A FAMILY OF PERMUTATION GROUPS WITH EXPONENTIALLY MANY NONCONJUGATED REGULAR ELEMENTARY ABELIAN SUBGROUPS

S. EVDOKIMOV, M. MUZYCHUK, AND I. PONOMARENKO

ABSTRACT. Given a prime p, a permutation group is constructed that contains at least p^{p-2} nonconjugated regular elementary Abelian subgroups of order p^3 . This gives the first example of a permutation group with exponentially many nonconjugated regular subgroups.

§1. INTRODUCTION

A transitive permutation group is said to be *regular* if the one-point stabilizer of it is trivial. Regular subgroups of permutation groups arise in many natural contexts, for example, in group factorizations [4], Schur rings [6], Cayley graphs [1], etc. In the present paper, given a group H and a permutation group Γ , we are interested in the number

(1)
$$b_H(\Gamma) := |\operatorname{Orb}(\Gamma, \operatorname{Reg}(\Gamma, H))|$$

of orbits in the action of Γ by conjugation on the set $\operatorname{Reg}(\Gamma, H)$ of all its regular subgroups isomorphic to H. Using terminology and arguments of [1], one can see that if Γ is the automorphism group of an object of a concrete category C, then $b_H(\Gamma)$ equals the number of pairwise nonequivalent representations of this object as a Cayley object over H in C. As C one can take, for example, the category of finite graphs or other combinatorial structures.

Let H be a cyclic group. Then, obviously, $b_H(\Gamma)$ is bounded from above by number $c(\Gamma)$ of the conjugacy classes of full cycles contained in Γ . It was proved in [5] that the latter number does not exceed $n = |H|^{.1}$ Thus, in this case $b_H(\Gamma) \leq n$.

The simplest noncyclic case appears when H is an elementary Abelian group E_{p^2} . Here, $b_H(\Gamma) \leq b_H(P)$ by the Sylow theorem, where P is a Sylow p-subgroup of the group Γ . To estimate $b_H(P)$, without loss of generality we may assume that P is a transitive p-group of degree p^2 the action of which on some imprimitivity system induces a regular (cyclic) group of order p, i.e., P belongs to the class defined in the same way as the class \mathcal{E}_p in Theorem 1.1 below with p^3 replaced by p^2 . With the help of the technique developed in §2, we can describe the set $\operatorname{Reg}(\Gamma, H)$ (cf. Theorem 2.2 and Lemma 2.4). Then applying [2, Theorem 6.1], one can prove that $b_H(P) \leq p$. Thus, in this case we also have $b_H(\Gamma) \leq n$.

²⁰¹⁰ Mathematics Subject Classification. Primary 20B05.

Key words and phrases. Permutation group, regular subgroup, polynomial over finite field.

The first author, S. Evdokimov, is deceased.

¹More exactly, under the Classification of Finite Simple Groups, $c(\Gamma) \leq \varphi(n)$, where φ is the Euler function, ibid.

S. EVDOKIMOV, M. MUZYCHUK, AND I. PONOMARENKO

In the above two cases, the number $b_H(\Gamma)$ does not exceed n for all Γ . The main result of the present paper (Theorem 1.1) shows that in the general case, neither this bound, nor even substantially weaker bounds are valid.

Theorem 1.1. Let $H = E_{p^3}$, where p is a prime. Denote by \mathcal{E}_p the class of all transitive p-groups of degree p^3 the action of which on some imprimitivity system induces a regular group isomorphic to E_{p^2} . Then there exists a group $\Gamma \in \mathcal{E}_p$ such that $b_H(\Gamma) \ge p^{p-2}$.

From Theorem 1.1, it follows that there is no function f for which the inequality $b_H(\Gamma) \leq n^{f(r)}$ holds true for all Abelian groups H of rank at most r and all permutation groups Γ of degree n. It would be interesting to find an invariant $t = t(\Gamma)$ such that

$$b_H(\Gamma) \le n^{f(r,t)}$$

for a function f of r and t; for instance, one can try to take $t = t(\Gamma)$ to be the minimal positive integer t' for which the group Γ is t'-closed as a permutation group in the sense of $[7]^2$.

The proof of Theorem 1.1 is given in $\S3$. It is based on a representation of the groups belonging to the class \mathcal{E}_p with the help of two-variable polynomials over the field \mathbb{F}_p . The details are presented in §2. It is of interest to note that the stabilizer of the imprimitivity system in every group $\Gamma \subset \mathcal{E}_p$ is, up to language, a Generalized Reed–Muller code [3].

Notation. As usual, \mathbb{F}_p and $\operatorname{Sym}(V)$ denote the field of order p and the symmetric group on the set V. An elementary Abelian p-group of order p^n is denoted by E_{p^n} .

§2. Permutation groups and polynomials

Let p be a prime. Denote by R_p the factor ring of the polynomial ring $\mathbb{F}_p[X, Y]$ modulo the ideal generated by the polynomials $X^p - 1$ and $Y^p - 1$. The images of the variables X and Y are denoted by x and y, respectively. Denote by V the disjoint union of the one-dimensional subspaces

$$V_{i,j} = \{\alpha x^i y^j : \alpha \in \mathbb{F}_p\}, \quad i, j = 0, \dots, p-1,$$

of the ring R_p viewed as a linear space over \mathbb{F}_p .

Every element $f = \sum_{i,j} \alpha_{i,j} x^i y^j$ of R_p yields a permutation

$$\sigma_f \colon \alpha x^i y^j \mapsto (\alpha + \alpha_{i,j}) x^i y^j$$

of the set V. This produces a permutation group on V with p^2 orbits $V_{i,j}$ that is isomorphic to the additive group of the ring R_p . For a subgroup I of the latter group, the corresponding subgroup of Sym(V) is denoted by $\Delta(I)$. Also, we define two commuting permutations

$$\tau_x \colon \alpha x^i y^j \mapsto \alpha x^{i+1} y^j, \quad \tau_y \colon \alpha x^i y^j \mapsto \alpha x^i y^{j+1}$$

Clearly, each of them commutes with the permutation $s = \sigma_{f_0}$, where $f_0 = \sum_{i,j} x^i y^j$. The following statement is straightforward.

Lemma 2.1. In the above notation, we have

- (1) $\tau_x^{-1}\sigma_f\tau_x = \sigma_{fx} \text{ and } \tau_y^{-1}\sigma_f\tau_y = \sigma_{fy} \text{ for all } f \in R_p,$ (2) $G_0 := \langle s, \tau_x, \tau_y \rangle$ is a regular group on V isomorphic to E_{p^3} .

Set $\Gamma(I)$ to be the group generated by $\Delta(I)$ and τ_x, τ_y . If I is an ideal of R_p , then, by statement (1) of Lemma 2.1,

(2)
$$\Delta(I) \leq \Gamma(I) \text{ and } \Gamma(I)/\Delta(I) \cong E_{p^2}.$$

If I is not an ideal, then $\Gamma(I) = \Gamma(I')$, where I' is the ideal of R_p generated by I.

²Here for groups $\Gamma \in \mathcal{E}_p$, the upper bound in inequality (8) could be useful.

Theorem 2.2. Let p be a prime. Then

- (1) for every ideal $I \neq 0$ of the ring R_p , the group $\Gamma(I)$ belongs to the class \mathcal{E}_p ,
- (2) every group $\Gamma \in \mathcal{E}_p$ with $b_H(\Gamma) > 0$ is permutation isomorphic to the group $\Gamma(I)$ for some ideal I of R_p .

Proof. To prove statement (1), let $I \neq 0$ be an ideal of R_p . Then at least one of the sets $V_{i,j}$ is an orbit of the group $\Delta(I)$. Since τ_x and τ_y commute, the group $\langle \tau_x, \tau_y \rangle$ acts regularly on the set $S = \{V_{i,j} : i, j = 0, \dots, p-1\}$. This implies that the group $\Gamma(I)$ is transitive and S is an imprimitivity system of it. The action of $\Gamma(I)$ on this system induces a regular group isomorphic to E_{p^2} that is generated by the images of τ_x and τ_y with respect to this action. Thus, $\Gamma(I) \in \mathcal{E}_p$.

Let $\Gamma \in \mathcal{E}_p$. Then Γ is a transitive *p*-group of degree p^3 , the action of which on some imprimitivity system S' induces a regular group isomorphic to E_{p^2} . Without loss of generality, we may assume that $\Gamma \leq \text{Sym}(V)$ with V as above. Furthermore, since $b_H(\Gamma) > 0$, the group Γ contains a regular subgroup G' isomorphic to $H = E_{p^3}$. Choose an element $s' \in G'$ such that $\text{Orb}(\langle s' \rangle, V) = S'$. Then there exists a group isomorphism

$$\varphi \colon G' \to G_0$$

taking s' to s (see statement (2) of Lemma 2.1). Since φ is induced by a permutation of V, we may assume that S' = S and $G_0 \in \operatorname{Reg}(\Gamma, E_{p^3})$. Note that the permutation s belongs to the stabilizer Δ of the blocks $V_{i,j}$ in Γ . Therefore, $\operatorname{Orb}(\Delta, V) = S$. Since the restriction of Δ to $V_{i,j}$ is a p-group of degree p that contains the restriction of s to $V_{i,j}$ for all i, j, this implies that

$$\Delta \leq \Delta(R_p).$$

It follows that $\Delta = \Delta(I)$ for a subgroup I of R_p . Taking into account that Δ is normalized by τ_x and τ_y , we conclude that I is an ideal of R_p by statement (1) of Lemma 2.1. \Box

Any maximal element in the class \mathcal{E}_p is permutation isomorphic to the (imprimitive) wreath product of regular groups isomorphic to E_p and E_{p^2} . One of these maximal elements equals the group $\Gamma_p := \Gamma(R_p)$; set also $\Delta_p = \Delta(R_p)$. We need two auxiliary lemmas.

Lemma 2.3. Let $g, h \in R_p$. Then the order of the permutation $t_{g,x} = \sigma_g \tau_x$ (respectively, $t_{h,y} = \sigma_h \tau_y$) equals p if and only if $g \in aR_p$ (respectively, $h \in bR_p$), where a = x - 1 and b = y - 1.

Proof. Let $g = \sum_{i,j} \alpha_{i,j} x^i y^j$, and let $v = \alpha x^i v^j$ be a point of V. Then by the definition of $t_{g,x}$, we have

$$y^{t_{g,x}} = (\alpha + \alpha_{i,j})x^{i+1}y^j.$$

This implies that the order of $t_{g,x}$ equals p if and only if the following condition is satisfied:

(3)
$$\sum_{i=0}^{p-1} \alpha_{i,j} = 0, \quad j = 0, \dots, p-1.$$

Note that this is always true whenever $g \in aR_p$. Conversely, suppose that relations (3) are fulfilled for some $g \in R_p$. Then

$$\alpha_{0,j} = \alpha'_{1,j} - \alpha'_{0,j}, \dots, \alpha_{p-1,j} = \alpha'_{0,j} - \alpha'_{p-1,j},$$

where $\alpha'_{i,j} = \sum_{k=0}^{i-1} \alpha_{k,j}$ for all i, j. It follows that g = ag' with $g' = \sum_{i,j} \alpha'_{i,j} x^i y^j$. This completes the proof of the first statement. The second statement (on the order of $t_{h,y}$) is proved similarly.

Lemma 2.4. A permutation group G belongs to the set $\text{Reg}(\Gamma_p, E_{p^3})$ if and only if there exist elements $g \in aR_p$ and $h \in bR_p$ such that

(4)
$$G = \langle s, t_{q,x}, t_{h,y} \rangle$$
 and $ah = bg$.

Proof. To prove the "only if" part, suppose that $G \in \operatorname{Reg}(\Gamma_p, E_{p^3})$. Then G is a selfcentralizing subgroup of $\operatorname{Sym}(V)$. On the other hand, the centralizer of G in $\operatorname{Sym}(V)$ contains the central element s of the group Γ_p . Thus, $s \in G$. The other two generators of G can obviously be chosen so that their images with respect to the epimorphism $\Gamma_p \to \Gamma_p / \Delta_p$ coincide with x and y. By Lemma 2.3, this implies that there exist $g \in aR_p$ and $h \in bR_p$ for which the first identity in (4) holds true. Next, since the group G is Abelian, the definition of $t_{g,x}$ and $t_{h,y}$ implies that

$$\sigma_g \tau_x \, \sigma_h \tau_y = t_{g,x} t_{h,y} = t_{h,y} t_{g,x} = \sigma_h \tau_y \, \sigma_g \tau_x.$$

Each of the permutations on the left- and right-hand sides takes the point $\alpha x^i y^j \in V_{i,j}$ to a certain point $\alpha' x^{i+1} y^{j+1} \in V_{i+1,j+1}$. Calculating the images of the former point with respect to them, we obtain

$$\alpha + g_{i,j} + h_{i+1,j} = \alpha' = \alpha + h_{i,j} + g_{i,j+1}$$

or equivalently, $h_{i+1,j}-h_{i,j} = g_{i,j+1}-g_{i,j}$ for all i, j. Therefore, ah = xh-h = yg-g = bg, as required.

Conversely, let G be the group defined by relations (4). Then the above argument shows that the permutations s, $t_{g,x}$, and $t_{h,y}$ pairwise commute. Therefore, the group G is Abelian. Moreover, the definition of s and Lemma 2.3 imply that G is elementary Abelian and transitive. Thus, $G \in \text{Reg}(\Gamma_p, E_{p^3})$, as required.

§3. Proof of Theorem 1.1

By statement (1) of Theorem 2.2, we may restrict ourselves to looking for a group Γ of the form $\Gamma(I)$, where I is an ideal of the ring R_p .

For every integer $k \ge 0$, set

$$I_k = \operatorname{span}_{\mathbb{F}_n} \{ a^i b^j : i + j \ge k \},$$

where the elements a and b are as in Lemma 2.4. Clearly, I_k is an ideal of R_p , and $I_{k+1} \subseteq I_k$ for all k, and also $I_k = 0$ for k > 2(p-1). Below, the kernels of the mappings $I_k \to aI_k$ and $I_k \to bI_k$ induced by the multiplication by a and b are denoted by A_k and B_k , respectively.

Lemma 3.1. Suppose that $p \le k \le 2(p-1)$. Then

- (1) dim $(I_k) = \binom{2p-k}{2},$ (2) $aI_k = bI_k = I_{k+1},$
- (3) $\dim(A_k) = \dim(B_k) = 2p k 1.$

Proof. The leading monomials of the polynomials

$$(x-1)^{i}(y-1)^{j}, \quad 0 \le i, j \le p-1,$$

are obviously linearly independent. Therefore, the polynomials $a^i b^j$ with $i + j \ge k$ form a linear basis of the ideal I_k . This immediately proves statement (1). To prove statement (2), we note that, obviously, $aI_k \subseteq I_{k+1}$. Conversely, let $c \in I_{k+1}$. Since $k \ge p$, we have c = abu for some $u \in I_{k-1}$, which proves the reverse inclusion. The rest of statement (2) is proved similarly. Finally, statement (3) follows, because the linear space A_k (respectively, B_k) is spanned by the monomials $a^{p-1}b^i$ (respectively, $a^i b^{p-1}$) with $k - p + 1 \le i \le p - 1$.

In what follows, for a subgroup G of a group Γ we denote by G^{Γ} the set of all Γ -conjugates of G.

Lemma 3.2. Let $\Gamma_{k,p} = \Gamma(I_k)$, where k is as in Lemma 3.1. Then

- (1) $|\Gamma_{k,p}| = p^{2+\dim(I_k)},$
- (1) $|\Gamma_{k,p}| p$, (2) $|\operatorname{Reg}(\Gamma_{k,p}, E_{p^3})| = p^{\dim(A_k) + \dim(B_k) + \dim(I_{k+1}) 2},$ (3) $p^{\dim(I_k) 4} \le |G^{\Gamma_{k,p}}| \le p^{\dim(I_k) 1}$ for all $G \in \operatorname{Reg}(\Gamma_{k,p}, E_{p^3}).$

Proof. Obviously, $|\Delta(I_k)| = p^{\dim(I_k)}$. Therefore, statement (1) follows from the righthand side of formula (2). Next, from Lemma 2.4 it follows that

$$\operatorname{Reg}(\Gamma_{k,p}, E_{p^3}) = \{ G_{g,h} : (g,h) \in M \},\$$

where $G_{q,h} = \langle s, t_{q,x}, t_{h,y} \rangle$ and

(5)
$$M = \{(g,h) \in (I_k \cap aR_p) \times (I_k \cap bR_p) : ah = bg\}.$$

However, $I_k \cap aR_p = I_k \cap bR_p = I_k$, because $k \ge p$. So by statement (2) of Lemma 3.1, the element ah = bg runs over the ideal I_{k+1} , whenever (g,h) runs over the set M. By the definition of A_k and B_k , this implies that

$$|M| = p^{\dim(A_k) + \dim(B_k) + \dim(I_{k+1})}$$

Thus, to complete the proof of statement (2), it suffices to verify that $G_{q,h} = G_{q',h'}$ if and only if $t_{g,x} = s^i t_{g',x}$ and $t_{h,y} = s^j t_{h',y}$ for some $0 \le i, j \le p-1$. However, this is true, because $G_{g,h} = G_{g',h'}$ if and only if $\varphi(G_{g,h}) = \varphi(G_{g',h'})$, where φ is the quotient epimorphism of $\Gamma_{k,p}$ modulo the group $\langle s \rangle$.

To prove statement (3), we note that, by statement (1),

(6)
$$|G^{\Gamma}| = \frac{|\Gamma|}{|N|} = \frac{p^{2+\dim(I_k)}}{|C| \cdot |N/C|},$$

where $\Gamma = \Gamma_{k,p}$, and N and C are, respectively, the normalizer and centralizer of G in Γ . Since G is a regular elementary Abelian group and the quotient N/C is isomorphic to a subgroup of a Sylow p-subgroup P of the group $\operatorname{Aut}(G) \cong \operatorname{GL}(3,p)$ (here we use the fact that Γ is a *p*-group), we conclude that

$$|C| = |G| = p^3$$
 and $1 \le |N/C| \le |P|$

However, $|P| = p^3$. Thus, statement (3) follows from formula (6).

To complete the proof of Theorem 1.1, we note that $\operatorname{Reg}(\Gamma_k, E_{p^3})$ is the disjoint union of distinct sets G^{Γ_k} , where $\Gamma_k = \Gamma_{k,p}$ as in Lemma 3.2 and $G \in \text{Reg}(\Gamma_k, E_{p^3})$. Therefore, setting m_k and M_k to be, respectively, the minimum and maximum of the numbers $|G^{\Gamma_k}|$, we obtain

(7)
$$\frac{|\operatorname{Reg}(\Gamma_k, E_{p^3})|}{m_k} \ge b_H(\Gamma_k) \ge \frac{|\operatorname{Reg}(\Gamma_k, E_{p^3})|}{M_k}$$

However, by statement (3) of Lemma 3.2, $m_k \ge p^{\dim(I_k)-4}$ and $M_k \le p^{\dim(I_k)-1}$. By statement (2) of Lemma 3.2, this implies that

$$\frac{\operatorname{Reg}(\Gamma_k, E_{p^3})|}{m_k} \le p^{d+2} \quad \text{and} \quad \frac{|\operatorname{Reg}(\Gamma_k, E_{p^3})|}{M_k} \ge p^{d-1}$$

where $d = \dim(A_k) + \dim(B_k) + \dim(I_{k+1}) - \dim I_k$. Moreover, by statements (1) and (3) of Lemma 3.1, we have d = 2p - k - 1. Thus,

(8)
$$p^{2p-k+1} \ge b_H(\Gamma_k) \ge p^{2p-k-2}.$$

This lower bound for $b_H(\Gamma_k)$ with k = p - 1 proves Theorem 1.1.

References

- L. Babai, Isomorphism problem for a class of point symmetric structures, Acta Math. Acad. Sci. Hungar. 29 (1977), no. 3, 329–336. MR0485447 (58:5281)
- [2] S. A. Evdokimov and I. N. Ponomarenko, Polynomial time recognition and verification of isomorphism of circular graphs, Algebra i Analiz 15 (2003), no. 6, 1–34; English transl., St. Petersburg Math. J. 15 (2004), no. 6, 813–835. MR2044629 (2005g:68053)
- [3] T. Kasami, S. Lin, and W. W. Peterson, New generalizations of the Reed-Muller codes. I. Primitive codes, IEEE Trans. Information Theory IT-14 (1968), 189–199. MR0275989 (43:1742)
- [4] M. W. Liebeck, C. Praeger, and J. Saxl, Regular subgroups of primitive permutation groups, Mem. Amer. Math. Soc. 203 (2010), no. 952, 1–88. MR2588738 (2011h:20001)
- [5] M. Muzychuk, On the isomorphism problem for cyclic combinatorial objects, Discrete Math. 197/198 (1999), 589–606. MR1674890
- [6] H. Wielandt, Finite permutation groups, Acad. Press, New York-London, 1964. MR0183775 (32:1252)
- [7] H. Wielandt, Permutation groups through invariant relations and invariant functions, Lecture Notes, Dept. Math., Ohio St. Univ., Columbus, 1969.

NETANYA ACADEMIC COLLEGE, NETANYA, ISRAEL

NETANYA ACADEMIC COLLEGE, NETANYA, ISRAEL *Email address*: muzy@netanya.ac.il

ST. PETERSBURG BRANCH, STEKLOV INSTITUTE OF MATHEMATICS, RUSSIAN ACADEMY OF SCIENCES, FONTANKA 27, 191023 ST. PETERSBURG, RUSSIA

Email address: inp@pdmi.ras.ru

Received 6/FEB/2017 Originally published in English