5)

6.2. Estimate of the function ¢.. Now, we estimate the function (62).

Lemma 6.2. Suppose that €1 is subject to Condition [£4l Let ¢. be defined by ([6.2]).
Then for 0 <e <e; and ¢ € C\ Ry, |¢] > 1, we have

(6.11) el o ray < Coele)|C| 2P| F| 1y 0)
(6.12) IDP ¢ |1, may < Case(p) (P + e/2¢|7 2T/ 4)||F 1, 0)-

The constants Cs and Ci3 depend only on d, p, m, ag, a1, ||glle.., |7 L., the param-
eters of the lattice T, and the domain O.

Proof. Estimate (6.11)) follows from (m and (6.1).

Consider the derivatives of ¢, for |a| =

(6.13) P, ="y Y CHCY_,(070)(0°PTTA%)(Sb(D)0 ).

Blavy<a—p
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If k =8| > 1, we use (6.1I), Proposition [[.8 (T4), 23], and (ETI4):
£7[|(070.) (977 A%) (S:b(D)O Ro) | 1,
(6.14) < 52*)| (07T A)*Sb(D)O R0 |,
< b Cpa 2 [Tl | srn ety < CPE ()< Y222 L 0.
Here C*) = %CAai/QC(pHc)_
If 8 =0, we apply Lemma[L0l Let 0 < ¢ < g;. Taking (6] into account, we have
e [(076:)(0° 77 A%)(S:b(D)o) | 1,
< %H(aaﬂ/\)gssb(]))%HLZ((aO)E)
< 51/2%Bi/2|Q|_1/2||5Q_VA||L2(Q) Hb(D)ﬁolliﬁ(Rd) ||b(D)1~10H1L/22(Rd)'
Combining this with (I4) and ([23)), we obtain
e”][(970:)(9% Y A%) (Sb(D)To) | 1,

1/2 /2~ 111/2 o |22
< V2581 Cpay/ Hu0||H/P+1(Rd)”uOHH/p(Rd)'

Now, relations (5.12), (514), and (615) imply that
(6.16)  ”[[(876:)(9°TA%)(S=b(D)To)| , oy < Crae'Ze(@)CIT 2 F 1y 0,

(6.15)

where Ci4 = %BimC'Aa}m(C(p)C’(pH))l/Q.
Estimating the summands in ([@I3) with k& = || > 1 with the help of (6.14]), and the
summands with § = 0 by (6.16), we arrive at the inequality

p
(6.17)  [0%¢. ||y < Cise(e) <61/2|C|_1/2+1/4p + Z€’“|€_1/2+k/2”> IFllL(0)
k=1

where C15 = r7(d, p) max{Ci4,C™",...,CP}. Tt is ecasily seen that the expression in
parentheses does not exceed 2p(e'/2|¢|~1/2+1/4P 4 ¢P). Then (BI7) implies [B12) with
the constant Cy13 = kg(d, p)Cis. O

6.3. Completion of the proof of Theorem From Lemmas[6.1] and [6.2] it follows
that

IDPW.||1,(0) < Ciec(p)? (e + &' /2[¢| 72T/ 4)|F| 1, (0),
[Wellzy(0) < Crze(e)?(ePIC|7H2 + 274 | 1y 0,

where Cig = C10(C5 + C13) and C17 = C11(Cs + C13). Together with (5.34) and (5.35]), for
0<e<epand ¢ € C\Ry, [¢| > 1, this yields

ID? (e = ve)llLyo) < Colel@) el¢| ™22 + c(9)’e?) |F| 0y
+Cioe() (8 + ' 2[¢ T2 ) B 1y 0)

(6.18) < Cus (e() % /2C| V3P 4 (@) telc|TVEH 4 o(0)Pe) | F oo
< 2C1se(p)! (12 (¢ TP 4 P) | F o),
lue = vellL,(0) < Cr(c(@)*el¢|7 %P + e(9)e?|¢) ™) |[F | o o)
(6.19) + Care(0)? (P [C 72 + 2 [¢I YA | F Ly o)

< Cro(c(@)2e2|¢|7 Y4 4 c() e l¢| 722 + ()2 |C| 72 IR 2y o)
< 2C19¢(p)* (Y2|¢| 7P 4+ P17 2) | F 1y 0,



HOMOGENIZATION OF THE DIRICHLET PROBLEM 349

where C13 = Cg + C16 and C19 = C;7 + Cy7. Since
(6.20) [ullzr 0y < Cp; O) (IDPullpy0) + ully0)) , we HP(O;CY),

where the constant C'(p; O) depends only on p and O, inequalities (618)) and ([G.19) imply
[E8) with the constant Ca = 2C(p; O)(C1s + C19).

It remains to check (BI0). From (B.8)) and ([I3)), (LT) it follows that
(6.21) 1P = g°b(D)velly0) < Cooclp)* (e2I¢) 724+ &2) | F| 1, 0,
where Cop = ng(d,p)HgHLma}mCQ. By ([[3) and (&3], (50), we have
9°b(D)v. = g°b(D)ug + ¢°(b(D)A)=S-b(D) o

(6.22) + Y D) gl CleP (D P A) S.b(D)D .
la|=p B<a:[B]>1
Proposition [[.7] implies that
- lg"6 (D)o — g7 S-b(D)To|[ ., ) < llg™(I = S2)b(D)o |l 1, (re)
< ellgll L1 DO(D)to|[ 1, (ra)-

The third term on the right-hand side of (6.22)) is estimated by using (Z3]) and Proposition
[C8 Taking (LH) into account, we obtain

S Y b ClP (DA S.0(D)D R
la|=p B<La: |21

(6.24) Lo (RY)

p
<Cn Y &'[D'B(D)lg| 1, (re).
=1
where Ca1 = 10(d, p) gl 01 *Ca.
From ([4) and (B.I4) it follows that

(6.25)  [ID'B(D) o]l 1ymey < a 2CPH ()| F  Ly0yy L= 1,--0
Comparing (LI2) and ([622)—(E250), we arrive at
(626)  [|g7b(D)ve — 5 Sb(D)io]| ) < Carcl@) (El] >/ + &) [F | o,

where Coy = a}/Q (llgllz- rCPHY 4+ pCo maxi< <, C(Hl))'
As a result, relations (6.2I)) and ([@26]) imply the required inequality (BI0) with the
constant C3 = Cog + 2Cos. O

6.4. Proof of Theorem [5.9I1 We estimate the Ly-norm of the correction term wy,.

Lemma 6.3. Suppose that w. € HP(O;C") satisfies (5.23) and (G24). If €1 is subject
to Condition 4], then for 0 < e <e; and ( € C\ Ry, |(| > 1, we have

(6.27) [Well£p(0) < Case(e)® (€¢I 7Y% + £2°) | F| 1, 0).-

The constant Co3 depends only on d, p, m, ag, a1, ||glloo; [l97 |, the parameters of
the lattice T, and the domain O.

Proof. In identity (6.5]), we substitute a test function of the form n = n. = (Ap. —
CI)71®, where ® € Ly(O;C"). Then the left-hand side of (6.5) can be written as
(We — @, @)1, (0)- Hence,

(6.28) (We = &, ®),0) = —(6°0(D) b, b(D)N.) Ly 0) + C(De, M) Ly(0)-
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To approximate the function . in H?(O;C"), we apply the already proved Theorem [5.21
We put g = (A% — ¢I)"'® and 7, = Pomn,. An approximation for the function 7, is
given by 1 + ePA*S.b(D)7,. We rewrite (628) as

(We — @, ®)1,(0)
(6.29) = — (¢°b(D)e.,b(D)(n.—my—e"A°Sb(D)7g)) Lo (0) — (9°0(D) b, b(D)ng) 1, (0)
— (9°b(D) ¢, b(D) (e’ A°S:b(D)1g)) Lo (0) + C(@es M) Lo(0) -

Denote the consecutive terms on the right-hand side of ([€29) by Z;(¢,(), 7 =1,2,3,4.
The term Z4(e, ¢) can easily be estimated by using Lemma [£.1] and (6.11):

(6:30)  |Za(e, Q) < [ @ell a0 Inel Loy < Coel@)?e ™2 IR 1, 0) | Rl (0)-
Now, we estimate Z; (g, ). By ([3) and (3,
1Z1(2, )] < llgll 2 11 (d, P)ar [DP B[y 0) [ DF (. = Mg — ePA=SbD)iRg )| 1, -

Applying Theorem (precisely, the analog of estimate ([GI8) for n.) and (612), we
arrive at

_ 2
Z1(2, Q)| < 2l|9l L. 511(d, p)arCrsCise(e)® (€' 2(¢| 7242 4 )| 1, 0y Bl (0) -
Consequently,
(6.31) Z1(e, Q)| < 71e(9)® (el¢| 712 + ) ||F | 1, 0) | @ £a0)

where v1 = 4|g[| 1. k11 (d, p)a1C13C1s.
To estimate Zs (e, ¢), we recall that the function ¢, is supported in the e-neighborhood

of the boundary and apply Lemma 5 By (3) and (), we have
Z2(e, Q)1 < 9l #11.(d, p)ar [DP @[ Ly 0) D70 L (5.
1/2 1/2 1/2
< llollzcma(d p)n DGl 0) B2 D o 172 0) D0l o

(6.32

To estimate [|DPny 1, (0), we use Lemma [F.3t

(6.33) D720l 0) < Cocl)I<I ™[]l (0)-
Next, from (I5) it follows that
D[l e (0) < Ee(2)[[ @] La(0)-

Since H'(O) coincides with the interpolational space [L2(0), H?(O)]1, and the corre-
sponding norms are equivalent, we use interpolation to obtain

(6.34) D 0ol 1 (0) < C24C(<P)|C|71/2+1/2p||‘1’\|1:2(0)7
where Cyy = C(p; ©)Cy~/P1/P. Now, relations (632)-(634) and (61Z) imply that
1Z2(2, Q)| < N9l s11(d, p)arCrse(p) (eF + e/2|¢| 1 /2 F1/4P)
x 52! (CoCan) Vel @) B L)1 2 a0
Hence,

(6.35) IZ2(e, Q)1 < Yae(p)? (elCI 2P + %) | Bl 1y 0) 12 o c0)

where 72 = 2||g||L Fin(d;P)a153/2cl3(60624)1/2'
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It remains to estimate the term Z3(e, ¢). By (IL3]), we have
(6.36)  Ts(e,0) = —I5(e,¢) — TV (e, 0),
1 5 a— & ~
(637) V0 => > CRP(g(D)g., ba (D PA) DD ), o)

la|=p B<a:|B|=1
(6.38)  Z§7(c,C) = (9°b(D) .., (b(D)A)*Sb(D)ily) ;. )
To estimate the term (637, we use ([L4]), (LH), Proposition [[L8 and (Z3)):

p
1257 (2,0)] < k12(d, p) gl o 0 CAIDP .| . 0 (Z Ekllﬁolal+k(Rd>>-
k=1

Combined with ([6I2]) and an analog of estimate (BI4) for 7, this implies

IZ5 (6,0 < ka2(d, p) gl po. @) > CuCrael) (7 + /2|¢|~H/2H1/40)
(Zakc(PHc) )¢l 1/2+k/2p>||F||L2 ||<I>||L2(@).

Then it is easy to deduce that
1 1 _
(6.39) 2" (e, ) < 457 e(@) (le % + %) [Fl o) |18 aco)

where 74" = 2pr1a(d, p) gl 07 CaC1s maxy <<, CEHY.
The term (6.3])) is estimated with the help of (L4), (L), Lemma 6] and ([22)):

1/2
122 (2,0)] < llgllo (ep01) V2 DP b, | 1, ( / |(b(D)A)*S-b(D)i|? dx)
(6.40) (60)e

2 (2 1/2 1/2
< lgll 1 (6p01) V2D ey B2 2 22 DD 375 gy DD )
Like in (512) and (514, we have

(6.41) 70l 1 (ray < CPe(@)ICI 2] @ 1, (0
(6.42) 1730l ro+1 ety < CPTVe(@)|¢| 7220 @1, 0

Relations ([6.40)-([©.42), (L4), and (6.12) yield

IZ57 (2, 0)| < Casclip)? (7 + V2|72 A2 ¢ [TV 2H32| B 1y ) [ @] 1 0
where Cs = |lgll 1 ¢y 21 B2/ 2C13C 0 (CP) CP+1)1/2 | Hence,
(6.43) 1Z52 (e, O < %7 ()2 (l¢ |72 + £2) | F |l 1y (0) | Bl a0

where 'y = 2C95.

Fmally, combining ([6:29), ([€30), (6310, ©35), ©34), 639), and ([@43]), we see that
(We = ¢, @) L0y | < 7el(@)? (el T2 + %) [P Ly0) @l a0
for any ® € Lo(O;C"), where v =C5 +v1 + 72 + 'y( )4 'y?() ) Hence,

(6.44) Iwe = @0y < 7e(0) (l¢] 7Y 4 %) | F |1, 0

Now, relations ([6:44) and (EIT]) directly imply the required estimate ([E27) with the
constant Coz = v + Cs. O
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Completion of the proof of Theorem Bl By (B37) and (6.27]),
lue = o]l Lo0) < Cr(c(e)*el¢| ™2 + c(0)*e?[¢] /%) | F || Ly(o)
+ Case(p)® (e[¢| 712 4+ %) | P 1, (0)

for 0 < e < and ¢ € C\ Ry, [¢| > 1. This implies estimate (G5.I]) with the constant
C1 = 2C7 + Cas. O

§7. REMOVAL OF THE SMOOTHING OPERATOR.
SPECIAL CASES

7.1. Removal of the smoothing operator. Under Condition B.0] instead of the cor-
rector (B4]) one can use the standard corrector

(7.1) KD (Cse) = ATD(D)(A] — ¢I)7H,

which in this case is a continuous mapping of Lo(O;C™) to H?(O;C™). Accordingly,
instead of the function (B.7), one can take the function

(7.2) V2= (A — CI)7'F + K (G 2)F = ug + ePAB(D)ug
as an approximation to the solution of problem (@4]).

Theorem 7.1. Suppose that the assumptions of Theorem Bl and Condition are
satisfied. Let K%((;¢€) be the operator ([T1)), and let v¥ be the function [T2). Then for
0 < e <e1 we have

(7.3) [ue = v ooy < Caclp)* (£"/21¢| 724 4+ eP) || F |1y 0),
or, in operator terms,

-1 0 -1 0 (-
(7.4) H(AD,E - CI) - (AD - CI) - ngD(C’ €)||L2(O)—>HP(O)
< Caclp)* (/2|72 /4P 4 P,
For 0 < e <ey, the flur p. = g°b(D)u. satisfies

(7.5) 1P — §°b(D) ol o0y < Caclep)* (/2[¢|H/H/4 4 &)

|F||L2((9)‘

The constants Cy and Cs depend only onm, d, p, ag, a1, |gllo, |9, the parameters
of the lattice T, the domain O, and also on ||A||L,, and My.

To prove Theorem [Tl we need the following lemma.

Lemma 7.2.
1°. Suppose that A is a multiplier from HP(RZ,C™) to HP(R% C"™) and My is the
norm of this multiplier. For any u€ HP?(R%;C™) and ¢ > 0, we have

(7.6) g2p /Rd \Dp(As(x)u(x))Fdx < prK /Rd (|u(x)|2 + 52p|Dpu(x)\2) dx.

2°. Suppose that Condition is fulfilled. Then the matriz-valued function [LI2) is
a multiplier from HP(R% C™) to Lo(R%;C™), and the norm of this multiplier does not
exceed a constant My depending only on d, p, ||g|lL.., cu, [[All., and Mx. Moreover,
for any u € HP(R%; C™) and € > 0 we have

oo ! oo’

(7.7) /Rd 17° (x)u(x)|? dx < \Eng /Rd (|u(x)|2 + Ezp\Dpu(x)P) dx.
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Proof. Let u € HP(R%;C™). The change of variables x = ey, u(x) = v(y) yields
18) & [ DL uix)Px =<t [ DRIV dy < MRl
By B.9),
My < 6t [ (VP + DGR dy =%, [ (GO + 7 IDEu(x) ) dx.

Together with (7)), this implies (Z.4]).

Now, we prove assertion 2°. By Lemma 1 in Subsection 1.3.2 of the book [MSh], Con-
dition implies that DA with |a| = p is a multiplier from HP(R%; C™) to Lo(R%; C"),
and the norm of this multiplier is controlled in terms of ||A||r., and Ma. Then, by (3]
and (L), the matrix-valued function § = g(b(D)A+1,,) is a multiplier from HP (R%;C™)
to Ly(R%;C™), and the norm of this multiplier does not exceed a constant My depending
only on d, p, ||g9llz.., @1, ||AllL.., and M. Inequality (Z7) is proved by the changes
x = ey, u(x) = v(y) (as in the proof of estimate (Z4)). O

Proof of Theorem [l Let the functions v. and v be defined by (5.7) and (Z.2), respec-
tively. We estimate their difference in the H?(O;C")-norm. By [B.3), we have

Ve = V2l s (o) < €A = Se)b(D) ol o (s
2
< 6e?P( HAE (I —S:)b(D u0HL2(Rd) + ||Dp (A(I — S.)b(D) O)HLQ(RCI))'
Combining Condition [B.6] inequality ||Se|lr,—r, <1, and ([L4), we obtain
~ 1/2)~
(7.10) A1 = SBD)Tol . gy < 2101 @ Tl
Next, Lemma [[.2] implies that
. )i 2
e?||DP(A(I - S:)b(D)io) |, &)
< &M ([I(7 = Se)b(D)To |7, (zey + ™ [(1 = Se)DPH(D)io[7, () )-
By Proposition [7] and (T4,

(7.11)

(7.12) (I = S2)b(D)io| . rety < erray ||Vl grosr (za-
From the inequality ||S:|L,—r, <1 and (L4) it follows that

(7.13) (7 — S)DPb(D)iio|| ey < 2017 180 pr20 (.
Combining ([T9)-(CI3) and (EI2)-EI4), we arrive at

(7.14) Ve = V2|l v (o) < Cascly )(5|C|71/2+1/2p +&P) [P Ly (0

where Cog = a}/Q max{¢, Mpr, O+ 2 1/2HA||L P) 4 28, MAC2P)Y.

Now, (5.8) and (ZI4) imply the required estimate (7.3) with the constant Co = Co +
2CQG~
We proceed to the proof of inequality (Z3). By (Z.1),

[5°bD)u0 — 56D}, ) < 171~ S2)pD [, e
<EMG (I = S)b(D)ollZ, gty + | (1 = Se)DB(D)o 7, z))-

Together with (Z12), (ZI3), (I3), and (BI4), this yields
(7.16)  [3°b(D)uo — 5 Scb(D)iio | (o) < Carelp) (e[¢| /712 + &) [F| Ly o)

(7.15)

where Co7 = 1/2M~cu1 max{r,CP*+1 200},
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Now, (BI0) and (ZI6) imply the required inequality (T3] with the constant Cy =
C3 + 2Co7. U

Comparing Theorem 7.1 and Proposition [3.7], we arrive at the following statement.

Corollary 7.3. Under the assumptions of Theorem Bl let K%((;¢) be the operator
1), and let v° be given by (T2). Let p. = g°b(D)u., and let §(x) be the matriz-valued
function (LI2). Suppose that at least one of the following conditions is fulfilled:

1°. 2p > d;

2°. g% = g (i.e., the representations (LIN) are valid).

Then for 0 < ¢ < &, we have estimates (T3)~([TH), and the constants Cy and Cs
depend only on m, n, d, p, ag, a1, ||l lg7 |z, the parameters of the lattice T,
and the domain O.

Remark 7.4.

1) For fixed ¢ € C\ Ry, [¢| > 1, the estimates of Theorem [l are of order O(¢!/?).
The error becomes smaller as || grows.

2) The estimates of Theorem [[T] are uniform with respect to the angle ¢ in a domain
{C=1[¢le* : |¢| > 1,0 < p < 2T — o} with arbitrarily small ¢y > 0.

3) The assumptions of Corollary [73] are valid in the following cases, which are of
interest for applications: a) if p = 2 and d = 2 or d = 3, we have 2p > d; b) if m = n,
then ¢° = g. For instance, this condition is fulfilled for the operator A. = Ag®(x)A in
Ly(R9) for arbitrary dimension.

7.2. Special cases. If ¢° = g (i.e., relations ([.I7) are valid), then the I-periodic
solution of problem (LI0) is equal to zero: A(x) = 0. In this case, we have v, = ug and
w. = 0. Lemma 5.4 together with (3.9) implies the following result.

Proposition 7.5. Under the assumptions of Theorem Bl if ¢° = g (i.e., relations
([LID) are valid), then for 0 < e < &1 we have

[ue — ol r(o) < Colclp) el /2120 + ¢()3eP) | F| 1,0y,
where Cg = ¢/ *(Cs + Cr).

By Remark [4] if ¢° = g, then the matrix-valued function (LI2) is constant: §(x) =
J— g- Applying the statement of Corollary concerning fluxes, we arrive at the
following result.

Proposition 7.6. Under the assumptions of Theorem 5.1, if ¢° = g (i.e., the represen-
tations (LI8) are valid), then for 0 < e < &1 the flur pe = g°b(D)u. satisfies

P — g°b(D) ol 1, (0) < Caclip)* (/2[¢|7/2H/ 4P 4 eP) | F 1,0

§8. APPROXIMATION OF THE RESOLVENT (Ap . —¢I)™! FOR ¢ € C\ [c4, 0)

8.1. The general case. In the theorems of §5 and §7, it was assumed that ¢ € C\ Ry
and |¢| > 1. In the present section, we obtain a result on approximation for the resolvent
(Ap—¢I)7! valid in a wider set of the parameter ¢. For bounded values of || and for
points ¢ with small ¢ or 2w — ¢, this result may be preferable.

Theorem 8.1. Let O be a bounded domain of class C?P. Let ( € C\ [c4,00), where
cx > 0 is a common lower bound of the operators Ap . and AY. Let ¢ —c, = | — ci|e™.
Denote

_Je@PC =l G —ead <1,
p«(C) = {C(¢)27 IC— e > 1,
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where c(v) is given by BI). Let u. be the solution of problem (), and let uy be the
solution of problem [@IIl) with F € Lo(O;C™). Suppose that the operator Kp((;e) is
given by (B4), and the function v is defined by (B.T). Let €1 be subject to Condition Al

Then for 0 < e < e1 we have
51) [us: —ao||z,(0) < Crep(ONIF |, (0)
. ue — VEHHP(O) < €yt 0« (OIF | L (0)-

In operator terms,

(8.2) (A = <D™ = (AD D, o0 nacon < Cr2pa(0).
(83)  [[(Ape—¢D)" = (AD =D = PEn (G|l 1 0y v (o) < €22 24(Q)-
For 0 < e <ey the flur pe = g°b(D)u. satisfies

(8.4) [p- — §°S-b(D)to|| 1,0y < €320 (O)IF| 100

where §(x) is the matriz-valued function [LI2)). The constants €1, €2, and €3 depend
only on m, d, p, ap, a1, |9llz., g7 L, the parameters of the lattice T', and the
domain O.

Remark 8.2.

1) The quantity c(1)?|¢ — ¢.| 72 is inverse to the square of the distance from the point
¢ o [cy, 00).

2) One may take ¢, = co, where ¢y is defined by (£3).

3) Let v > 0 be an arbitrarily small number. If ¢ is sufficiently small, then one may
take ¢, = A} — v, where \{ is the first eigenvalue of the operator AY,.

4) Tt is easy to give an upper bound for c,: from (2] it is seen that ¢, < 11, where
1Y is the first eigenvalue of the operator B, = Z‘a‘:p D2 with the Dirichlet conditions.

Therefore, ¢, does not exceed a number depending only on d, p, |9/l
domain O.

Proof. We apply Theorem .1l with ¢ = —1. By (B2,
(8.5) |(Ape+ 1)~ — (A} + I)*IHLQ(
We use the identity
(Ape— ¢~ = (A —<I)™"

= (Ap -+ 1)(Ap.e— (D) ((Apet )7 = (Ap+ D7) (Ap+ D) (A — ¢~
From (BA) and (BH) it follows that

a1, and the

oo )

O) 5L (O)<2C1€ 0<e<ey.

(8.6)

B N =D = (Ah = (D g0y nyi0y < 2608 S0 G 1 (I
for 0 < € < e1. A calculation shows that
(.8) sup (@ + 1)z — |72 < 2. (C),

T>Cy

where ¢ = (¢, +2)2. By Remark[B2(4), ¢ does not exceed a number depending only on d,
D, a1, ||g||L.., and the domain O. Relations [B7) and (88) imply the required estimate
([B2) with the constant €; = 2C,¢.

Now, we apply Theorem with ¢ = —1. By ([&3)), for 0 < ¢ < &7 we have

89 b+ D7 = () + D7 =KoL 0 oo < 252
Using Lemma [6.2 with ¢ = —1 and (G20]), we see that
(8.10) le?0- Kp(—1;€)| 1,0y HP(0) < ¢ et/?
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for 0 < £ < &1, where €4 = C(p; O)(C5 + 2C13). From (89) and (BI0) it follows that

(8.11) |(Ap+D)~' = (AL + 1)t —eP(1—0)Kp(-1 < @xel/?

HLZ(O)—>HP(O)
for 0 < € < g1, where €5 = 2C5 + €4. We use the identity
(Ape— ()" = (A = (D)™ = (1= 0:)Kp(Gie)
(8.12) = (Ap+I)(Ap.— ) ((Ap+I)~ = (Ap+I) ' —eP(1-0.)Kp(—1;¢))
X (A + D) (Ap — (D)™ +eP(C+ 1) (Ape — ¢I) 7 (1 = 0:)Kp (o).
Since the range of the operators in (812)) is contained in H (O;C"), we can multiply by
A}j/i from the left. Taking (BS) into account, we obtain

A2 ((Ape — CD) 7 = (AY — D) —eP(1 = 0)Kp(G9))|| 1, o,
(8.13) < (O A2 ((Ape + D)7 = (A + D)7 = eP(1 - 0.)Kp(—1;¢)
+eP[C+ 1] sup 2% |z — (| 7H (1 = 0) Kp (G €) |y

T>Cy
Denote the summands on the right-hand side of (8I3]) by £1({;¢) and L2(¢; ). Relations
(#2) and (BII) imply the following estimate for the first term:

) HLQ*}LQ

(8.14) L1(Ce) < E&c}/zal/zp*@), 0<e<e;.
Since Kp((;¢) = Ro[A°]S.b(D)Po(A%)~1/2(A9)1/2( A% —¢I)~L, we can use (L), (5.3),
E20), and (600 to show that
(1 = 0-) KD (¢ )l La0)—L2(0)
< Oy G N(AD) " a0y sarc0) sup 2w — (|7

T>Cy

(8.15)

Combining (3.9) with analogs of estimates (I.Z) and (@3] for the operator A%, we get

(8.16) 1AD) 2 Lagorsaro) < G2 (eg 2 + 65 1%).
By (8I%) and (8I6]), the second term on the right-hand side of ([8I3]) admits the estimate
(8.17) Ls(Cse) < CeeP|¢ + 1] sup afa — (|72,

where €5 = Cj(xl)aiﬂCg)f;l)ﬂ( 4 Cy 1/2) In accordance with [Subl, (8.17)],

(8.18) €+ 1] sup ol — ¢ < (e +2)(cs + DpulC):
T>Cy

Now, from (BI7) and [BIS) it follows that

(8.19) La(Ge) < Co(ex +2)(cx + 1)eP ().

As a result, inequalities (813), (814, and (8I9) imply
1482 ((Ap.e = D)7 = (A = D) 7! = (1= 0) K (G o))l < € /2p(0),
O0<e<Leq,

where €7 = \C/€5C}/2 + C(cx +2)(cs + 1). Combining this with (£2), (£3), and (3.9), we
obtain
[(Ap = ¢~ = (AD =N =eP(1-0.)Kp (G e HLQ(O)%HP(O) < €%, (0),

(8.20)
O0<e<Leq,
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where € = c1/2(cal/2 + 051/2)€7. Finally, by (B8] and (&I0),
1€70: Kp(C:€)llLa(0)— mr(0)
< [P0 Kp(—15) 1,0y~ e (o) | (AD + D) (AD —

< 51/202461/2;)*(01/2, 0<e<eq.

¢l 1||L2((9)—>L2((9)

Together with ([820), this yields the required inequality (83]) with the constant €5 =
Cs + /%y,
It remains to check (84). From B1)), (L3), and (LI it follows that
(8.21) Ipe = 9°b(D)Vell,0) < Ko(d: P91y * €26 2pe (O F | (0
for 0 < € <e;y. Next, like in ([6.22)—(6.24]), we have
||g b(D)VE -9 SEb(D)uO||L2(O) »

(8-22) < ellgl| .. 71 DED) o |l ey + Co1 Y e [D'BD) o]l 1, rery

< €95||ﬁ0||H2P(]Rd)u =t

where €9 = ||gL., rlal +p(321a}/2.
From (LI0) and [BF) it follows that

I(AD = CI) M o) m2no) < Esup alz — |7 < &/%2p. ()2

T>cCy

Hence, by (53),
~ 2 20)1 /24
(823)  |lo]lmzee) < C6 ooy < CoVE 2ep- ()2 |F|Ly(0)-
Combining this with [822), we obtain
lg*b(D)ve — §°Sb(D)o|| 1, (0) < €106p4()"*|F |10
where €y = cgcgp)zl/%. Together with (821I)), this yields (84) with the constant
¢ = Hg(d,p)HgHLwa}/QQQ + C1p. O
2. Removal of the smoothing operator.

Theorem 8.3. Under Condition and the assumptions of Theorem B, suppose that
the operator K% ((;¢) is given by (L)), and the function v¥ is given by ([T2). Then for
0 < e <e; we have

(8:24) lue = v v (0) < €220 (O)IF | Ly(0):

or, in operator terms,

(8.25)  [[(Ape—¢D) " = (A = ¢D T =KD (G| 1y 0ymmro) < €2 P0u(C).
For 0 < e <& the flux p. = g°b(D)u,. satisfies

(8.26) 1P — §°B(D)uo |l 1, (0) < €ae"/*p (O Fl s o).

The constants € and €5 depend only on m, d, p, oo, a1, |gllo., g7 L., the param-
eters of the lattice T, the domain O, and also on ||A||L., and My.

Proof. As in (C9)-(TI3), we have

(8.27) |lve — Vg”Hp(O) < Q:llf”ﬁ()”HZ;D(Rd),

where €;; = a}/z( vl/2||A||L + €, Ma(r1 +2)). From ([823) and (B21) it follows that
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(8.28) Ve = V2| mr(0) < €12px(Q) 2| F L0

where 612 = C((gzp)\c/l/Q/C\Qtll.

Inequalities (8I) and (828) imply the required estimate ([824) with the constant
Cy =€y + €.

It remains to check (828). As in (Z12), (ZI13), and (ZIH), we have

(8.29) [g°6(D)ug — §°S:b(D)Uo || L, (0) < Crzel[Toll gr2e (e,

where €3 = E;,/2M5a1/2(7“1 +2). From ([B23) and (829) it follows that

(8.30) 150Dty — 5 S-b(D)io | 1o 0) < €142 ()2 [Pl 1o,

where €14 = Cgp)51/26613. Corilparing [®4) and (B30), we arrive at the required
estimate (826) with the constant €3 = €3 + €y4. O

Theorem R3] and Proposition B.7] directly imply the following statement.

Corollary 8.4. Under the assumptions of Theorem Bl let the operator K%((;e) be
given by (TI) and the function v0 by ([T2). Let p. = ¢°b(D)u., and let §(x) be the
matriz-valued function (LI2). Suppose that at least one of the following conditions is
fulfilled:

1°. 2p > d;

2°. g° =g (i.e., the representations (LIR) are valid).

Then for 0 < ¢ < &1 we have estimates [824)~(&20), and the constants €5 and T
depend only on m, n, d, p, ao, a1, ||l g7 L., the parameters of the lattice T,
and the domain O.

8.3. Special cases. The following statement easily follows from Proposition 7.5 and
identity (8.6).

Proposition 8.5. Under the assumptions of TheoremB1], if g° = g (i.e., relations (LIT7)
are valid), then
lue — ol gr(o) < Cisep(ONF | 2,00

for0<e<ey. Here €5 = 2?,1)/201/25(051/2 + 02_1/2)56.

The proof of following statement is similar to that of Proposition 7.6.

Proposition 8.6. Under the assumptions of Theorem B, if ¢° = g (i.e., the represen-
tations (LI8) are valid), then for 0 < e < ey the flur p. = g°b(D)u. satisfies

[pe — ¢°b(D)uol|,0) < €362 0. (O)|IF | o(0)-

89. ADDED IN PROOF

In the present section, we improve estimates of Theorems 5.1, 5.2, 7.1 and Propositions
7.5, 7.6, refining the dependence on the angle ¢ = arg(. For this, we use arguments
suggested in the paper [MeSu, §10].

Theorem 9.1. Under the assumptions of Theorem 5.1, for ( € C\ Ry, [(| > 1, and
0 <e<e; we have

O (b= <D™ = (4D = D7 010 a0 < Crel) el

The constant Cy depends only on d, p, m, ag, a1, ||glle.. |97 |z, the parameters of
the lattice T, and the domain O.
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Proof. We apply estimate (5.2) at a point (e, |a >1,Re( <0
02 (e~ D7~ (4D D70 < O G 1 7).

Ife < |E|_1/2p, then %P < 5|6|_1+1/2”, whence the right-hand side of (9.2) does not
exceed 2C1¢|¢|7'*1/2P. In the case where € > |¢|~'/?", we apply Lemmas 4.1 and 4.3.
Then the left-hand side of (9.2) does not exceed 2|¢|~' < 2¢|¢|~1*1/2P. As a result, we
obtain

(9-3) |(Ape — ¢~ — (A ~ (1) 1”[12(0)%L2(O) < Cle|¢| 12,

where C; = 2max{1,C;}. This proves estimate (9.1) in the case where the point { lies in
the left half-plane.
Now, suppose that ¢ € C\ Ry, |[¢| > 1, and Re¢ > 0. We put ( = —Re( + iIm .
Note that |¢| = |¢]. As in (8.6), we have
(Ap.e = D)~ = (A = ¢D)™H = (Ap e = CD)(Ape = ¢!
X ((Ape = CD7H = (AD = (D)) (AD = DA — (1)
From (9.3) and (9.4) it follows that

(9.4)

1 - 11z g 12— CP
95)  (Ape = <D™ = (A5 = D)7 Y| 0)o a0y < Creld Y el
A calculation shows that
o~ C? )
9.6 sup ——5 < 4c .
(9.6) SUP e S ()
As a result, (9.5) and (9.6) imply estimate (9.1) with the constant C, = 4C5. O

Theorem 9.2. Under the assumptions of Theorem 5.2, for ( € C\ Ry, |(] > 1, and
0 <e<e; we have

-1 0
(9.7) [(Ap.e = <D™ = (A = D)™ = " Kp (G|, 0)mr0)

< Cac(p)? (1 2[¢|7/2HY/P 4 eP).
The flux p. = g°b(D)u. satisfies
(9.8) Ip- — 5% S=b(D)io| 1, (0) < Cac()?(/2[¢| /2P + &P) |F ||, 0

The constants Cs and Cs depend only on d, p, m, ag, a1, lgllo, |7 L, the parameters
of the lattice T, and the domain O.

Proof. We apply estimate (5.9) at a point (:‘\E C, |a >1, Re(?g 0:

||(AD,6 - 61)71 - (AOD - EI) - 5pKD C’ HL2 O)—HP(O)

(9-9) 1/2 1/241/4
<Cle ICI~ Pt eP).

Now, suppose that ¢ € C\ Ry, || > 1, and Re{ > 0, and let 6: —Re( + iIm(.
Recall that 6.(x) is a cut-off function satisfying (6.1). Denote
T(Gre) = (Ap,e = CI)™! = (A = CI)™! = (1 = 0:)Kp (G ).
By (4.2), Lemma 6.2, and (9.9), we have

(9.10) HAl/2 < C (V2|82 ),

C, HLZ(O)—>L2(O)
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where C} = c1 (Cg + C13). The following identity is similar to (8.12):
T(Ge) = (Ape — CI)(Ape — CI) 7' T(Ge)(AD — (D) (A — ¢D) ™!
+eP(¢ — )(ADS_ )_1(1_96)KD(C§5)'

Applying the operator AD/6 to the two sides of (9.11) and using (9.6) and (9.10), w
obtain

/25
1457 el 0) - 1a(0)
+e7¢ — (]| A2 (Ap.e = ¢I)
As in (8.15) and (8.16), we have

(9.11)

< 40((,0)2C£ (51/2|C‘_1/2+1/4p 4 EP) (9 12)

1HL2~>L2H ) Kp((e HL24L2

(1 = 0:) KD (¢ e)ll L0y = La(0) < Eosup .
>0 |7 — (]

A calculation shows that

x
sup 73 < c(p )2I¢It
>0 |

Since |¢ — 6| < 2|¢|, we see that the second term on the right-hand side of (9.12) does
not exceed 2€sc(¢)%eP. Combining this with (9.12), (3.9), (4.2), and (4.3), we obtain

(9:13) IT(C€)llza(0)rp(0) < Cle(p)? (eV/2IC|7H2H4 4 e7),
where C§ = f,l,/z( o+ 071/2)(4% + 2&). It remains to use the inequality

P)10-Kp(C;€)l| 1o0)—mr(0) < C(0; O)(Cs + Ciz)elp) (e'/2(¢| /24P 4 ¢P),

which follows from Lemma 6.2 and (6.20). Together with (9.13), this yields the required
estimate (9.7) with the constant Cy = CJ + C(p; O)(Cs + C13).
Next, as in (6.21), inequality (9.7) implies that

(9.14) 1P — 9°b(D)Ve 1,0y < Che(w)? (M/2(¢) 72T 4+ eP) ||| 10,
where C = ro(d, p)||gllL_ a1/*Cs. Relations (6.26) and (9.14) yield (9.8) with the con-
stant Cg = Cé + CQQ. O

Theorem 9.3. Under the assumptions of Theorem 7.1, for ( € C\ Ry, |(| > 1, and
0 <e<eg; we have

—1 0
(9.15) [(Ap.c = D™ = (A =™ = KBGO, 0 rco)
< C;C((p) (51/2|<| 1/2+1/4p+€p).
The flux p. = g°b(D)u. satisfies
(9.16) Ipe = F°b(D)uo|l L, (0) < C5e(0)* (/2|72 4 ) | F|l 1, 0

The constants C3 and C3 depend only on d, p, m, ag, a1, |9l |97 L., the param-
eters of the lattice T, the domain O, and also on ||A||L., and My.

Proof. Estimate (9.15) with the constant C§ = Cy 4 Cag directly follows from (9.7) and
(7.14). Inequality (9.16) with the constant C; = C3 + C27 is a consequence of (9.8)
and (7.16). O

Proposition 9.4. Under the assumptions of Proposition 7.5, for ( € C\ Ry, |¢| > 1,
and 0 < € < &1 we have

(9.17) lue = ol sr(0) < Cgel(w)?el¢| =227 |[F |, 0)-
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The constant Cg depends only on d, p, m, oo, a1, ||9llL., [l L., the parameters of
the lattice T, and the domain O.

Proof. Suppose that 2 e C, |2| > 1, and ReCA < 0. By Proposition 7.5, under our
assumptions we have

(9.18) [(Ape = <D™ = (A = CD 7 1 0y moy < ColelCITH/2H1/20 4 e7),

If ¢ < |C|~Y/2P, then e? < e|¢|~1/2+1/2P whence the right-hand side of (9.18) does not
exceed 2Cge|¢|~/211/2P, In the case where € > |¢|~"/?P, we apply Lemmas 4.1 and 4.3.
Then the left-hand side of (9.18) does not exceed 4Co|¢|~1/? < 4Coe|¢|~/?+1/2P. Hence,

(9.19) [(Ap.e = D™ = (AD = D) 0y im0y < Coel /22,

where Cf, = max{2C;,4Co}. This proves estimate (9.17) in the case where the point C lies
in the left half-plane.

For ( € C\ Ry, |¢] > 1, Re¢ > 0, we put 2: —Re ¢ + iIm ¢ and use identity (9.4).
Applying the operator A}:,/i_ to the two sides of (9.4) and taking (4.2), (9.6), and (9.19)
into account, we arrive at

| ABZ((Ape = <D™ = (4D =) 7)oy ooy < e/ *Chele)el| 12412,

Combining this with (3.9), (4.2), and (4.3), we obtain estimate (9.17) with the constant
C§ = 461/2\6;;/2(051/2 +¢; /). O

The following statement is deduced from Theorem 9.3; the proof is similar to that of
Proposition 7.6.

Proposition 9.5. Under the assumptions of Proposition 7.6, for ¢ € C\ Ry, [¢| > 1,
and 0 < ¢ < &1 we have

Ipe = g°b(D)uo|| 0y < Cse(w) (/%172 TV 4 €P) Rl 1 0)-
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