A FAMILY OF PERMUTATION GROUPS WITH EXPONENTIALLY MANY NONCONJUGATED REGULAR ELEMENTARY ABELIAN SUBGROUPS

S. EVDOKIMOV, M. MUZYCHUK, AND I. PONOMARENKO

Abstract

Given a prime p, a permutation group is constructed that contains at least p^{p-2} nonconjugated regular elementary Abelian subgroups of order p^{3}. This gives the first example of a permutation group with exponentially many nonconjugated regular subgroups.

§1. Introduction

A transitive permutation group is said to be regular if the one-point stabilizer of it is trivial. Regular subgroups of permutation groups arise in many natural contexts, for example, in group factorizations [4], Schur rings [6, Cayley graphs [1], etc. In the present paper, given a group H and a permutation group Γ, we are interested in the number

$$
\begin{equation*}
b_{H}(\Gamma):=|\operatorname{Orb}(\Gamma, \operatorname{Reg}(\Gamma, H))| \tag{1}
\end{equation*}
$$

of orbits in the action of Γ by conjugation on the set $\operatorname{Reg}(\Gamma, H)$ of all its regular subgroups isomorphic to H. Using terminology and arguments of 1 , one can see that if Γ is the automorphism group of an object of a concrete category \mathcal{C}, then $b_{H}(\Gamma)$ equals the number of pairwise nonequivalent representations of this object as a Cayley object over H in \mathcal{C}. As \mathcal{C} one can take, for example, the category of finite graphs or other combinatorial structures.

Let H be a cyclic group. Then, obviously, $b_{H}(\Gamma)$ is bounded from above by number $c(\Gamma)$ of the conjugacy classes of full cycles contained in Γ. It was proved in [5] that the latter number does not exceed $n=|H|, 1$ Thus, in this case $b_{H}(\Gamma) \leq n$.

The simplest noncyclic case appears when H is an elementary Abelian group $E_{p^{2}}$. Here, $b_{H}(\Gamma) \leq b_{H}(P)$ by the Sylow theorem, where P is a Sylow p-subgroup of the group Γ. To estimate $b_{H}(P)$, without loss of generality we may assume that P is a transitive p-group of degree p^{2} the action of which on some imprimitivity system induces a regular (cyclic) group of order p, i.e., P belongs to the class defined in the same way as the class \mathcal{E}_{p} in Theorem 1.1 below with p^{3} replaced by p^{2}. With the help of the technique developed in \S_{2} we can describe the set $\operatorname{Reg}(\Gamma, H)$ (cf. Theorem 2.2 and Lemma 2.4). Then applying [2, Theorem 6.1], one can prove that $b_{H}(P) \leq p$. Thus, in this case we also have $b_{H}(\Gamma) \leq n$.

[^0]In the above two cases, the number $b_{H}(\Gamma)$ does not exceed n for all Γ. The main result of the present paper (Theorem (1.1) shows that in the general case, neither this bound, nor even substantially weaker bounds are valid.

Theorem 1.1. Let $H=E_{p^{3}}$, where p is a prime. Denote by \mathcal{E}_{p} the class of all transitive p-groups of degree p^{3} the action of which on some imprimitivity system induces a regular group isomorphic to $E_{p^{2}}$. Then there exists a group $\Gamma \in \mathcal{E}_{p}$ such that $b_{H}(\Gamma) \geq p^{p-2}$.

From Theorem 1.1, it follows that there is no function f for which the inequality $b_{H}(\Gamma) \leq n^{f(r)}$ holds true for all Abelian groups H of rank at most r and all permutation groups Γ of degree n. It would be interesting to find an invariant $t=t(\Gamma)$ such that

$$
b_{H}(\Gamma) \leq n^{f(r, t)}
$$

for a function f of r and t; for instance, one can try to take $t=t(\Gamma)$ to be the minimal positive integer t^{\prime} for which the group Γ is t^{\prime}-closed as a permutation group in the sense of $[7]^{2}$.

The proof of Theorem 1.1 is given in $\$ 3$ It is based on a representation of the groups belonging to the class \mathcal{E}_{p} with the help of two-variable polynomials over the field \mathbb{F}_{p}. The details are presented in \mathbb{Y}_{2}. It is of interest to note that the stabilizer of the imprimitivity system in every group $\Gamma \subset \mathcal{E}_{p}$ is, up to language, a Generalized Reed-Muller code 3].
Notation. As usual, \mathbb{F}_{p} and $\operatorname{Sym}(V)$ denote the field of order p and the symmetric group on the set V. An elementary Abelian p-group of order p^{n} is denoted by $E_{p^{n}}$.

§2. Permutation groups and polynomials

Let p be a prime. Denote by R_{p} the factor ring of the polynomial ring $\mathbb{F}_{p}[X, Y]$ modulo the ideal generated by the polynomials $X^{p}-1$ and $Y^{p}-1$. The images of the variables X and Y are denoted by x and y, respectively. Denote by V the disjoint union of the one-dimensional subspaces

$$
V_{i, j}=\left\{\alpha x^{i} y^{j}: \alpha \in \mathbb{F}_{p}\right\}, \quad i, j=0, \ldots, p-1,
$$

of the ring R_{p} viewed as a linear space over \mathbb{F}_{p}.
Every element $f=\sum_{i, j} \alpha_{i, j} x^{i} y^{j}$ of R_{p} yields a permutation

$$
\sigma_{f}: \alpha x^{i} y^{j} \mapsto\left(\alpha+\alpha_{i, j}\right) x^{i} y^{j}
$$

of the set V. This produces a permutation group on V with p^{2} orbits $V_{i, j}$ that is isomorphic to the additive group of the ring R_{p}. For a subgroup I of the latter group, the corresponding subgroup of $\operatorname{Sym}(V)$ is denoted by $\Delta(I)$. Also, we define two commuting permutations

$$
\tau_{x}: \alpha x^{i} y^{j} \mapsto \alpha x^{i+1} y^{j}, \quad \tau_{y}: \alpha x^{i} y^{j} \mapsto \alpha x^{i} y^{j+1} .
$$

Clearly, each of them commutes with the permutation $s=\sigma_{f_{0}}$, where $f_{0}=\sum_{i, j} x^{i} y^{j}$. The following statement is straightforward.

Lemma 2.1. In the above notation, we have
(1) $\tau_{x}^{-1} \sigma_{f} \tau_{x}=\sigma_{f x}$ and $\tau_{y}^{-1} \sigma_{f} \tau_{y}=\sigma_{f y}$ for all $f \in R_{p}$,
(2) $G_{0}:=\left\langle s, \tau_{x}, \tau_{y}\right\rangle$ is a regular group on V isomorphic to $E_{p^{3}}$.

Set $\Gamma(I)$ to be the group generated by $\Delta(I)$ and τ_{x}, τ_{y}. If I is an ideal of R_{p}, then, by statement (1) of Lemma 2.1.

$$
\begin{equation*}
\Delta(I) \unlhd \Gamma(I) \quad \text { and } \quad \Gamma(I) / \Delta(I) \cong E_{p^{2}} . \tag{2}
\end{equation*}
$$

If I is not an ideal, then $\Gamma(I)=\Gamma\left(I^{\prime}\right)$, where I^{\prime} is the ideal of R_{p} generated by I.

[^1]Theorem 2.2. Let p be a prime. Then
(1) for every ideal $I \neq 0$ of the ring R_{p}, the group $\Gamma(I)$ belongs to the class \mathcal{E}_{p},
(2) every group $\Gamma \in \mathcal{E}_{p}$ with $b_{H}(\Gamma)>0$ is permutation isomorphic to the group $\Gamma(I)$ for some ideal I of R_{p}.

Proof. To prove statement (1), let $I \neq 0$ be an ideal of R_{p}. Then at least one of the sets $V_{i, j}$ is an orbit of the group $\Delta(I)$. Since τ_{x} and τ_{y} commute, the group $\left\langle\tau_{x}, \tau_{y}\right\rangle$ acts regularly on the set $S=\left\{V_{i, j}: i, j=0, \ldots, p-1\right\}$. This implies that the group $\Gamma(I)$ is transitive and S is an imprimitivity system of it. The action of $\Gamma(I)$ on this system induces a regular group isomorphic to $E_{p^{2}}$ that is generated by the images of τ_{x} and τ_{y} with respect to this action. Thus, $\Gamma(I) \in \mathcal{E}_{p}$.

Let $\Gamma \in \mathcal{E}_{p}$. Then Γ is a transitive p-group of degree p^{3}, the action of which on some imprimitivity system S^{\prime} induces a regular group isomorphic to $E_{p^{2}}$. Without loss of generality, we may assume that $\Gamma \leq \operatorname{Sym}(V)$ with V as above. Furthermore, since $b_{H}(\Gamma)>0$, the group Γ contains a regular subgroup G^{\prime} isomorphic to $H=E_{p^{3}}$. Choose an element $s^{\prime} \in G^{\prime}$ such that $\operatorname{Orb}\left(\left\langle s^{\prime}\right\rangle, V\right)=S^{\prime}$. Then there exists a group isomorphism

$$
\varphi: G^{\prime} \rightarrow G_{0}
$$

taking s^{\prime} to s (see statement (2) of Lemma 2.1). Since φ is induced by a permutation of V, we may assume that $S^{\prime}=S$ and $G_{0} \in \operatorname{Reg}\left(\Gamma, E_{p^{3}}\right)$. Note that the permutation s belongs to the stabilizer Δ of the blocks $V_{i, j}$ in Γ. Therefore, $\operatorname{Orb}(\Delta, V)=S$. Since the restriction of Δ to $V_{i, j}$ is a p-group of degree p that contains the restriction of s to $V_{i, j}$ for all i, j, this implies that

$$
\Delta \leq \Delta\left(R_{p}\right)
$$

It follows that $\Delta=\Delta(I)$ for a subgroup I of R_{p}. Taking into account that Δ is normalized by τ_{x} and τ_{y}, we conclude that I is an ideal of R_{p} by statement (1) of Lemma 2.1.

Any maximal element in the class \mathcal{E}_{p} is permutation isomorphic to the (imprimitive) wreath product of regular groups isomorphic to E_{p} and $E_{p^{2}}$. One of these maximal elements equals the group $\Gamma_{p}:=\Gamma\left(R_{p}\right)$; set also $\Delta_{p}=\Delta\left(R_{p}\right)$. We need two auxiliary lemmas.

Lemma 2.3. Let $g, h \in R_{p}$. Then the order of the permutation $t_{g, x}=\sigma_{g} \tau_{x}$ (respectively, $t_{h, y}=\sigma_{h} \tau_{y}$) equals p if and only if $g \in a R_{p}$ (respectively, $h \in b R_{p}$), where $a=x-1$ and $b=y-1$.
Proof. Let $g=\sum_{i, j} \alpha_{i, j} x^{i} y^{j}$, and let $v=\alpha x^{i} v^{j}$ be a point of V. Then by the definition of $t_{g, x}$, we have

$$
v^{t_{g, x}}=\left(\alpha+\alpha_{i, j}\right) x^{i+1} y^{j}
$$

This implies that the order of $t_{g, x}$ equals p if and only if the following condition is satisfied:

$$
\begin{equation*}
\sum_{i=0}^{p-1} \alpha_{i, j}=0, \quad j=0, \ldots, p-1 \tag{3}
\end{equation*}
$$

Note that this is always true whenever $g \in a R_{p}$. Conversely, suppose that relations (3) are fulfilled for some $g \in R_{p}$. Then

$$
\alpha_{0, j}=\alpha_{1, j}^{\prime}-\alpha_{0, j}^{\prime}, \ldots, \alpha_{p-1, j}=\alpha_{0, j}^{\prime}-\alpha_{p-1, j}^{\prime}
$$

where $\alpha_{i, j}^{\prime}=\sum_{k=0}^{i-1} \alpha_{k, j}$ for all i, j. It follows that $g=a g^{\prime}$ with $g^{\prime}=\sum_{i, j} \alpha_{i, j}^{\prime} x^{i} y^{j}$. This completes the proof of the first statement. The second statement (on the order of $t_{h, y}$) is proved similarly.

Lemma 2.4. A permutation group G belongs to the set $\operatorname{Reg}\left(\Gamma_{p}, E_{p^{3}}\right)$ if and only if there exist elements $g \in a R_{p}$ and $h \in b R_{p}$ such that

$$
\begin{equation*}
G=\left\langle s, t_{g, x}, t_{h, y}\right\rangle \quad \text { and } \quad a h=b g . \tag{4}
\end{equation*}
$$

Proof. To prove the "only if" part, suppose that $G \in \operatorname{Reg}\left(\Gamma_{p}, E_{p^{3}}\right)$. Then G is a selfcentralizing subgroup of $\operatorname{Sym}(V)$. On the other hand, the centralizer of G in $\operatorname{Sym}(V)$ contains the central element s of the group Γ_{p}. Thus, $s \in G$. The other two generators of G can obviously be chosen so that their images with respect to the epimorphism $\Gamma_{p} \rightarrow \Gamma_{p} / \Delta_{p}$ coincide with x and y. By Lemma 2.3, this implies that there exist $g \in a R_{p}$ and $h \in b R_{p}$ for which the first identity in (4) holds true. Next, since the group G is Abelian, the definition of $t_{g, x}$ and $t_{h, y}$ implies that

$$
\sigma_{g} \tau_{x} \sigma_{h} \tau_{y}=t_{g, x} t_{h, y}=t_{h, y} t_{g, x}=\sigma_{h} \tau_{y} \sigma_{g} \tau_{x}
$$

Each of the permutations on the left- and right-hand sides takes the point $\alpha x^{i} y^{j} \in V_{i, j}$ to a certain point $\alpha^{\prime} x^{i+1} y^{j+1} \in V_{i+1, j+1}$. Calculating the images of the former point with respect to them, we obtain

$$
\alpha+g_{i, j}+h_{i+1, j}=\alpha^{\prime}=\alpha+h_{i, j}+g_{i, j+1}
$$

or equivalently, $h_{i+1, j}-h_{i, j}=g_{i, j+1}-g_{i, j}$ for all i, j. Therefore, $a h=x h-h=y g-g=b g$, as required.

Conversely, let G be the group defined by relations (4). Then the above argument shows that the permutations $s, t_{g, x}$, and $t_{h, y}$ pairwise commute. Therefore, the group G is Abelian. Moreover, the definition of s and Lemma 2.3 imply that G is elementary Abelian and transitive. Thus, $G \in \operatorname{Reg}\left(\Gamma_{p}, E_{p^{3}}\right)$, as required.

§3. Proof of Theorem 1.1

By statement (1) of Theorem [2.2, we may restrict ourselves to looking for a group Γ of the form $\Gamma(I)$, where I is an ideal of the ring R_{p}.

For every integer $k \geq 0$, set

$$
I_{k}=\operatorname{span}_{\mathbb{F}_{p}}\left\{a^{i} b^{j}: i+j \geq k\right\}
$$

where the elements a and b are as in Lemma 2.4. Clearly, I_{k} is an ideal of R_{p}, and $I_{k+1} \subseteq I_{k}$ for all k, and also $I_{k}=0$ for $k>2(p-1)$. Below, the kernels of the mappings $I_{k} \rightarrow a I_{k}$ and $I_{k} \rightarrow b I_{k}$ induced by the multiplication by a and b are denoted by A_{k} and B_{k}, respectively.

Lemma 3.1. Suppose that $p \leq k \leq 2(p-1)$. Then
(1) $\operatorname{dim}\left(I_{k}\right)=\binom{2 p-k}{2}$,
(2) $a I_{k}=b I_{k}=I_{k+1}^{2}$,
(3) $\operatorname{dim}\left(A_{k}\right)=\operatorname{dim}\left(B_{k}\right)=2 p-k-1$.

Proof. The leading monomials of the polynomials

$$
(x-1)^{i}(y-1)^{j}, \quad 0 \leq i, j \leq p-1
$$

are obviously linearly independent. Therefore, the polynomials $a^{i} b^{j}$ with $i+j \geq k$ form a linear basis of the ideal I_{k}. This immediately proves statement (1). To prove statement (2), we note that, obviously, $a I_{k} \subseteq I_{k+1}$. Conversely, let $c \in I_{k+1}$. Since $k \geq p$, we have $c=a b u$ for some $u \in I_{k-1}$, which proves the reverse inclusion. The rest of statement (2) is proved similarly. Finally, statement (3) follows, because the linear space A_{k} (respectively, B_{k}) is spanned by the monomials $a^{p-1} b^{i}$ (respectively, $a^{i} b^{p-1}$) with $k-p+1 \leq i \leq p-1$.

In what follows, for a subgroup G of a group Γ we denote by G^{Γ} the set of all Γ-conjugates of G.

Lemma 3.2. Let $\Gamma_{k, p}=\Gamma\left(I_{k}\right)$, where k is as in Lemma 3.1. Then
(1) $\left|\Gamma_{k, p}\right|=p^{2+\operatorname{dim}\left(I_{k}\right)}$,
(2) $\left|\operatorname{Reg}\left(\Gamma_{k, p}, E_{p^{3}}\right)\right|=p^{\operatorname{dim}\left(A_{k}\right)+\operatorname{dim}\left(B_{k}\right)+\operatorname{dim}\left(I_{k+1}\right)-2}$,
(3) $p^{\operatorname{dim}\left(I_{k}\right)-4} \leq\left|G^{\Gamma_{k, p}}\right| \leq p^{\operatorname{dim}\left(I_{k}\right)-1}$ for all $G \in \operatorname{Reg}\left(\Gamma_{k, p}, E_{p^{3}}\right)$.

Proof. Obviously, $\left|\Delta\left(I_{k}\right)\right|=p^{\operatorname{dim}\left(I_{k}\right)}$. Therefore, statement (1) follows from the righthand side of formula (2). Next, from Lemma [2.4] it follows that

$$
\operatorname{Reg}\left(\Gamma_{k, p}, E_{p^{3}}\right)=\left\{G_{g, h}:(g, h) \in M\right\},
$$

where $G_{g, h}=\left\langle s, t_{g, x}, t_{h, y}\right\rangle$ and

$$
\begin{equation*}
M=\left\{(g, h) \in\left(I_{k} \cap a R_{p}\right) \times\left(I_{k} \cap b R_{p}\right): a h=b g\right\} \tag{5}
\end{equation*}
$$

However, $I_{k} \cap a R_{p}=I_{k} \cap b R_{p}=I_{k}$, because $k \geq p$. So by statement (2) of Lemma 3.1, the element $a h=b g$ runs over the ideal I_{k+1}, whenever (g, h) runs over the set M. By the definition of A_{k} and B_{k}, this implies that

$$
|M|=p^{\operatorname{dim}\left(A_{k}\right)+\operatorname{dim}\left(B_{k}\right)+\operatorname{dim}\left(I_{k+1}\right)} .
$$

Thus, to complete the proof of statement (2), it suffices to verify that $G_{g, h}=G_{g^{\prime}, h^{\prime}}$ if and only if $t_{g, x}=s^{i} t_{g^{\prime}, x}$ and $t_{h, y}=s^{j} t_{h^{\prime}, y}$ for some $0 \leq i, j \leq p-1$. However, this is true, because $G_{g, h}=G_{g^{\prime}, h^{\prime}}$ if and only if $\varphi\left(G_{g, h}\right)=\varphi\left(G_{g^{\prime}, h^{\prime}}\right)$, where φ is the quotient epimorphism of $\Gamma_{k, p}$ modulo the group $\langle s\rangle$.

To prove statement (3), we note that, by statement (1),

$$
\begin{equation*}
\left|G^{\Gamma}\right|=\frac{|\Gamma|}{|N|}=\frac{p^{2+\operatorname{dim}\left(I_{k}\right)}}{|C| \cdot|N / C|}, \tag{6}
\end{equation*}
$$

where $\Gamma=\Gamma_{k, p}$, and N and C are, respectively, the normalizer and centralizer of G in Γ. Since G is a regular elementary Abelian group and the quotient N / C is isomorphic to a subgroup of a Sylow p-subgroup P of the group $\operatorname{Aut}(G) \cong G L(3, p)$ (here we use the fact that Γ is a p-group), we conclude that

$$
|C|=|G|=p^{3} \quad \text { and } \quad 1 \leq|N / C| \leq|P| .
$$

However, $|P|=p^{3}$. Thus, statement (3) follows from formula (6).
To complete the proof of Theorem 1.1, we note that $\operatorname{Reg}\left(\Gamma_{k}, E_{p^{3}}\right)$ is the disjoint union of distinct sets $G^{\Gamma_{k}}$, where $\Gamma_{k}=\Gamma_{k, p}$ as in Lemma 3.2 and $G \in \operatorname{Reg}\left(\Gamma_{k}, E_{p^{3}}\right)$. Therefore, setting m_{k} and M_{k} to be, respectively, the minimum and maximum of the numbers $\left|G^{\Gamma_{k}}\right|$, we obtain

$$
\begin{equation*}
\frac{\left|\operatorname{Reg}\left(\Gamma_{k}, E_{p^{3}}\right)\right|}{m_{k}} \geq b_{H}\left(\Gamma_{k}\right) \geq \frac{\left|\operatorname{Reg}\left(\Gamma_{k}, E_{p^{3}}\right)\right|}{M_{k}} \tag{7}
\end{equation*}
$$

However, by statement (3) of Lemma 3.2 $m_{k} \geq p^{\operatorname{dim}\left(I_{k}\right)-4}$ and $M_{k} \leq p^{\operatorname{dim}\left(I_{k}\right)-1}$. By statement (2) of Lemma 3.2, this implies that

$$
\frac{\left|\operatorname{Reg}\left(\Gamma_{k}, E_{p^{3}}\right)\right|}{m_{k}} \leq p^{d+2} \quad \text { and } \quad \frac{\left|\operatorname{Reg}\left(\Gamma_{k}, E_{p^{3}}\right)\right|}{M_{k}} \geq p^{d-1}
$$

where $d=\operatorname{dim}\left(A_{k}\right)+\operatorname{dim}\left(B_{k}\right)+\operatorname{dim}\left(I_{k+1}\right)-\operatorname{dim} I_{k}$. Moreover, by statements (1) and (3) of Lemma 3.1] we have $d=2 p-k-1$. Thus,

$$
\begin{equation*}
p^{2 p-k+1} \geq b_{H}\left(\Gamma_{k}\right) \geq p^{2 p-k-2} \tag{8}
\end{equation*}
$$

This lower bound for $b_{H}\left(\Gamma_{k}\right)$ with $k=p-1$ proves Theorem 1.1.

References

[1] L. Babai, Isomorphism problem for a class of point symmetric structures, Acta Math. Acad. Sci. Hungar. 29 (1977), no. 3, 329-336. MR0485447 (58:5281)
[2] S. A. Evdokimov and I. N. Ponomarenko, Polynomial time recognition and verification of isomorphism of circular graphs, Algebra i Analiz 15 (2003), no. 6, 1-34; English transl., St. Petersburg Math. J. 15 (2004), no. 6, 813-835. MR2044629 (2005g:68053)
[3] T. Kasami, S. Lin, and W. W. Peterson, New generalizations of the Reed-Muller codes. I. Primitive codes, IEEE Trans. Information Theory IT-14 (1968), 189-199. MR0275989 (43:1742)
[4] M. W. Liebeck, C. Praeger, and J. Saxl, Regular subgroups of primitive permutation groups, Mem. Amer. Math. Soc. 203 (2010), no. 952, 1-88. MR2588738 (2011h:20001)
[5] M. Muzychuk, On the isomorphism problem for cyclic combinatorial objects, Discrete Math. 197/198 (1999), 589-606. MR. 1674890
[6] H. Wielandt, Finite permutation groups, Acad. Press, New York-London, 1964. MR0183775 (32:1252)
[7] H. Wielandt, Permutation groups through invariant relations and invariant functions, Lecture Notes, Dept. Math., Ohio St. Univ., Columbus, 1969.

Netanya Academic College, Netanya, Israel
Netanya Academic College, Netanya, Israel
Email address: muzy@netanya.ac.il
St. Petersburg Branch, Steklov Institute of Mathematics, Russian Academy of Sciences, Fontanka 27, 191023 St. Petersburg, Russia

Email address: inp@pdmi.ras.ru
Received 6/FEB/2017
Originally published in English

[^0]: 2010 Mathematics Subject Classification. Primary 20B05.
 Key words and phrases. Permutation group, regular subgroup, polynomial over finite field.
 The first author, S. Evdokimov, is deceased.
 ${ }^{1}$ More exactly, under the Classification of Finite Simple Groups, $c(\Gamma) \leq \varphi(n)$, where φ is the Euler function, ibid.

[^1]: ${ }^{2}$ Here for groups $\Gamma \in \mathcal{E}_{p}$, the upper bound in inequality (8) could be useful.

