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A FAMILY OF PERMUTATION GROUPS

WITH EXPONENTIALLY MANY

NONCONJUGATED REGULAR

ELEMENTARY ABELIAN SUBGROUPS

S. EVDOKIMOV, M. MUZYCHUK, AND I. PONOMARENKO

Abstract. Given a prime p, a permutation group is constructed that contains at
least pp−2 nonconjugated regular elementary Abelian subgroups of order p3. This
gives the first example of a permutation group with exponentially many nonconju-
gated regular subgroups.

§1. Introduction

A transitive permutation group is said to be regular if the one-point stabilizer of it
is trivial. Regular subgroups of permutation groups arise in many natural contexts, for
example, in group factorizations [4], Schur rings [6], Cayley graphs [1], etc. In the present
paper, given a group H and a permutation group Γ, we are interested in the number

(1) bH(Γ) := |Orb(Γ,Reg(Γ, H))|

of orbits in the action of Γ by conjugation on the set Reg(Γ, H) of all its regular subgroups
isomorphic to H. Using terminology and arguments of [1], one can see that if Γ is the
automorphism group of an object of a concrete category C, then bH(Γ) equals the number
of pairwise nonequivalent representations of this object as a Cayley object over H in C.
As C one can take, for example, the category of finite graphs or other combinatorial
structures.

Let H be a cyclic group. Then, obviously, bH(Γ) is bounded from above by num-
ber c(Γ) of the conjugacy classes of full cycles contained in Γ. It was proved in [5] that
the latter number does not exceed n = |H|.1 Thus, in this case bH(Γ) ≤ n.

The simplest noncyclic case appears when H is an elementary Abelian group Ep2 .
Here, bH(Γ) ≤ bH(P ) by the Sylow theorem, where P is a Sylow p-subgroup of the
group Γ. To estimate bH(P ), without loss of generality we may assume that P is a
transitive p-group of degree p2 the action of which on some imprimitivity system induces
a regular (cyclic) group of order p, i.e., P belongs to the class defined in the same way as
the class Ep in Theorem 1.1 below with p3 replaced by p2. With the help of the technique
developed in §2, we can describe the set Reg(Γ, H) (cf. Theorem 2.2 and Lemma 2.4).
Then applying [2, Theorem 6.1], one can prove that bH(P ) ≤ p. Thus, in this case we
also have bH(Γ) ≤ n.
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In the above two cases, the number bH(Γ) does not exceed n for all Γ. The main result
of the present paper (Theorem 1.1) shows that in the general case, neither this bound,
nor even substantially weaker bounds are valid.

Theorem 1.1. Let H = Ep3 , where p is a prime. Denote by Ep the class of all transitive
p-groups of degree p3 the action of which on some imprimitivity system induces a regular
group isomorphic to Ep2 . Then there exists a group Γ ∈ Ep such that bH(Γ) ≥ pp−2.

From Theorem 1.1, it follows that there is no function f for which the inequality
bH(Γ) ≤ nf(r) holds true for all Abelian groups H of rank at most r and all permutation
groups Γ of degree n. It would be interesting to find an invariant t = t(Γ) such that

bH(Γ) ≤ nf(r,t)

for a function f of r and t; for instance, one can try to take t = t(Γ) to be the minimal
positive integer t′ for which the group Γ is t′-closed as a permutation group in the sense
of [7]2.

The proof of Theorem 1.1 is given in §3. It is based on a representation of the groups
belonging to the class Ep with the help of two-variable polynomials over the field Fp. The
details are presented in §2. It is of interest to note that the stabilizer of the imprimitivity
system in every group Γ ⊂ Ep is, up to language, a Generalized Reed–Muller code [3].

Notation. As usual, Fp and Sym(V ) denote the field of order p and the symmetric group
on the set V . An elementary Abelian p-group of order pn is denoted by Epn .

§2. Permutation groups and polynomials

Let p be a prime. Denote by Rp the factor ring of the polynomial ring Fp[X,Y ] modulo
the ideal generated by the polynomials Xp − 1 and Y p − 1. The images of the variables
X and Y are denoted by x and y, respectively. Denote by V the disjoint union of the
one-dimensional subspaces

Vi,j = {αxiyj : α ∈ Fp}, i, j = 0, . . . , p− 1,

of the ring Rp viewed as a linear space over Fp.
Every element f =

∑
i,j αi,jx

iyj of Rp yields a permutation

σf : αx
iyj �→ (α+ αi,j)x

iyj

of the set V . This produces a permutation group on V with p2 orbits Vi,j that is
isomorphic to the additive group of the ring Rp. For a subgroup I of the latter group, the
corresponding subgroup of Sym(V ) is denoted by Δ(I). Also, we define two commuting
permutations

τx : αx
iyj �→ αxi+1yj , τy : αx

iyj �→ αxiyj+1.

Clearly, each of them commutes with the permutation s = σf0 , where f0 =
∑

i,j x
iyj .

The following statement is straightforward.

Lemma 2.1. In the above notation, we have

(1) τ−1
x σfτx = σfx and τ−1

y σfτy = σfy for all f ∈ Rp,
(2) G0 := 〈s, τx, τy〉 is a regular group on V isomorphic to Ep3 .

Set Γ(I) to be the group generated by Δ(I) and τx, τy. If I is an ideal of Rp, then, by
statement (1) of Lemma 2.1,

(2) Δ(I) � Γ(I) and Γ(I)/Δ(I) ∼= Ep2 .

If I is not an ideal, then Γ(I) = Γ(I ′), where I ′ is the ideal of Rp generated by I.

2Here for groups Γ ∈ Ep, the upper bound in inequality (8) could be useful.
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Theorem 2.2. Let p be a prime. Then

(1) for every ideal I �= 0 of the ring Rp, the group Γ(I) belongs to the class Ep,
(2) every group Γ ∈ Ep with bH(Γ) > 0 is permutation isomorphic to the group Γ(I)

for some ideal I of Rp.

Proof. To prove statement (1), let I �= 0 be an ideal of Rp. Then at least one of the
sets Vi,j is an orbit of the group Δ(I). Since τx and τy commute, the group 〈τx, τy〉 acts
regularly on the set S = {Vi,j : i, j = 0, . . . , p − 1}. This implies that the group Γ(I)
is transitive and S is an imprimitivity system of it. The action of Γ(I) on this system
induces a regular group isomorphic to Ep2 that is generated by the images of τx and τy
with respect to this action. Thus, Γ(I) ∈ Ep.

Let Γ ∈ Ep. Then Γ is a transitive p-group of degree p3, the action of which on
some imprimitivity system S′ induces a regular group isomorphic to Ep2 . Without loss
of generality, we may assume that Γ ≤ Sym(V ) with V as above. Furthermore, since
bH(Γ) > 0, the group Γ contains a regular subgroup G′ isomorphic to H = Ep3 . Choose
an element s′ ∈ G′ such that Orb(〈s′〉, V ) = S′. Then there exists a group isomorphism

ϕ : G′ → G0

taking s′ to s (see statement (2) of Lemma 2.1). Since ϕ is induced by a permutation
of V , we may assume that S′ = S and G0 ∈ Reg(Γ, Ep3). Note that the permutation s
belongs to the stabilizer Δ of the blocks Vi,j in Γ. Therefore, Orb(Δ, V ) = S. Since the
restriction of Δ to Vi,j is a p-group of degree p that contains the restriction of s to Vi,j

for all i, j, this implies that

Δ ≤ Δ(Rp).

It follows that Δ = Δ(I) for a subgroup I of Rp. Taking into account that Δ is normalized
by τx and τy, we conclude that I is an ideal of Rp by statement (1) of Lemma 2.1. �

Any maximal element in the class Ep is permutation isomorphic to the (imprimitive)
wreath product of regular groups isomorphic to Ep and Ep2 . One of these maximal
elements equals the group Γp := Γ(Rp); set also Δp = Δ(Rp). We need two auxiliary
lemmas.

Lemma 2.3. Let g, h ∈ Rp. Then the order of the permutation tg,x = σgτx (respectively,
th,y = σhτy) equals p if and only if g ∈ aRp (respectively, h ∈ bRp), where a = x− 1 and
b = y − 1.

Proof. Let g =
∑

i,j αi,jx
iyj , and let v = αxivj be a point of V . Then by the definition

of tg,x, we have

vtg,x = (α+ αi,j)x
i+1yj .

This implies that the order of tg,x equals p if and only if the following condition is
satisfied:

(3)

p−1∑

i=0

αi,j = 0, j = 0, . . . , p− 1.

Note that this is always true whenever g ∈ aRp. Conversely, suppose that relations (3)
are fulfilled for some g ∈ Rp. Then

α0,j = α′
1,j − α′

0,j , . . . , αp−1,j = α′
0,j − α′

p−1,j ,

where α′
i,j =

∑i−1
k=0 αk,j for all i, j. It follows that g = ag′ with g′ =

∑
i,j α

′
i,jx

iyj . This

completes the proof of the first statement. The second statement (on the order of th,y)
is proved similarly. �
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Lemma 2.4. A permutation group G belongs to the set Reg(Γp, Ep3) if and only if there
exist elements g ∈ aRp and h ∈ bRp such that

(4) G = 〈s, tg,x, th,y〉 and ah = bg.

Proof. To prove the “only if” part, suppose that G ∈ Reg(Γp, Ep3). Then G is a self-
centralizing subgroup of Sym(V ). On the other hand, the centralizer of G in Sym(V )
contains the central element s of the group Γp. Thus, s ∈ G. The other two generators
of G can obviously be chosen so that their images with respect to the epimorphism
Γp → Γp/Δp coincide with x and y. By Lemma 2.3, this implies that there exist g ∈ aRp

and h ∈ bRp for which the first identity in (4) holds true. Next, since the group G is
Abelian, the definition of tg,x and th,y implies that

σgτx σhτy = tg,xth,y = th,ytg,x = σhτy σgτx.

Each of the permutations on the left- and right-hand sides takes the point αxiyj ∈ Vi,j

to a certain point α′xi+1yj+1 ∈ Vi+1,j+1. Calculating the images of the former point
with respect to them, we obtain

α+ gi,j + hi+1,j = α′ = α+ hi,j + gi,j+1

or equivalently, hi+1,j−hi,j = gi,j+1−gi,j for all i, j. Therefore, ah = xh−h = yg−g = bg,
as required.

Conversely, let G be the group defined by relations (4). Then the above argument
shows that the permutations s, tg,x, and th,y pairwise commute. Therefore, the group
G is Abelian. Moreover, the definition of s and Lemma 2.3 imply that G is elementary
Abelian and transitive. Thus, G ∈ Reg(Γp, Ep3), as required. �

§3. Proof of Theorem 1.1

By statement (1) of Theorem 2.2, we may restrict ourselves to looking for a group Γ
of the form Γ(I), where I is an ideal of the ring Rp.

For every integer k ≥ 0, set

Ik = span
Fp
{aibj : i+ j ≥ k},

where the elements a and b are as in Lemma 2.4. Clearly, Ik is an ideal of Rp, and
Ik+1 ⊆ Ik for all k, and also Ik = 0 for k > 2(p− 1). Below, the kernels of the mappings
Ik → aIk and Ik → bIk induced by the multiplication by a and b are denoted by Ak and
Bk, respectively.

Lemma 3.1. Suppose that p ≤ k ≤ 2(p− 1). Then

(1) dim(Ik) =
(
2p−k

2

)
,

(2) aIk = bIk = Ik+1,
(3) dim(Ak) = dim(Bk) = 2p− k − 1.

Proof. The leading monomials of the polynomials

(x− 1)i(y − 1)j , 0 ≤ i, j ≤ p− 1,

are obviously linearly independent. Therefore, the polynomials aibj with i + j ≥ k
form a linear basis of the ideal Ik. This immediately proves statement (1). To prove
statement (2), we note that, obviously, aIk ⊆ Ik+1. Conversely, let c ∈ Ik+1. Since
k ≥ p, we have c = abu for some u ∈ Ik−1, which proves the reverse inclusion. The rest
of statement (2) is proved similarly. Finally, statement (3) follows, because the linear
space Ak (respectively, Bk) is spanned by the monomials ap−1bi (respectively, aibp−1)
with k − p+ 1 ≤ i ≤ p− 1. �
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In what follows, for a subgroup G of a group Γ we denote by GΓ the set of all Γ-con-
jugates of G.

Lemma 3.2. Let Γk,p = Γ(Ik), where k is as in Lemma 3.1. Then

(1) |Γk,p| = p2+dim(Ik),

(2) |Reg(Γk,p, Ep3)| = pdim(Ak)+dim(Bk)+dim(Ik+1)−2,

(3) pdim(Ik)−4 ≤ |GΓk,p | ≤ pdim(Ik)−1 for all G ∈ Reg(Γk,p, Ep3).

Proof. Obviously, |Δ(Ik)| = pdim(Ik). Therefore, statement (1) follows from the right-
hand side of formula (2). Next, from Lemma 2.4 it follows that

Reg(Γk,p, Ep3) = {Gg,h : (g, h) ∈ M},
where Gg,h = 〈s, tg,x, th,y〉 and
(5) M = {(g, h) ∈ (Ik ∩ aRp)× (Ik ∩ bRp) : ah = bg}.
However, Ik ∩ aRp = Ik ∩ bRp = Ik, because k ≥ p. So by statement (2) of Lemma 3.1,
the element ah = bg runs over the ideal Ik+1, whenever (g, h) runs over the set M . By
the definition of Ak and Bk, this implies that

|M | = pdim(Ak)+dim(Bk)+dim(Ik+1).

Thus, to complete the proof of statement (2), it suffices to verify that Gg,h = Gg′,h′ if
and only if tg,x = sitg′,x and th,y = sjth′,y for some 0 ≤ i, j ≤ p − 1. However, this is
true, because Gg,h = Gg′,h′ if and only if ϕ(Gg,h) = ϕ(Gg′,h′), where ϕ is the quotient
epimorphism of Γk,p modulo the group 〈s〉.

To prove statement (3), we note that, by statement (1),

(6) |GΓ| = |Γ|
|N | =

p2+dim(Ik)

|C| · |N/C| ,

where Γ = Γk,p, and N and C are, respectively, the normalizer and centralizer of G in Γ.
Since G is a regular elementary Abelian group and the quotient N/C is isomorphic to a
subgroup of a Sylow p-subgroup P of the group Aut(G) ∼= GL(3, p) (here we use the fact
that Γ is a p-group), we conclude that

|C| = |G| = p3 and 1 ≤ |N/C| ≤ |P |.
However, |P | = p3. Thus, statement (3) follows from formula (6). �

To complete the proof of Theorem 1.1, we note that Reg(Γk, Ep3) is the disjoint union

of distinct sets GΓk , where Γk = Γk,p as in Lemma 3.2 and G ∈ Reg(Γk, Ep3). Therefore,

settingmk and Mk to be, respectively, the minimum and maximum of the numbers |GΓk |,
we obtain

(7)
|Reg(Γk, Ep3)|

mk
≥ bH(Γk) ≥

|Reg(Γk, Ep3)|
Mk

.

However, by statement (3) of Lemma 3.2, mk ≥ pdim(Ik)−4 and Mk ≤ pdim(Ik)−1. By
statement (2) of Lemma 3.2, this implies that

|Reg(Γk, Ep3)|
mk

≤ pd+2 and
|Reg(Γk, Ep3)|

Mk
≥ pd−1,

where d = dim(Ak)+dim(Bk)+dim(Ik+1)−dim Ik. Moreover, by statements (1) and (3)
of Lemma 3.1, we have d = 2p− k − 1. Thus,

(8) p2p−k+1 ≥ bH(Γk) ≥ p2p−k−2.

This lower bound for bH(Γk) with k = p− 1 proves Theorem 1.1.
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