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ABSOLUTE CONTINUITY OF THE SPECTRUM

OF TWO-DIMENSIONAL SCHRÖDINGER OPERATOR

WITH PARTIALLY PERIODIC COEFFICIENTS

N. FILONOV

To the memory of V. S. Buslaev

Abstract. On the plane, the operator −div(g(x)∇· ) + V (x) is considered. The
absolute continuity of its spectrum is proved under the assumption that each coeffi-
cient is the sum of a Z2-periodic term and a summand that is periodic in one of the
variables and decays superexponentially with respect to the other variable.

§1. Introduction

In the space L2(R
n) we consider the selfadjoint operator

(1.1) H = − div(g(x)∇ · ) + V (x),

where g and V are real scalar functions. It is the Schrödinger operator if g ≡ 1, and it is
an acoustic operator if V ≡ 0. Below we assume that each coefficient can be represented
as a sum of two terms

(1.2) g = g0 + g1, V = V0 + V1,

where the functions g0 and V0 are periodic with respect to all variables (periodic back-
ground), the functions g1 and V1 are periodic with respect to some variables, and decay
very fast in all other variables. The operator (1.1) with such coefficients describes what
is called a “soft waveguide”.

It is well known that the spectrum of H has a band-zone structure if its coefficients are
periodic with respect to a nondegenerate lattice in R

n, i.e., g1 ≡ V1 ≡ 0. Moreover, the
spectrum has no singular continuous component, and either it is absolutely continuous, or
it contains an absolute continuous component and some eigenvalues of infinite multiplicity
(degenerate bands). There is a large number of papers devoted to the proof of the absolute
continuity of the spectrum of various operators with periodic coefficients (see the original
work of Thomas [11], and also [1, 10] and the references therein).

In the case of partially periodic coefficients it is also natural to assume the absence of
eigenvalues, both from the physical and mathematical point of view. However, there are
a few rigorous results in this direction, see, e.g., [2, 3]. For the operator (1.1), (1.2), only
the following two results are known.
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Theorem 1.1 ([5]). In L2(R
m+d), consider the operator (1.1) with the coefficients (1.2),

and assume that g0 ≡ const > 0, V0 ≡ 0. Next, assume that

• the functions g1, V1 are periodic with respect to the last d variables,

g1(x, y + l) = g1(x, y), V1(x, y + l) = V1(x, y), ∀ x ∈ R
m, y ∈ R

d, l ∈ Z
d;

• the functions g1(x, y)e
a|x|,Δg1(x, y)e

a|x|, V1(x, y)e
a|x| are bounded in Rm+d for

all a ∈ R, i.e., g1 and V1 decay in the first m variables superexponentially;
• g(x, y) ≥ c0 > 0.

Then the spectrum of H is absolutely continuous.

Theorem 1.2 ([8]). Consider the selfadjoint operator H = − 1
ε(x)Δ in the Hilbert space

L2(R
2, ε) with the weight ε(x)dx. Assume that the function ε ∈ L∞(R2), ε(x) ≥ c0 > 0,

can be represented as a sum ε = ε0 + ε1, where ε0 is periodic with respect to the lattice
Z2, and ε1 is 1-periodic in x2, and supp ε1 ⊂ (0, 1) × R. Then the operator H has no
eigenvalues.

The proof of Theorem 1.2 can be carried over without changes to the case of the
operator

H = −Δ+ V, V = V0 + V1,

where the potential V0 is periodic with respect to Z2, the potential V1 is 1-periodic in
x2, and

suppV1 ⊂ (0, 1)× R

(see the Remark at the end of the Introduction in [8]). On the other hand, the proof
of Theorem 1.2 does not work if the operator involves both a potential and a nontrivial
metric.

Thus, in Theorem 1.1 the space dimension is arbitrary, and the coefficients decay fast
in the nonperiodic variables (this condition is more realistic than being identically zero
outside a compact support as in Theorem 1.2). But there is no periodic background. On
the contrary, in Theorem 1.2 there is a periodic background, but there is a dimension
restriction n = 2, and the question about the singular continuous spectrum was not
studied. In the present paper, we combine the approaches of [5] and [8]. We formulate
our main result.

Theorem 1.3. In L2(R
2) we consider the operator (1.1) on the domain DomH =

W 2
2 (R

2) with the coefficients (1.2). Assume that g0, g1, V0, V1 are real scalar bounded
functions on the plane, gj , Vj ∈ L∞(R2), satisfying the following conditions:

• g0 and V0 are periodic with respect to Z
2;

• g0, g1 ∈ W 2
∞(R2);

• g1(x1, x2 + 1) = g1(x1, x2), V1(x1, x2 + 1) = V1(x1, x2) a.e. x ∈ R2;
• the functions g1(x)e

a|x1|,Δg1(x)e
a|x1|, V1(x)e

a|x1| are bounded in R
2 for all a ∈ R;

• g(x) ≥ c0 > 0 for all x ∈ R2.

Then the spectrum of the operator H is absolutely continuous.

Remark 1.4. The assumptions on the coefficients g imply also that g0(x) ≥ c0 > 0 for
all x ∈ R

2.

We list the disadvantages of Theorem 1.3:
a) it also has the restriction n = 2;
b) the lattice of periods is exactly Z2. The result can easily be generalized to the case

of rectangular lattices, but we are unable to prove it for skew-angular lattices.
Let us briefly outline the proof of Theorem 1.3. We make the Floquet–Bloch transfor-

mation in the periodic variable x2, and consider the family of operators H(k2) in the strip
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(§2). The resolvent of the corresponding free operator (g1 ≡ V1 ≡ 0) can be represented
by the integral

R0(k2, λ) =

∫ 2π

0

A(k1, k2, λ) dk1.

Here A is a meromorphic function with values in bounded operators in a weighted space
L2 in the strip; λ is the spectral parameter, Imλ > 0. Then we transform the contour
of integration using the residue theorem, and obtain an analytic continuation of the free
resolvent through the spectrum into the region Imλ < 0 (into the “nonphysical sheet”),
see §6. Next, we construct an analytic continuation of the resolvent of the full operator
H(k2) by perturbation theory (§7). This turns out to suffice for the proof of the absolute
continuity of the initial operator H (§8).

We use the following standard notation: Br(λ) = {μ ∈ C : |λ− μ| < r} is the disk in
the complex plane centered at λ and of radius r; Hol(O) is the set of analytic functions in
the domain O; σ(A) is the spectrum of the operator A; B(X,Y ) is the space of bounded
operators from the space X to the space Y ; B(X) = B(X,X).

The author thanks an anonymous referee for valuable comments.

§2. Floquet–Bloch transform

2.1. Floquet–Bloch transform in the x2 variable. We denote by S the following
strip on the plane:

S =
{
x ∈ R

2 : x2 ∈ (0, 1)
}
= R× (0, 1).

For real a, we introduce the following function spaces in the strip:

Lp,a = {f : ea
√

x2
1+1f ∈ Lp(S)},

‖f‖pLp,a
=

∫
S

epa
√

x2
1+1|f(x)|p dx for p < ∞, ‖f‖L∞,a

= ess sup ea
√

x2
1+1|f(x)|,

and

H2
a =

{
f : ea

√
x2
1+1f ∈ H2(S)

}
,

‖f‖2H2
a
=

∫
S

(∣∣∣∇2(ea
√

x2
1+1f(x))

∣∣∣2 + e2a
√

x2
1+1|f(x)|2

)
dx,

where H2 ≡ W 2
2 is the standard Sobolev space. We introduce the Floquet–Bloch trans-

formation in x2 by the formulas

U2 : L2(R
2) → L2(S × (0, 2π)) =

∫ 2π

0

⊕L2(S) dk2,

(U2f)(x, k2) =
1√
2π

∑
n2∈Z

e−ik2(x2+n2)f(x1, x2 + n2).

It is easily seen that the operator U2 is unitary, and

U2HU∗
2 =

∫ 2π

0

⊕H(k2) dk2.

Here

H(k2) = −∂1(g(x)∂1 · )− (∂2 + ik2)(g(x)(∂2 + ik2) · ) + V (x)

is the operator in L2(S) defined on the domain

DomH(k2) = H2
per(S) ≡

{
f ∈ H2(S) : f(x1, 0) = f(x1, 1), ∂2f(x1, 0) = ∂2f(x1, 1)

}
.

The following lemma is straightforward (see also [5, Lemma 5.1] and [1, formula (6.13)]).
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Lemma 2.1. Let λ ∈ C. Then

H(k2)− λ = g(x)1/2(−Δk2
+W (λ))g(x)1/2,

where

Δk2
= ∂2

1 + (∂2 + ik2)
2

is the operator in L2(S) defined on the domain DomΔk2
= H2

per(S), and

W (λ) =
1

g

(
Δg

2
− |∇g|2

4g
+ V − λ

)
.

Remark 2.2. Taking into account the identity 1
g = 1

g0
− g1

g0(g0+g1)
, and the implication

f0 ∈ L∞(S), f1 ∈ L∞,a =⇒ (f0f1) ∈ L∞,a,

we see that the function W (λ) can be written as

W (λ) = W0(λ) +W1(λ),

where

(2.1) W0(λ) =
1

g0

(
Δg0
2

− |∇g0|2
4g0

+ V0 − λ

)
=: W00 −

λ

g0
,

the function W0(λ) ∈ L∞(R2) is periodic with respect to Z2, W00 does not depend on λ,

W1(λ) = W (λ)−W0(λ) =: W10 +
λg1

g0(g0 + g1)
,

the function W1(λ) is periodic in x2, W1(λ) ∈ L∞,a for all a ∈ R, and W10 does not
depend on λ.

Remark 2.3. If g(x) ≡ 1, then

W (λ) = V − λ, W0(λ) = V0 − λ, W1(λ) = V1.

2.2. Floquet–Bloch transform in the x1 variable. Denoting by Ω the cell of the
lattice,

Ω = (0, 1)× (0, 1),

we introduce the operators

U1 : L2(S) → L2(Ω× (0, 2π)) =

∫ 2π

0

⊕L2(Ω) dk1, U1(k1) : L2(S) → L2(Ω),

(U1f)(x, k1) = (U1(k1)f)(x1) =
1√
2π

∑
n1∈Z

e−ik1(x1+n1)f(x1 + n1, x2).

It is easy to check that the operator U1 is unitary, while U1(k1) for each k1 is an un-
bounded operator defined on a domain dense in L2(S). We need also the operator

(U1(k1)
†g)(x) =

1√
2π

eik1x1(Πg)(x),

where Π is the operator that extends the functions defined in a cell Ω to functions 1-pe-
riodic in x1 and defined in the strip S.

Lemma 2.4. Let k1 ∈ C, a > | Im k1|. Then the operator U1(k1) is bounded as an
operator from L2,a to L2(Ω), and the operator U1(k1)

† is bounded as an operator from
L2(Ω) to L2,−a and as an operator from H2

per(Ω) to H2
−a. Here

H2
per(Ω) =

{
f ∈ H2(Ω) : f(x1, 0) = f(x1, 1), ∂2f(x1, 0) = ∂2f(x1, 1),

f(0, x2) = f(1, x2), ∂1f(0, x2) = ∂1f(1, x2)
}
.

(2.2)
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Moreover,

(2.3) ‖U1(k1)‖L2,a→L2(Ω) ≤ c1, ‖U1(k1)
†‖L2(Ω)→L2,−a

≤ c1,

where the constant c1 depends only on the difference (a− | Im k1|).
Proof. Let f ∈ L2,a. By the triangle inequality for the L2-norm, we have

‖U1(k1)f‖L2(Ω) ≤
∑
n1∈Z

(∫
Ω

∣∣e−ik1(x1+n1)f(x1 + n1, x2)
∣∣2 dx1 dx2

)1/2

≤
∑
n1∈Z

max
x1∈[0,1]

e(| Im k1|−a)|x1+n1|
(∫

Ω

∣∣ea|x1+n1|f(x1 + n1, x2)
∣∣2dx1 dx2

)1/2

≤
∑
n1∈Z

e−(a−| Im k1|)min (|n1|,|n1+1|)‖f‖L2,a
.

Thus, the first estimate (2.3) is fulfilled with

c1 =
∑
n1∈Z

e−(a−| Im k1|)min (|n1|,|n1+1|).

The other claims of the lemma can be proved in the same way. �
As usual, the transformation U1 realizes a decomposition of the operator Δk2

into the
direct integral

U1Δk2
U∗
1 =

∫ 2π

0

⊕Δk dk1,

where

(U∗
1 g)(x) =

∫ 2π

0

(U1(k1)
†g)(x) dk1,

and Δk is the operator in L2(Ω) acting by the formula

Δk = (∂1 + ik1)
2 + (∂2 + ik2)

2

on the domain DomΔk = H2
per(Ω), see (2.2).

Lemma 2.5. If k ∈ R2 and λ /∈ R, then the following operators exist: the bounded inverse
operator (−Δk+W0(λ))

−1 in L2(Ω) and the bounded inverse operators (−Δk2
+W0(λ))

−1

and (−Δk2
+W (λ))−1 in L2(S).

Proof. The operator (−Δk +W00) is selfadjoint in L2(Ω) for k ∈ R2. Therefore,

Im
(
(−Δk +W00 − λg−1

0 )f, f
)
L2(Ω)

= − Imλ(g−1
0 f, f)L2(Ω),

whence ∥∥(−Δk +W0(λ))f
∥∥
L2(Ω)

≥ | Imλ| ‖g0‖−1
L∞

‖f‖L2(Ω) ∀f ∈ H2
per(Ω).

Thus, the operator (−Δk +W0(λ)) is invertible. The other claims of the lemma can be
proved similarly. �
Lemma 2.6. Let k2 ∈ R, λ /∈ R, f ∈ L2,a, a > 0. Then

(−Δk2
+W0(λ))

−1f =

∫ 2π

0

U1(k1)
†(−Δk +W0(λ))

−1U1(k1)f dk1.

Proof. Denote h = (−Δk2
+W0(λ))

−1f ∈ L2(S) ∩H2
loc(S). It is clear that

(−Δk +W0(λ))U1h = U1(−Δk2
+W0(λ))h,

and therefore,

U1h = (−Δk +W0(λ))
−1U1f, and h = U∗

1 (−Δk +W0(λ))
−1U1f. �
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§3. Estimation of the free resolvent

The content of this and the next two sections is very similar to the papers [8] and [4].
However, the constructions we need are not literally the same as the constructions in [8]
and [4]. So, we give it in detail for the reader’s convenience.

We fix numbers λ0 ∈ R and δ ∈ (0, π/4).

3.1. The sets Σ and G. The operator −Δk with periodic boundary conditions has
eigenfunctions

eim1x1+im2x2 , m1,m2 ∈ 2πZ,

and the eigenvalues

hm(k) = (m1 + k1)
2 + (m2 + k2)

2 = q+m(k)q−m(k),

where
q±m(k) = m1 + k1 ± i(m2 + k2).

In the complex plane of the parameter k2, we fix the point

(3.1) k∗2 =
π

2
+ i

(π

2
+ l∗

)
,

where

(3.2) l∗ ∈ 2πZ, l∗ ≥ 2
(
‖W00‖L∞ + (|λ0|+ 1)c−1

0

)
,

c0 is the constant from Remark 1.4, and W00 is the function from Remark 2.2.
We introduce the following set Σ in the plane of the parameter k1:

Σ =
{
k1 ∈ C : hm(k1, k

∗
2) = 0 for some m ∈ (2πZ)2

}
=

{
k1 ∈ C : Re k1 = −m1 ± (l∗ + π/2), Im k1 = ∓(m2 + π/2)

}
m1,m2∈2πZ

.
(3.3)

Note that different pairs (m1,m2) give different values of k1. The set Σ is contained in
a countable union of horizontal lines Im k1 ≡ π

2 (mod πZ). On each such line it is a
sequence of equally spaced points, with the spacings 2π. Also, we introduce the set G in
the plane of the parameter k1:

(3.4) G = (R+ iπZ) ∪
⋃
z∈Σ

(
z + π + i

[
−π

2
,
π

2

])
.

It is a “brick wall”; each “brick” is a rectangle of size (2π × π) centered at one point
of Σ. By construction,

(3.5) dist(G,Σ) =
π

2
.

3.2. Estimates of the symbol. The following lemma is an analog of [8, Lemma 5]
and [4, Lemma 5.3].

Lemma 3.1. Let k = (k1, k
∗
2), k1 ∈ G. Then |hm(k)| ≥ l∗.

Proof. Since q+m(k)− q−m(k) = 2i(m2 + k∗2), we have

|Re q+m(k)− Re q−m(k)| = π + 2l∗ > 2l∗.

So, max± |Re q±m(k)| > l∗. Next, |q±m(k)| = |k1−z| for some z ∈ Σ. Thus, min± |q±m(k)| ≥
π
2 for k1 ∈ G due to (3.5). Therefore,

|hm(k)| = |q+m(k)||q−m(k)| ≥ πl∗
2

> l∗. �

We fix a number τ ,

(3.6) τ ∈ 2πZ, τ ≥ 2δ−1
(
‖W00‖L∞ + (|λ0|+ 1)c−1

0

)
.
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Lemma 3.2. Let k = (k1, k2) be such that Im k1 = ±τ , Re k2 ∈ [δ, 2π − δ]. Then
|hm(k)| ≥ δτ .

Proof. Since Im q±m(k) = ±Re k2 (mod 2πZ), we have

min
±

|q±m(k)| ≥ min
±

| Im q±m(k)| ≥ δ.

Next, | Im q+m(k) + Im q−m(k)| = 2| Im k1| = 2τ , and

max
±

|q±m(k)| ≥ max
±

| Im q±m(k)| ≥ τ.

Thus, |hm(k)| ≥ δτ . �

3.3. Estimates for the norm (−Δk +W0(λ))
−1. The following lemma is an analog

of [8, Corollary 1] and [4, Theorem 4.2].

Lemma 3.3. Suppose λ ∈ B1(λ0), k = (k1, k
∗
2), k1 ∈ G, let k∗2 be defined by (3.1), and

let μ ∈ [0, 1]. Then there exists an inverse operator (−Δk + μW0(λ))
−1 in L2(Ω), and∥∥(−Δk + μW0(λ))

−1
∥∥ ≤ 2l−1

∗ .

Proof. By Lemma 3.1, ‖Δ−1
k ‖ ≤ l−1

∗ . By the definition (2.1) of the function W0(λ), we
have

(3.7) ‖W0(λ)‖ ≤ ‖W00‖L∞ + (|λ0|+ 1)c−1
0 ,

whence ‖μW0(λ)Δ
−1
k ‖ ≤ 1/2, where we have taken the condition (3.2) into account. So,

the operator (−Δk + μW0(λ)) is invertible in L2(Ω) and∥∥(−Δk + μW0(λ))
−1

∥∥ =
∥∥(−Δk)

−1(I − μW0(λ)Δ
−1
k )−1

∥∥ ≤ 2‖Δ−1
k ‖ ≤ 2l−1

∗ .

Here we have used the Neumann series arguments for the first inequality. �

The next lemma is an analog of [8, Theorem 2] and [4, Corollary 5.5].

Lemma 3.4. Suppose λ ∈ B1(λ0), Im k1 = ±τ , and Re k2 ∈ [δ, 2π − δ]. Then there
exists a bounded inverse operator (−Δk +W0(λ))

−1 in L2(Ω).

Proof. By Lemma 3.2, the inverse Δ−1
k exists, ‖Δ−1

k ‖ ≤ (δτ )−1. Inequalities (3.6) and

(3.7) yield the estimate ‖W0(λ)Δ
−1
k ‖ ≤ 1/2, which implies the invertibility of the operator

(−Δk +W0(λ)) and the estimate∥∥(−Δk +W0(λ))
−1

∥∥ ≤ 2‖Δ−1
k ‖ ≤ 2(δτ )−1. �

§4. The operator Tμ(k2, λ)

4.1. The operators Tμ. We denote

H1
per(Ω) = {f ∈ H1(Ω) : f(x1, 0) = f(x1, 1), f(0, x2) = f(1, x2)},

and the notation H2
per(Ω) has a similar meaning, see (2.2). As in [8], for μ ∈ [0, 1] in the

space H1
per(Ω)⊕ L2(Ω) we introduce the operator

Tμ(k2, λ) =

(
0 I

Δk2
− μW0(λ) 2i∂1

)
on the domain

DomTμ(k2, λ) = H2
per(Ω)⊕H1

per(Ω).

The following lemma is elementary, see [4, Proposition 3.1].

Lemma 4.1. The spectrum of the operator Tμ(k2, λ) is discrecte and (2π)-periodic.
Moreover, k1 ∈ σ(Tμ(k2, λ)) if and only if 0 ∈ σ(−Δk + μW0(λ)).
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Recall that the sets Σ and G are defined by formulas (3.3) and (3.4). The next lemma
is an analog of [8, Lemma 3] and [4, Theorem 4.3].

Lemma 4.2. Let λ ∈ B1(λ0). Then each “brick” of the set G, i.e., the set

(4.1) Qz = {k1 ∈ C : |Re(k1 − z)| < π, | Im(k1 − z)| < π/2} , z ∈ Σ,

contains exactly one eigenvalue of the operator T1(k
∗
2 , λ), where k∗2 is defined by (3.1).

Proof. We prove this claim for all operators Tμ(k
∗
2 , λ), μ ∈ [0, 1]. For μ = 0 the spectrum

of T0(k
∗
2 , λ) coincides with the set Σ by construction. The corresponding vectors

(
eimx

k1e
imx

)
form a basis in the space L2(Ω)⊕ L2(Ω), so that the spectrum of the operator T0(k

∗
2 , λ)

is simple.
For a given point z ∈ Σ, consider the Riesz projection

1

2πi

∮
∂Qz

(Tμ(k
∗
2 , λ)− κ)

−1
dκ,

where the contour of integration is the boundary of the corresponding “brick”. For
μ ∈ [0, 1] the eigenvalues of Tμ(k

∗
2 , λ) cannot cross ∂Qz ⊂ G by Lemma 3.3. Therefore,

the rank of this projection is constant for μ ∈ [0, 1], and equals 1 (see, e.g., [9, Chapter IV,
§3.5]). �

We denote the strip between the lines Im k1 = ±τ by

(4.2) D = {k1 ∈ C : | Im k1| < τ},
where the parameter τ is as defined in (3.6).

Corollary 4.3. The spectrum of the operator T1(k
∗
2 , λ), λ ∈ B1(λ0), in the strip D is a

(2π)-periodic set. It consists of exactly N = 2τ
π simple eigenvalues modulo 2π.

The following lemma is elementary.

Lemma 4.4. Let k1 /∈ σ(T1(k2, λ)). Then there exists a positive number ε such that

Bε(k1) ∩ σ(T1(rk2, rλ)) = ∅ if rk2 ∈ Bε(k2), rλ ∈ Bε(λ).

4.2. Degenerate eigenvalues.

Lemma 4.5. Let T (ξ1, . . . , ξm) be an analytic function defined in a domain O ⊂ Cm

with values in the operators in a finite-dimensional space,

T (
ξ) ∈ B(H), 
ξ ∈ O, dimH = L < ∞.

Then a function F ∈ Hol(O) such that the operator T (
ξ) has (at least one) degenerate

eigenvalue exists if and only if F (
ξ) = 0.

Proof. We consider the monic polynomial

p(κ) = (−1)L det(T (
ξ)− κ) = κ
L + aL−1(
ξ)κ

L−1 + · · ·+ a1(
ξ)κ + a0(
ξ).

The coefficients a0, . . . , aL−1 are analytic functions of 
ξ, aj ∈ Hol(O), j = 0, . . . , L− 1.
The discriminant Δ(p) is well defined for any monic polynomial. It is well known (see,
e.g., [12]) that Δ(p) is a polynomial in the coefficients a0, . . . , aL−1 of the initial polyno-
mial. The polynomial p has roots of multiplicity greater than one if and only if Δ(p) = 0.

Thus, we can put F (
ξ) = Δ(p). �
We introduce the following closed set M in the plane of the parameter k2:

(4.3) M = [2δ, 2π − 2δ] ∪
{π

2
+ il

}
l∈[0,l∗]

,

where l∗ is defined by (3.2).
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Theorem 4.6. Let k02 ∈ M . Then there exists a number ε ∈ (0, δ) and a function
F ∈ Hol(Bε(k

0
2) × Bε(λ0)) with the following properties. For (k2;λ) ∈ Bε(k

0
2) × Bε(λ0)

the operator T1(k2, λ) has (at least one) degenerate eigenvalue in the strip D (see (4.2))
if and only if F (k2, λ) = 0.

Proof. Clearly, there is a number ρ ∈ R such that Re k1 − ρ /∈ 2πZ for all k1 ∈
σ(T1(k

0
2, λ0)) ∩ D. Lemma 4.4 implies the existence of ε1 ∈ (0, δ) such that if k1 ∈

σ(T1(k2, λ)) ∩D, then Re k1 − ρ /∈ 2πZ for all k2 ∈ Bε1(k
0
2), λ ∈ Bε1(λ0).

Consider the Riesz projections

P (k2, λ) =
1

2πi

∮
(T1(k2, λ)− κ)−1 dκ,

where the contour of integration is the rectangle

{ρ+ iη}η∈[−τ,τ ] ∪ {ρ+ 2π + iη}η∈[−τ,τ ] ∪ {r + iτ}r∈[ρ,ρ+2π] ∪ {r − iτ}r∈[ρ,ρ+2π].

The projector P is analytic in the two variables (k2;λ) ∈ Bε1(k
0
2)×Bε1(λ0), and its rank

is constant by Lemmas 3.4 and 4.1. There exists a number ε ∈ (0, ε1) such that

(4.4) ‖P (k2, λ)− P (k02 , λ0)‖ < 1 for |k2 − k02 | ≤ ε, |λ− λ0| ≤ ε.

Next, we consider the operator-valued function

U(k2, λ) = P (k2, λ)P (k02, λ0) + (I − P (k2, λ))(I − P (k02, λ0)).

It is analytic in the two variables (k2;λ). By (4.4) the operators U are invertible, the
inverse operators are bounded, and U(k2, λ)

−1 is also an analytic operator-valued func-
tion,

U−1 ∈ Hol(Bε(k
0
2)×Bε(λ0), B(L2(Ω)))

(see [9, Chapter I §4.6, Chapter II §4.2 and Chapter VII §1.3]). Moreover,

P (k2, λ) = U(k2, λ)P (k02, λ0)U(k2, λ)
−1.

Now, we consider the operator

qT (k2, λ) = U(k2, λ)
−1T1(k2, λ)U(k2, λ).

We have qT ∈ Hol(Bε(k
0
2)×Bε(λ0), B(L2(Ω))) and

qT (k2, λ)P (k02, λ0) = P (k02 , λ0)qT (k2, λ).

The family qT (k2, λ)
∣∣
Ran(P (k0

2,λ0))
is an analytic operator-valued function in a finite-

dimensional space. The operators qT (k2, λ)
∣∣
Ran(P (k0

2,λ0))
have the same eigenvalues (tak-

ing multiplicity into account) as the operators T1(k2, λ)
∣∣
Ran(P (k2,λ))

. Now, a reference to

Lemma 4.5 completes the proof. �

§5. The set N (Γ)

5.1. The functions Fj(k2, λ). The set M (see (4.3)) is compact. Therefore, Theo-
rem 4.6 shows that there exist

• a finite set of points k2,j ∈ M , j = 1, . . . , J ;
• numbers εj ∈ (0, δ);
• neighbourhoods Oj = Bεj (k2,j)×Bε(λ0), where

(5.1) ε = min(ε1, . . . , εJ ) ∈ (0, δ);

• and analytic functions of two variables Fj ∈ Hol(Oj),

such that M ⊂
⋃J

j=1 Bεj (k2,j), and for (k2;λ) ∈ Oj the operator T1(k2, λ) has degenerate

eigenvalues in the strip D if and only if Fj(k2, λ) = 0.
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Lemma 5.1. For all λ ∈ Bε(λ0) and j = 1, . . . , J there exists k2 ∈ Bεj (k2,j) such that
Fj(k2, λ) �= 0.

Proof. Assume the claim is false. Suppose j ∈ {1, . . . , J}, λ ∈ Bε(λ0), and Fj(k2, λ) = 0
for all k2 ∈ Bεj (k2,j). Then the operator T1(k2, λ) has a degenerate eigenvalue in the
strip D for all k2 ∈ Bεj (k2,j). If Bεj (k2,j) ∩Bεl(k2,l) �= ∅, then

Fl(k2, λ) = 0, k2 ∈ Bεj (k2,j) ∩Bεl(k2,l),

and

(5.2) Fl(k2, λ) = 0, k2 ∈ Bεl(k2,l),

by the analyticity of the function Fl. Since the set M is connected, (5.2) is fulfilled for
all l. Thus, the operator T1(k

∗
2 , λ) has also a degenerate eigenvalue in D. But this fact

contradicts Lemma 4.2. �

5.2. Set N (Γ). Now, we fix a pair

(rk2; rλ) ∈ (2δ, 2π − 2δ)× (λ0 − ε, λ0 + ε)

satisfying the condition

(5.3) Fj(rk2, rλ) �= 0, where j is such that rk2 ∈ Bεj (k2,j).

Obviously, on the k2-plane there exists a continuous path Γ(t),

Γ: [0, 1] → {k2 ∈ C : Re k2 ∈ (δ, 2π − δ)},
such that

• Γ(0) = rk2, Γ(1) = k∗2 , where k∗2 is defined in (3.1);

• Γ([0, 1]) ⊂
⋃J

j=1 Bεj (k2,j);

• Fj(Γ(t), rλ) �= 0 for all t ∈ [0, 1], where j is such that Γ(t) ∈ Bεj (k2,j).

Next, we choose an open neighborhood N (Γ) of the path Γ in the k2-plane, and choose
a number ε0 ∈ (0, ε] such that

Γ([0, 1]) ∪Bε0(
rk2) ⊂ N (Γ) ⊂

J⋃
j=1

Bεj (k2,j) ⊂ {k2 ∈ C : Re k2 ∈ (δ, 2π − δ)}

and
Fj(k2, λ) �= 0, ∀k2 ∈ N (Γ), ∀λ ∈ Bε0(

rλ),

where j is such that k2 ∈ Bεj (k2,j). Now, Corollary 4.3, Lemma 3.4, and the definition
of the functions Fj imply that the spectrum of the operator T1(k2, λ) in the strip D
consists of N = 2τ

π simple eigenvalues repeated infinitely many times with period 2π, for

all k2 ∈ N (Γ), λ ∈ Bε0(
rλ). Thus, we get N analytic functions

{qn(k2, λ)}Nn=1, qn ∈ Hol
(
N (Γ)×Bε0(

rλ)
)
.

These functions describe the spectrum of T1(k2, λ) in D modulo 2π,

k1 ∈ σ(T1(k2, λ)), | Im k1| ≤ τ ⇔ k1 − qn(k2, λ) ∈ 2πZ

for some unique n = 1, . . . , N . Next, Lemma 2.5 and Lemma 4.1 show that for k2 ∈ R

and λ /∈ R the spectrum of T1(k2, λ) contains no real eigenvalues, i.e., qn(k2, λ) /∈ R.
Therefore, we can renumber the functions qn as follows:

{qn}Nn=1 = {q−n }
N−
n=1 ∪ {q+n }

N+

n=1, N+ +N− = N,

where

(5.4) ± Im q±j (k2, λ) > 0, j = 1, . . . , N±, for k2∈(rk2−ε0,rk2+ε0), λ ∈ Bε0(
rλ), Imλ>0.
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Here it does not matter what pair (k2;λ) ∈ (rk2 − ε0,rk2 + ε0) × Bε0(
rλ), Imλ > 0, we

choose, because (5.4) is fulfilled for all such pairs simultaneously.

§6. Analytic continuation of the free resolvent

Suppose that (rk2; rλ) ∈ (2δ, 2π − 2δ)× (λ0 − ε, λ0 + ε) satisfies (5.4), and let N (Γ) be

the set constructed in the preceding section with these (rk2; rλ).

6.1. The operators A(k1, k2, λ). We introduce the operators

A(k1, k2, λ) = U1(k1)
†(−Δk +W0(λ))

−1U1(k1),

where

k1 ∈ D, k2 ∈ N (Γ), λ ∈ Bε0(
rλ) and k1 �≡ qn(k2, λ)(mod2πZ), n = 1, . . . , N,

and the operators U1(k1), U1(k1)
† are as defined in §2.

Lemma 6.1. Let a > τ with τ as defined in (3.6). Then:
a) A(k1, k2, λ) : L2,a → H2

−a is a bounded operator;

b) for k1 ∈ G ∩D and k2 = k∗2 , we have

‖A(k1, k
∗
2 , λ)‖L2,a→L2,−a

≤ 2c21l
−1
∗ ,

where the constant c1 is the same as in Lemma 2.4;
c) the operator-valued function A is analytic in the three variables in

D ×N (Γ)×Bε0(λ0) \
N⋃

n=1

{(k1, k2, λ) : k1 ≡ qn(k2, λ)(mod2πZ)} .

Proof. a) This follows form Lemma 2.4 and the fact that the operator

(−Δk +W0(λ))
−1 : L2(Ω) → H2

per(Ω)

is bounded whenever it exists.
b) By the definition of A(k1, k2, λ) we have

‖A(k1, k
∗
2 , λ)‖L2,a→L2,−a

≤ ‖U1(k1)
†‖L2(Ω)→L2,−a

‖(−Δk+W0(λ))
−1‖L2(Ω)→L2(Ω)‖U1(k1)‖L2,a→L2(Ω) ≤ 2c21l

−1
∗ ,

due to Lemmas 2.4 and 3.3.
c) This is clear. �

Lemma 6.2. The operator-valued function A is (2π)-periodic in k1,

A(k1 + 2π, k2, λ) = A(k1, k2, λ).

Proof. Let f ∈ L2,a, a > τ . Put

h(k, x) =
(
Π(−Δk +W0(λ))

−1U1(k1)f
)
(x).

Recall that here Π is the operator of periodic extension of functions defined in Ω to the
entire strip S. Thus, the function h is defined for x ∈ S and is 1-periodic in x1. We have

(−Δk +W0(λ))h(k, x) =
1√
2π

∑
n1∈Z

e−ik1(x1+n1)f(x1 + n1, x2).

The function e−2πix1h(k, x) is also 1-periodic in x1 and(
−Δk+2πe1 +W0(λ)

) (
e−2πix1h(k, x)

)
= e−2πix1(−Δk +W0(λ))h(k, x)

=
1√
2π

∑
n1∈Z

e−i(k1+2π)(x1+n1)f(x1 + n1, x2) =
(
U1(k1 + 2π)f

)
(x).
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Therefore,

(−Δk+2πe1 +W0(λ))
−1

U1(k1 + 2π)f = e−2πix1h,

and (
A(k1 + 2π, k2, λ)f

)
(x) =

1√
2π

ei(k1+2π)x1e−2πix1h(k, x) =
(
A(k1, k2, λ)f

)
(x). �

6.2. The operators R0(k2, λ). For k2 ∈ N (Γ) and λ ∈ Bε0(
rλ), we introduce the

operators

R0(k2, λ) =

∫
[0,2π]+iτ

A(k1, k2, λ) dk1 + 2πi

N+∑
j=1

resq+j (k2,λ)
A( · , k2, λ)

in the strip S. Here, as usual,

2πi resq+j (k2,λ)
A( · , k2, λ) =

∮
Γj

A(k1, k2, λ) dk1,

Γj is a rectifiable contour that contains q+j (k2, λ) and does not contain any other eigen-

values of the operator T1(k2, λ).

Lemma 6.3. Let a > τ . Then:
a) R0 ∈ Hol

(
N (Γ)×Bε0(

rλ), B(L2,a, H
2
−a)

)
;

b) for k2 = k∗2 we have

‖R0(k
∗
2 , λ)‖L2,a→L2,−a

≤ c2l
−1
∗ , λ ∈ Bε0(

rλ),

where c2 = 4c21(6τ + π) with c1 as defined in Lemma 2.4.

Proof. a) This follows from Lemma 6.1.
b) By Lemma 4.2, each pole q+j (k

∗
2 , λ) belongs to some “brick” Q+

j (see (4.1)), and

there are no other poles therein. So, we can rewrite the expression for R0(k
∗
2 , λ) as

R0(k
∗
2 , λ) =

∫
[0,2π]+iτ

A(k1, k
∗
2 , λ) dk1 +

N+∑
j=1

∮
∂Q+

j

A(k1, k
∗
2 , λ) dk1.

Now, the inclusions [0, 2π] + iτ ⊂ G, ∂Q+
j ⊂ G and Lemma 6.1 b) imply

‖R0(k
∗
2 , λ)‖L2,a→L2,−a

≤ (2π + 6πN+) 2c
2
1l

−1
∗ ≤ c2l

−1
∗ . �

Lemma 6.4. If k2 ∈ (rk2 − ε0,rk2 + ε0), λ ∈ Bε0(
rλ), Imλ > 0, and a > τ , then

R0(k2, λ)f = (−Δk2
+W0(λ))

−1
f, f ∈ L2,a.

Proof. The operator-valued function A is (2π)-periodic in k1 by Lemma 6.2. Therefore,
by the definition of the functions q+j we have

R0(k2, λ) =

∫ 2π

0

A(k1, k2, λ) dk1

under the above conditions on k2 and λ. Referring to Lemma 2.6, we complete the
proof. �
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§7. Analytic continuation of the full resolvent

In the rest of the paper we follow essentially the exposition in [5]. The following fact
is well known.

Lemma 7.1. Let O be a domain in Cp, and let 
z0 ∈ O. Let M ∈ Hol(O, B(H)) be an
analytic function with values in the compact operators in a Hilbert space H. Then there
is a neighborhood O0 of the point 
z0 and an analytic function h ∈ Hol(O0) such that for

z ∈ O0 the operator (I +M(
z)) is invertible if and only if h(
z) �= 0.

Everywhere below we assume that conditions (3.2) and (3.6) are fulfilled, a > τ , and
moreover,

(7.1) l∗ > c2 sup
λ∈B1(λ0)

‖W1(λ)‖L∞,2a
,

where c2 is the constant defined in Lemma 6.3. The next lemma is an analog of [5,
Theorem 4.1].

Lemma 7.2. Suppose that (rk2; rλ) satisfies condition (5.3). Then there is a number

ε∗ ∈ (0, ε0] and a function h ∈ Hol(Bε∗(
rk2)×Bε∗(

rλ)) such that

1) for (k2;λ) ∈ Bε∗(
rk2)×Bε∗(

rλ) the operator (I+W1(λ)R0(k2, λ)) has bounded inverse
in L2,a if and only if h(k2, λ) �= 0;

2) for all λ ∈ Bε∗(
rλ),

(7.2) there is k2 ∈ Bε∗(
rk2) with h(k2, λ) �= 0.

Proof. By the assumption (see Remark 2.2), we have W1(λ) ∈ L∞,b, b > 2a. Therefore,
the operator of multiplication by W1(λ) is bounded as an operator from L2,−a to L2,a,
and is compact as an operator from H2

−a to L2,a. Therefore, by Lemma 6.3 a), the
operator W1(λ)R0(k2, λ) is compact in L2,a, and is an analytic operator-valued function

of (k2;λ) ∈ N (Γ)×Bε0(
rλ). Furthermore, Lemma 6.3 b) shows that

‖W1(λ)R0(k
∗
2 , λ)‖L2,a→L2,a

≤ c2l
−1
∗ ‖W1‖L∞,2a

< 1

by the assumption (7.1). Therefore, for all λ ∈ Bε0(
rλ) the inverse operator

(I +W1(λ)R0(k
∗
2 , λ))

−1

exists in L2,a. Now, the analytic Fredholm alternative implies that for all λ ∈ Bε0(
rλ)

there is a point k2 ∈ N (Γ) arbitrarily close to rk2 and such that the operator (I +
W1(λ)R0(k2, λ)) is also invertible in L2,a. The reference to Lemma 7.1 with


z = (k2;λ), 
z0 = (rk2; rλ), H = L2,a and M(
z) = W1(λ)R0(k2, λ)

completes the proof. �

The next theorem is an analog of [5, Theorem 5.1].

Theorem 7.3. Under the assumptions of Lemma 7.2, there is an operator-valued func-
tion R with the following properties:

1) R ∈ Hol
(
Bε∗(

rk2)×Bε∗(
rλ) \ {(k2;λ) : h(k2, λ) = 0};B(L2,a, H

2
−a)

)
;

2) for k2 ∈ (rk2 − ε∗,rk2 + ε∗), |λ− rλ| < ε∗, Imλ > 0, h(k2, λ) �= 0, we have

(7.3) R(k2, λ)f = (H(k2)− λ)
−1

f, f ∈ L2,a.

Proof. We put

R(k2, λ) = g(x)−1/2R0(k2, λ)
(
I +W1(λ)R0(k2, λ)

)−1
g(x)−1/2.
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Clearly, the first property is fulfilled. Suppose that

f ∈ L2,a, k2 ∈ (rk2 − ε∗,rk2 + ε∗), |λ− rλ| < ε∗, Imλ > 0, h(k2, λ) �= 0.

Then (
I +W1(λ)R0(k2, λ)

)−1
g(x)−1/2f ∈ L2,a.

Denote

u = R0(k2, λ)
(
I +W1(λ)R0(k2, λ)

)−1
g(x)−1/2f ∈ H2

−a.

Applying Lemma 2.1, we get

(H(k2)− λ)R(k2, λ)f = (H(k2)− λ)(g−1/2u) = g1/2
(
−Δk2

+W0(λ) +W1(λ)
)
u.

For real k2 and nonreal λ we have(
−Δk2

+W0(λ) +W1(λ)
)
u =

(
I +W1(λ)R0(k2, λ)

)−1
(g(x)−1/2f)

+W1(λ)R0(k2, λ)
(
I +W1(λ)R0(k2, λ)

)−1
(g(x)−1/2f) = g−1/2f

by Lemma 6.4. Thus,

(7.4) (H(k2)− λ)R(k2, λ)f = f.

For Imλ > 0 the operators (−Δk2
+W0(λ))

−1 and (H(k2) − λ)−1 are well defined and
bounded in L2(S) by Lemma 2.5. This fact together with Lemma 6.4 yields u ∈ L2(S),
and therefore R(k2, λ)f ∈ L2(S). Now, (7.4) implies (7.3). �

§8. Proof of Theorem 1.3

We need the following fact of theory of functions, see [7, Theorem A] and [6, Lemma 3].

Lemma 8.1. Let F be a real-analytic function in the rectangle U × I, where U and I
are intervals of the real axis. Suppose Λ ⊂ I, measΛ = 0. Assume that for all λ ∈ Λ
there is k ∈ U such that F (k, λ) �= 0. Then

meas {k ∈ U : F (k, λ) = 0 for some λ ∈ Λ} = 0.

Now, we assume that Λ ⊂ (λ0 − ε, λ0 + ε) with ε as defined in (5.1), and that
measΛ = 0. We need to prove that EH(Λ) = 0. Consider the set

K0 = {k2 ∈ (2δ, 2π − 2δ) : Fj(k2, λ) = 0 for some j = 1, . . . , J, and some λ ∈ Λ} .
Lemma 5.1 and Lemma 8.1 show that measK0 = 0.

The following fact is also well known. If there is an open covering of a set in a Euclidean
space, then one can choose a countable subcovering of this set. Therefore, Lemma 7.2
and Theorem 7.3 imply that the set of (k2;λ) for which the corresponding Fj(k2, λ) �= 0
can be represented as the following countable union:{

(k2;λ) ∈ (2δ, 2π − 2δ)× (λ0 − ε, λ0 + ε) : Fj(k2, λ) �= 0
}

=
∞⋃

m=1

(k
(m)
2 − εm, k

(m)
2 + εm)× (λm − εm, λm + εm).

Here for any m ∈ N we can find

• a function hm defined and analytic in a complex neighborhood of the set

Bεm(k
(m)
2 )×Bεm(λm),

and such that

for every λ ∈ Bεm(λm) there exists k2 ∈ Bεm(k
(m)
2 )with hm(k2, λ) �= 0;
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• a B(L2,a, L2,−a)-valued function Rm defined and analytic in

Bεm(k
(m)
2 )×Bεm(λm) \ {(k2;λ) : hm(k2, λ) = 0}

and satisfying (7.3).

Put

K1 = {k2 ∈ (2δ, 2π − 2δ) : hm(k2, λ) = 0 for some m ∈ N, and some λ ∈ Λ} .
We have measK1 = 0 again by Lemma 8.1.

For k2 /∈ K0 and m ∈ N we put

Λm(k2) =

{
∅ if k2 /∈ (k

(m)
2 − εm, k

(m)
2 + εm),

Λ ∩Bεm(λm) if k2 ∈ (k
(m)
2 − εm, k

(m)
2 + εm).

Clearly, we have

(8.1) Λm(k2) ⊂ (λm − εm, λm + εm), measΛm(k2) = 0,

and

(8.2) Λ =

∞⋃
m=1

Λm(k2) ∀ k2 ∈ (2δ, 2π − 2δ) \K0.

We shall use the following lemma, see [13, Chapter I, §4, Proposition 2] and formula (18)
after it.

Lemma 8.2. Let B be a selfadjoint operator in a Hilbert space H, and let D be a dense
subset in H, γ > 0. Assume that

sup
a≤λ≤b,
0<ν<γ

∣∣((B − (λ+ iν))−1f, f
)∣∣ < ∞, f ∈ D.

Then the spectrum of the operator B on the segment [a, b] is absolutely continuous.

Lemma 8.3. Let k2 ∈ (2δ, 2π − 2δ) \ (K0 ∪K1), and let m ∈ N. Then

EH(k2)(Λm(k2)) = 0.

Proof. The claim is trivial if Λm(k2) = ∅. Suppose Λm(k2) �= ∅. Since k2 /∈ K1, we have

(8.3) hm(k2, λ) �= 0 for λ ∈ Λm(k2).

Therefore, hm(k2, · ) has at most finitely many zeros on [λm − εm, λm + εm]. We denote
these zeros by μ1, . . . , μn. Consider a segment [α, β] ⊂ [λm − εm, λm + εm] such that
μj /∈ [α, β]. There is a B(L2,a, L2,−a)-valued function Rm(k2, · ) defined and analytic in
a complex neighborhood of the segment [α, β] and such that

Rm(k2, λ)f = (H(k2)− λ)
−1

f, ∀ f ∈ L2,a, Reλ ∈ [α, β], 0 < Imλ < γ,

for some γ > 0. Therefore,∣∣((H(k2)− λ)−1f, f
)∣∣ ≤ ‖Rm(k2, λ)‖L2,a→L2,−a

‖f‖2L2,a
,

and

sup
α≤Reλ≤β,
0<Imλ<γ

∣∣((H(k2)− λ)−1f, f
)∣∣ < ∞, f ∈ L2,a.

Now we can apply Lemma 8.2 with H = L2(S), D = L2,a. Thus, the spectrum of the
operator H(k2) on the segment [α, β] is absolutely continuous. We have measΛm(k2) = 0
by (8.1) and μj /∈ Λm(k2) by (8.3). Therefore, EH(k2)(Λm(k2)) = 0. �
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Now, (8.2) implies
EH(k2)(Λ) = 0 for k2 /∈ K0 ∪K1

and ∫ 2π−2δ

2δ

EH(k2)(Λ) dk2 =

∫
(2δ,2π−2δ)\(K0∪K1)

EH(k2)(Λ) dk2 = 0.

For all λ0 ∈ R and δ ∈ (0, π/4) this identity is valid for all sets Λ ⊂ (λ0 − ε, λ0 + ε) with
measΛ = 0. Here ε does not depend on Λ. Therefore,∫ 2π−2δ

2δ

EH(k2)(Λ) dk2 = 0 for all Λ ⊂ R, measΛ = 0.

Since δ is an arbitrary number in (0, π/4), we get

EH(Λ) =

∫
[0,2π]

EH(k2)(Λ) dk2 =

∫
(0,2π)

EH(k2)(Λ) dk2 = 0 for all Λ ⊂ R, measΛ = 0.

The proof of Theorem 1.3 is complete.

References

[1] M. Sh. Birman and T. A. Suslina, A periodic magnetic Hamiltonian with a variable metric. The
problem of absolute continuity, Algebra i Analiz 11 (1999), no. 2, 1–40; English transl., St. Peters-
burg Math. J. 11 (2000), no. 2, 203–232. MR1702587

[2] P. Exner and R. Frank, Absolute continuity of the spectrum for periodically modulated leaky wires
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