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ON THE RIEMANN-SIEGEL FORMULA FOR THE DERIVATIVES
OF THE HARDY FUNCTION

M. A. KOROLEV

ABSTRACT. Analogs are obtained of the asymptotic Riemann—Siegel formulas for the
first and second order derivatives of the Hardy function Z(¢) and the Riemann zeta
function on the critical line.

§1. INTRODUCTION

We start with some notation necessary in what follows. Let ¢ > 0, and let ¥(t) be the
increment of an arbitrary continuous branch of the function arg {77’5/ I'(s/ 2)} along the
segment with endpoints s = 0.5 and s = 0.5 4 it. Next, let Z(t) = ¢’ ((0.5 4 it) be
the Hardy function.

In the so-called “discrete” theory of the zeta function, the subject of study is sums
of the form ) f(z,), where f is a function related to ((s) or Z(t), and {z,} is an
unbounded sequence on the complex plane.

As a rule, the role of {z,} is played by what is called the Gram points ¢,. For n > 0,
the value t,, is defined to be a unique solution of the transcendental equation ¥(t,) = nx
satisfying ¢’ (t,) > 0.

The first results of the discrete theory of ((s) were Titchmarsh’s asymptotics (esti-
mates) for the sums

(1) S CO5+ity), > Z(tn), Y. Z(tn)Z(tnsr).
n<N n<N n<N
Titchmarsh used these results to give a new proof of Hardy’s theorem saying that ((s)
has infinitely many zeros on the critical line. Afterwords, the sums (I]) and similar objects
became of interest on their own.
Since the quantities ¢,, are smooth functions of the positive real parameter n, in the
study of sums of type () we may use the classical formula of partial summation

> Fo= [

(2) a<n<b a

b b
— [F@)ds+ 0F®) - d@)F (@)~ oOF'0) + o F (@) + [ 0(a)F"(z) d,

where o(z) = 0.5—{z}, o(z) = [ o(u) du, and the role of F(x) is played by a function like
f(tz), say, (0.5+1ty), Z(tz), Z(ts)Z(tz+1), an so on. This approach leads to substantial
refinement of formulas for the sums (Il) compared to the results known earlier, see [2H7].

However, since formula (2)) involves the first and second order derivatives of F(z),
to solve such problems we need to have fairly precise expressions for the derivatives

b
F(z)dz + o(b)F(b) — o(a) F(a) — / o(@) F'(z) da
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¢’(0.5+14t), ¢"(0.5+74t) of the Hardy function, similar to the well-known Riemann-Siegel
formula (see [§]). This formula looks like this:

m —-1/4
Z(t)=2 Z % cos (9(t) — tlnn) + (=1)™ " <%) Wo
n=1

o ((25N> 66«/_27rNt—1/4) ,
4et

where m = [ t/(27r)], N is an arbitrary integer such that 1 < N < 10~8¢, the constant
in O is absolute, and, for any fixed j > 0, the function Wy = Wy(N;t) admits an
expansion of the form

(3)

£\ 12 ¢\ I/
4 Hy(t — Hi(t)+ -+ =— H;(t) + 0, (1~ 0+D/2),
@ o0+ (52) O+t (5n)  H 40 )
The coefficients Hy(t), H1(t),... in this expansion are linear combinations of the values

of the derivatives of the function

() = cosm(3a% —x— §)

COSTXIT

at the point x = 2{/t/(2m)}. The exact form of H;(t) for j = 0,1,...,14 was presented
in Berry’s paper [9]. The first analogs of formula (@) of the form

o1 7k
Z®(t) =2 —=cos (— +9(t) — tlnn> + Ot Y4 (1.51nt)k )
n=1 \/ﬁ 2

were obtained by Karatsuba in [I0] for £ > 1 fixed and by Lavrik [II] for k¥ growing
together with t.

Our goal in the present paper is to give analogs of @) for the functions ¢'(0.5 + it),
¢"(0.5 +it), Z'(t), and Z”(t) and to find the first terms of the expansions (@) in an
explicit form. The next theorems are our main results.

Theorem 1. Let € be an arbitrarily small fivzed number, and suppose that

A=etde t>t(e) >0, m=[t/2r)], a={Vt/(2r)}.

Nezxt, let § = 6(g) > 0 be a sufficiently small positive constant, and let N be an arbitrary
integer such that 1 < N < 6t. Finally, put
—-1/4
0-5VTN t / )
27

D = D(N,t;¢) = (ATN>

N
6

Then the following identities are valid:

m —it —1/4
t
C(0.5+it) =) ”7 e~ 20 Z ymleW®) (%> Wo + 6o Dy,
n=1
¢'(0.5 +it) = i n Inn — e 2700 zm: " (29'(t) — Inn)
n=1 \/ﬁ n=1 \/ﬁ
N
+ (=1)mlem® (—) Wi+ 61Dy,
2m
" = n~" 2 —2i9(t) - n't / 2 - ql!
¢"(0.5+idt)= Z (Inn)* +e Z ((2¢'(t) — Inn)? + 200" (t))

—1/4
; t
+ (-1 Tle (—) Wa + 02D,
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where Dy, = (1.5Int)*CD, C = 0.567852948 ..., |0x| < 1, and for any fized j each of
the function Wi, = Wi (N;t) admits expansion of the form (@) the first coefficients of
which are given by formulas B3) (for k =1) and B3), BQ) (for k = 2).

Theorem 2. Under the conditions of Theorem 1, we have
m 1 t —-1/4
t) =2 Z % cos (I(t) — tInn) + (=1)™"! <%) Wo + 00Dy,

—1/4
—1Inn)sin (¥(t) — tlnn) + (=1)™! (%) Wi + 61Dy,

—Inn)? cos (¥(t) — tlnn)

s§\

t

— 29" (t Z — sm —tlnn) + (—1)m_1 (—

—1/4
) Ws + 02Ds,
2T

where Dy, = (In t)kC'D, |0k < 1, and for any fized j each of the functions Wy, = Wi(N; t)
admits expansion of the form [@l) the first coefficients of which are given by formulas (B8]
(for k =1) and @) (for k =2).

The next formulas for Z'(t) and Z”(t) seem most adjusted for practical application.

Corollary. Ast — 400, we have

_i%@l tn2) sin (9(t) — tlnn) + (_1)m1<%) —3/4<1>(;oe)

. (:1)m<%>5/4<¢(2a) N <I>(4)(2a)) Lo,

87 2473
1. 1
Z”t:——
0=-3> n(
o1
=1

>2 cos (U(t) — tlnn)

2mn?

S

In
(

>

n

| =

=5/4 5(2) a
Tn sin (9(t) — tInn) + (—1)™! (i) o 471(3 )

27
/4 ) (5)
m(t 2V (2a) | 2%(20) -9/4
+(-1) <2ﬂ) ( P P +O(t=%%).

Notation. Everywhere in the sequel, s = o+it is a complex number, ¢(s) = I'(s)/T'(s) is
the digamma function,

X(S)—ﬂs_1/21“<1—;9>1“_1(§>, m—[ %], a—{ %},

and 6,60q,601,... are complex numbers whose module does not exceed 1; they may take
different values in different relations.

§2. AUXILIARY STATEMENTS
In this section we collect auxiliary statements of technical nature.
Lemma 1. Let s = % +it, t > 0. Then

2
W(s) = 20'(t) + In 27 + gtan % W (s) = —2i0" () + (g sec g) .
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Proof. The doubling and complement formulas for the gamma function imply the identity

2

e (o)

Taking the logarithms and then differentiating, from () we deduce the relation

1 1t T it
-+t = -+ = In2+ — —
(6) 1/)(2—1—275) Rew(4+2)+n +2tan<4+2>
Next, the definitions of ¥(¢) and x(s) show that
1 TOEE L,
) X(- . n) _ PG E) s
2 -9
whence
it
(8) 29'(t) = Rw( ;) ~Inr.
Comparing (@) and (8), we arrive at the first claim of the lemma. The second is obtained
then by differentiation. O

Lemma 2. Let

A(t):ﬁ()—_ln—+g

Then the following expansions are valid as t — 4o00:

+oo —1)ntl(92n—1 _ 1 Bo,
3 (=D)""( )

©) Alt) ~ 221 2n(2n— 1) {21’
n=1
+oo _
(=1)"(2* 1 —1) Bay
(10) A/(t) ~ Z 22n(2n _ 1) $2n
n=1
11 A// t = -1 n—1 22n—1 —1 &
(11) () ~ (1" )
n=1

where the B, are the Bernoulli numbers, By = 1, By = —1/2, By = 1/6, By = —1/30,
36:1/42, B3:B5:B7:.:0.

Proof. Relations ([@)—(II) follow from Lemma 1 and the classical expansions for InT'(s)
and ¥(s) (see, e.g., [12] §1.4, 1.6]). O

Corollary. For sufficiently large t we have
1 T 1 1 1 1
—4it)| <lnt+ -+ = "4t < =
’w(2+z>’ nt+ o+ 3 w<2+z>' T tE

Lemma 3. For the function h(s) = h(o + it) defined by the formula

(&

1 ¢ -1/4 o0 (1) —iA(t)
h{=+4it) = (-1 — T
<2+Z> (=1) (27r> 1—ie

Proof. The desired identity follows from (Bl and the relations

it/2
LY e (B L) 2 ei0@+Amn/s) 0
2me 27 27e

; : 2nt it/2
h(s) = (—=1)™ tie ™/8em /2D (1 — 5)(271'15)(‘71)/2(—) :

we have
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Corollary. For sufficiently large t > 0 we have |h(5 +it)| < (t/(2m))~ /4.

Let C be a contour in the complex plane that goes from infinity along the positive part
of the real axis, then bypasses the coordinate origin counterclockwise, and then returns
to infinity so that the points 277, where the r are integers with |r| < m, are kept inside
the contour, while the points 27r with |r| > m are left outside of it.

We put

w e ™ (Inw)k Ji(s)
Jk(S)f/C v _ 1 dw, Ik(s)f m, k—0,1,2,

s—1 _ e(s—l) In w

where w , and the branch of Inw is chosen so that 0 < ImIlnw < 27 for

all w e C.

Lemma 4. For any s # 1 we have

(12) C(5) =3 = +x(8) D s+ Quls),
, " lnn UL | T TS
(13) ¢6) == 30 +x(6) 3 s (e = v9) + 5 ton 5 ) + Qi)+ Fa)
n=1 n=1

(14) ¢"(5) =Y ) 4 (s) 3 nll_s <<1n 2mn — (s) + gtan g) —/(s)

+(gs%)) £ Qals) + Rals),

where Qo(s) = In(s), @1(s) = I1(s) — ¥(s)Io(s),

Qu(s) = Io(s) = 20(8)1(5) + (82(5) = /() Dos)
Ris) = 2miQo(s) 4miQi(s)  4n?Qo(s) 1+ e2mis

e—2mis _ 1’ e—2mis _ | e—2mis _ | ’ 1 — e2mis '

RQ(S) =

Proof. The derivation of formula (I2]) is presented in [13] §7, Chapter IV]. Differentiating
([[2) and observing that

I = Tena(s), () =x(o)(m2m = v9) + Fean )

2 2
we get
" Inn " Inn 0 75\ v— 1
(o) —
(s) = - nz::l — +X(s) ; = T X(s) <ln 21 — 1(s) + 5 tan 7) nz::l =

J1(8) = (s)Jo(s) 27iJo(s)e?™ i

1"(5)(62771'5 _ 1) I‘(S)(627ris _ 1)2’

which implies (I3)). Similarly, we differentiate (I3]) to obtain the identity

¢"(s) :f: (II;Z)Q +X(s)§: nll_s <<ln 27m—¢(s)+g tan %)2_@//(5)4_ (g sec %)2>

n=1 n=1

b (AR (e )
ds .

[(s)(e?ms — 1) Cds [(s)(e?mis — 1)2
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The contribution of the last two sumands is equal to
Ja(s) — 24(s)J1(s) + (V*(s) — ¥'(5))Jo(s)
D(s) (e~ 1)
47”'62771'5 ) 87T2€27Tis.]0(8)
- m (Jl(s) —(s)Jo(s) + 7”JO(S)) + m

and coincides with

47.”'627ris s 47T2€27ris s 87T2627ris s
Qals) — "Qu(s) " Qo(s) n " Qo( ),
6271'15 -1 6271'15 -1 (6271'15 _ 1)2
which yields (Id)). The lemma is proved. O

§3. THE MAIN LEMMA

In this section we deduce formulas for the integrals I (s); these formulas will be used
in the proof of Theorems 1 and 2. The expansion of Iy(s) was obtained, in essence, by
Riemann; detailed calculations were published by Siegel in [§]. The formula for Iy(s) is
presented here because it results in a sharper error term in the formula for Z(¢), compared
with Siegel’s (compare [B]) with the expression for Z(¢) in Theorem 2).

Our way to deduce formulas for Ij(s) is similar to that suggested by Siegel (see also
[13, §7, 8, Chapter IV]). A minor modification of arguments allows us to avoid an-
alyzing several cases separately and treat uniformly the situations where the number
a = {4/t/(2m)} is close to 0 or to 1, or, on the contrary, is far from those points.

Lemma 5. Let 0 < ¢ < 0.5 be an arbitrary fived number, and let A = e~ +¢c. Then there
exist constants to = to(e) and 6 = 6(¢) > 0 such that for every s = o +it, 0 < o <1,
t > to, and every integer N with 1 < N < §t, we have

I.(s) = h(s)Sk(N;o,t) + Rg(N;o,t), k=0,1,2,

where

N—1 . Z_yp
nlg¥—" 2
. _ “ (n—2v
Sk(N;ot)=> Fn Y —V!(n_mm(» ") (2a),
n=0

0<v<n/2
the F,, are some coefficients depending on n, k, o, and t, and

N ¥ -3
|Rk(N;a,t)§2kC</\T) (%) O 5VTN (In )k,

Proof. We put n = v/27t, so that = 27(m+«), and pick a number ¢ = ¢(¢), 0 < ¢ < 0.5,
the value of which will be chosen later. The role of C will be played by the contour that
consists of the ray C; going from 400 to the point in+ (1 +7)cn in parallel with the real
axis, the segment Cy connecting the points in + (1 4 ¢)cn and in — (1 + 9)cn, the vertical
segments C3 with the endpoints in — (1 + i)en and —ne — 27i(m + 0.5), and the ray C4
going from the point —nc — 27i(m + 0.5) to +oo in parallel with the real axis. In case
the number +/t/(27) is an integer, we modify Ca, bypassing the poin in = 2wim along a
semicircle of infinitely small radius. Accordingly, the integral J(s) becomes the sum of
the corresponding integrals ji .(s) = j-(s), r =1,...,4.
Putting p = |w|, ¢ = argw, we see that, everywhere on Cy,

0<<p§z—arctan ¢ ,
2 1+c¢

1
| In w| glnp—kz: —ln(u2—|—(1—|—c)2772)—|—g<lnu—|—37

2 2
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where v = Rew. Repeating the arguments in [I3, §7, Chapter IV] word for word, we

find
w—le—mw & (Inw + 3)k 0.5(c—1) ,—(7/2+61)t
e L |
51 = ¢ — arctan ¢ - >0
Consequently,
+oo k
lj1(s)| < (2nt)0-5@—1) e*(ﬂ/2+51)t/ (Inu+3)"du < (27t)05(0 =) o= (m/2+80)t,
< ev —1

en

Similarly, observing that |Inw| < 0.5(Int + 37) on C; and using the estimate
0.5(c—1)

(27t)0-5( e~ (/2482 5 arctan

e¥ —1 ev —1 1-c

established in [I3] §7, Chapater IV], we obtain

ws—le—mw
’ —c>0,

ia(s)] < ((1 =c)n+27(m +0.5)) (2nt 0.5(c—1) M e~ (7/2+62)t
J3 n 1 —en
—e

< (2mt)°/2(Int + 3m)ke(7/2+02)t,

Finally, we use the fact that, for w = pe’¥ = u — 2mwi(m + 0.5) running over the ray

Cy4, we have
p=2m(m+0.5) =n—m,
[Inw| < 0.5 (u® + 4n°(m +0.5)%) + 2 < 0.51n (u® + 6.3t) + 27
This yields
+
|74(s)| < 0.5(n — 7T)0~5(U—1)€—57rt/4/

—cn

—mu

e
e +1

(0.51n (u? + 6.3t) + 27r)k du.

The contributions to the last integral of the intervals —cn < v < 0, 0 < u < ¢n, and

u > cn do not exceed, respectively, the quantities
cn cn

(1nt—|—9)k/ e du = (Int + 9)* 6—,
0 m

en Int k
(Int + 9)k/ e~ (mHDu gy < (nt+9)7
0 m+1

)

m—+1

n n

Therefore,
|j4| < (27Tt)0‘5(a_1)(111t + (L))ke—?nrt/Q7
" Z 7] < 2(2mt)02 =D (In ¢) ke~ (7/2+00)t,
r=1,3,4

where §g > 0 is the smallest of the numbers §; and 5.
Putting z = (w — in)/(iv2w), on C2 we get (see [13] §8, Chapter IV])
2

w'™t = (in)*exp (izxﬁ — %)A(z),

A(2) = exp <(s— 1)In (1 + %) — i+ %)

where

+oo +oo Int + 9)*
/ e~ M2y + 9)* du < (2Inen + 9)’“6_”7/ e du < (nt+9)" e~ (m+L)en,



588 M. A. KOROLEV

Next, we put B(z) = A(z) lnw, C(z) = B(z) Inw and denote by A,, the Taylor coefficients
of A(z). Let An(z) = :ioN Apz", and let By, Bn(z), Cpn, and Cn(z) be defined
similarly. Then

oc—1 (c—1(c—-2)
0 ) 1 N 2 o )
(c—1—n)A, +iA, o
A1 = fi > 2,
(10 +1 Ve

By=3 liAn-k, Cn=3 liBny for n>0,
k=0 k=0
where (o = Inin = In2nrt +mi/2, b = (—1)* 1 /k, k> 1.
For what follows, we need estimates of the quantities |Ax(2)|, |By(2)], |Cn(2)] for all
N satisfying 1 < N < §t, § being a sufficiently small constant. Let 0 < 5 < 1 be fixed,
and let v be an arbitrary number with |v| < 8v/t. Then

InA(v) = (s — 1)In (1+%> — i+

whence

2 +oo v k
In|A(v)] =Reln A(v) < (1 — 0)(% + %) +|s— 1|Z%(|—\/L_>

3 +oo
<(1-0)(B+0.58%) + t2+(1—a)2<m) B .

Denoting the last sum by v = (), so that

1 1 B2
(17) W—E(lnm—ﬁ—7),

we get

In|A(v)| < (1 —0)(8+0.568%) + 7o’ (1 La- 0)2)

Vi t2
Vvl v8°
<(1-0)(B4058%) + it (1-0)——.

Next, let [v] = R < 8v/t, and let |z| < kR, where & is a constant with 0 < x < 1. Using
estimate (@) and

2N A(v) dv
An(z) = 2mi oj=r VN (v —2)’

we get

ki 28 YR 1/” Rdy
2T

Putting > = |z|/R, we easily check that the last integral coincides with
4 4
m K(-m) 5 where K(’U

Y -
0 V1—wsin? ¢
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is the elliptic integral of first kind. Since the function

111%K<‘<1i%%>2)

is monotone increasing on the segment 0 < s < k < 1, for z under consideration we have

)=« 0 121" ex g2l
(18) = 20“1+ ) 4 ()
OT Tk K(‘ (1 _Hn)2> exp ((1 - 0)(B+0.55%)).

The minimum over R of the expression R~V exp (*ng’ / \/E), equal to

() = (&)

is attained at R = Ry = (Nv/1/(37))'/3. Consequently, for |z| <Y = xRy, from () we
obtain the inequality

(19) An(2)] < ol + o<1>>|z|N( f;}g) "

In the case where |z] > Y, for sufficiently large ¢ and R = |z|/k, relation (I8) implies

[An ()] < o™ (11 o(1)) exp (Lﬁ |z|2).

For all w lying on the curve Cy and the corresponding z we have |z|/v/t < cv/2; therefore,

V2
Av()] < coomp (TP 1aF).

Assume that c is so small that c¢yv/2/k* < 0.5. Denoting w = 0.5(0.5 — cyv/2/k3), for
|z| >Y we get

(20) |An(2)] < coexp ((0.5 — 2w)|z[?)

= coexp (—wY?)exp ((0.5 — w)|z|*) < 0.0Lexp ((0.5 — w)|z|?).

Observe that

ln(l—l—%)‘g—ln( _%) < —In(1 - B)

whenever |v| < 3v/t. It follows that if w and v satisfy v = (w — in)/(iv/27), then

1
lnz'n—i-ln(l—i—\%)‘ §§ln(27rt)+g+ln1_5.

[Inw| =

Consequently,
[B(v)| < %(1 +o(1))(Int)[A(v)], |C(v)] < i(l +0(1))(Int)*A(v)].

Let in what follows F(z) denote any of the functions A, B, C, and let

+oo N
(21) F(z) =) F.z" =Y Fp2" + Fy(a).
n=0

n=0
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In the case where F = B,C we can estimate Fi(z) like it was done above; combining
the resulting inequalities with (I9) and (20), we get

27%co(1+ o(1)) (Int)*|2 |N(36}) if [2] <Y,
0.01 exp ((0.5 — w)|z[?) if Y <|z| <cev2t.

N
3

(22) [Fn(2)| < {

Next, we represent the integral jo ,.(s) = ja(s) in the form
F G(w)
(in)s_l (Z)e d
Co ev —1
where

. 22 B ) t ; e
G(w)*ZZ\/%—T—mw—(w—m)\/%T—kll—( w —n)° — muw.

Let f(s) and g(s) denote the contributions to the last integral of the first and second
terms on the right in ([2I)), and let w = in+ (1 +0)§ = £+ i(§ + 1), where —en < € < en.
Then

2 2
ReG(w)=—§—+§ ——§m_—§—+a§,
so that
cn 52
(23) 56 < V2 [ exp (=5 +ag) e
—en 27

Since for w and £ under consideration we have
et = ein+(1+i)§ — 627ri(m+a)+(l+i)§ — eEJrin’

where we have put ¢ = £ + 27a, it follows that
1/2 £ o\ 3
e¥ — 1] = (e —2cosp+e~¢ = 2¢8/2( sinh? 2 +sin?2 = > 2¢4/2| sinh >
\ @ 5 5 5"

whence
—£/2
L
lew — 1| = |sinh (¢/2)]
on the entire integration interval in ([23]). Therefore, for w, £ in question and for z =

(w —in)/(iv21) = (1 —i)€/v/27 we have

F(2) HF(z) ¢
w_1 € ew—1

< [F(2)| —¢so _ [F(2)] e &2

< e = .
iy 2l VT
Now, let g1(s) and ga(s) denote the contributions to g(s) made by the intervals |¢| <
=Y/mand Yy < |€| < en, respectively. For |€] <Y; we use the first estimate in ([22]),
obtaining

lg1(s)] <295 Feo (1 + o(1)) (Int)* (;e\%) /Yl exp (—% + (a— 0.5)5) %

-V

Obviously, the last integral does not exceed the quantity

—+o0
2/ eV’ /2 cosh ((a — 0.5)vy/7 )N "1 dv < 2Dy,
0

—+oo
Dy = / e=""/2 cosh (0.50y/7 )™t do.
0
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Direct calculations show that, for 1 < N < 10, the ratio between Dy and the quantity
En = (N/e)N/QeO'5V 7N attains its largest value, equal to

p 1 vT\?
eo = \/;exp (5(1_7) ) —1.26145. . .,

at N =1, so that Dy < egEn for 1 < N < 10. For N > 10, we represent Dy by the

sum
+oo
(/ / )‘“ % cosh (0.50y/7 )0V "' dv = D)y + DY.
Then

+o0o
D)y < cosh (VTN /2) / eV /2N =1 gy = 9N/2-1 I'(N/2) cosh (VTN /2).
0
Next, we have

+oo
D” ; / 71;2/2 (1 + eO.Svﬁ)UNfl dv
Nocs

1 [+
< 2M/272 D (N/2) cosh (VAN /2) + 5 / e~V A2 N S gy,
VN

Putting v = u + v/ N in the last integral, we see that it is not greater than

/0+ooexp (-“;—ux/ﬁ—%Jr“\er \/Z_N) (uu++\</__)

1 N N/2 +oo \/— w N
< — — exp ———|———ux/]v 1+ — | du
s(e) [l )(+7%)

1 (N\NM?Z oo u?  uT
< —(= exp | —— + —— —uVN +uVN | du

w(5) L e (e )
_302(N N/2< N\?

VN \ e e '

Consequently,

= (2) (o3 o) <3(2)

3/N\V? 2
Dy < oN/2—-1 I‘(N/Q) cosh (\/7TN/2) +3<;> < gEN-

Thus, the estimate Dy < egFEy is valid for all N > 1. Therefore,

wlz

N
2

lg1(s)] < 285k cheq (1 +o(1 ))(lnt) 3ey . E Q0-5VTN
NVt e
5 32
= 21'57166060(1—1—0( lnt ( 05\/_ — ( 7) )
e

Turning to estimation of |g2(s)|, we note that

1—e &l if ¢<—W
w_1> — )
& —{65—1 it £>Y,
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The second estimate in (22)) yields

2 2
lg2(s)| < 0.01v2 exp (_5_77 +af+ (1 - w> E_) de

vi<[€|<en 2 ) lew —1|

+oo w€2 df +oo w€2 df
§0.01\/§(/Y1 exp <—T +a£) pra +/Y1 exp <—T—a§> 1—e—f>

+o00
< 0.03/ exp (_w§2> d¢ < T exp (—wY2)

v K3 20Y,
1/3 NV 2/3
_ VB e oo (o (KYEY Y.
2Kw 3y

It is not hard to check that the last factor does not exceed (AN/t)N/6 for 1 < N < 4t
it § is sufficiently small. Indeed, the inequality

o (w5 5(2)

is equivalent to the inequality Iny < 7y in which y = (t/(AN))Y/3, 7 = 2wr?e = /3. Put
Yo to be the largest root of the equation Iny = 7y if 7 < e™! and y = 1 otherwise. Then
for ([24) to be true it suffices to require that y > o, or in other words, N < (A\y3)~'t.
Assuming in what follows that § < (Ay3) ™!, we get

N
6

oz

@< (2T gl < 25 a1+ o) o)t (A1) 05V

We pass to the calculation of f(s). First, we obtain estimates for the coefficients
Ay, B, and C, for 1 < n < N. Putting z = (2/(3ey))"/? in the identity |A,| =
|An(2) — Apt1(2)] - |2|7™ ans using the first estimate in (22), we see that

ZCO(1+O(1))<%)%<1+|Z(1-1-%)_%(%)1/3)

< co(1+0(1)) <%> ' (L+171%) = ¢ (1 +0(1)) <2L\7Z> %.

The quantities |B,| and |C,,| are estimated similarly. Writing estimates uniformly, we
get

(25) |F| <27 %o (1+0(1)) (%) g(lnt)k.

Next, we have

N-1 ) GG(w)
fls) = nzz:o Fi~™(2n)7"2j(n), j(n)= /C2 T 1(w —in)" dw.
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It we replace j(n) with the integral J(n) that differs from j(n) by changing the segment Co
for the infinite line containing it, the absolute value of the error will not exceed

\f/ exp<——+ 5) (Ev2r d§+\/_/ exp<—%—a£> ifﬂ dg

o

+oo
<3/ exp( )(5\/_) dé’—3\/_(2,”)”/2\/0\5\/_6—1;2/4,6—1)2/4 nd’U
cn

For all n with 1 < n < N—1, the function e~ /4y™ is monotone decreasing for v > 0.5v/.
Therefore, the error in question is at most

+oo
3\/E(27r)”/2(0.5\/i)”e*t/16/ e~ du < 63/7(2m)2(0.5v/F)" L8,
0.5Vt

By (23)), the contribution to f(s) of these quantities is not greater than

12\\//— WS]:ZDF 1(0.5vt)"

12}{ _t/8<F|+2 o(1+0(1))(Int) NZ<W> )

(26)

Assuming that N < 34t/8, we conclude that the maximal value of (3evt/(8n))"/% on
the segment in question is at most (3eyt/(8N))N/3. Since |Fy| < 27F(In2nt + 7)*, the
right-hand side of (26)) is dominated by the quantity

N
127 _, _ eyt ®
2 e /¥(Int)k 27N
(27) i e /*(Int) o SN

Since

El 3eyt <'y_t7
8N / — 8

it follows that (27) does not exceed 12+/7/t (Int)F 2 FcuN e~ (1= Mt/8 < e=(1=Mt/9 pro-
vided 0 < v < 1 and t is sufficiently large. Let y; be equal to the largest root of the
equation (Iny)/y = 3A(1 — v)/5 if its right-hand side does not exceed 1/e and to 1
otherwise. Then, assuming that N < t/(Ay1), we obtain the inequalities

N
AN t 3)\ t 6t t\°
“In 1- In— < ——(1— — ) < =mt/10,
TS5 g s -, <)\N> =
Consequently,
N
6

ZF iT"(2r) "2 (n )+9<)\N) e~ (1=M)t/%0
t
Now we invoke the expression for J(n) obtained in [I3] §8, Chapter IV]:

) ) | i\ Y
J(n) = (=1 omemw/zsmiss 3N M (%) 02 (20),

_ !
O<zn/2 (n—2v)lW!
Observing that |(in)*~t| = (2mt)(7~1/2e= /2 we find
Ja(s) = (=1)" "N (in)* ™" 2me” 2TOTEG) (NS 0 t)

N
+21.5—k06060(1 —|—0(1))(lnt)k<)\7) 60.5\/71'1\/ (zﬁ)(o—nme— Trt/?)

oz
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where
nli¥=" 2 n/2-v (n—2v)
0<v<n/2

Using (IH), we get

Z.?kr _ )m 1(@77)5 1271’67“/2 57rz/85( ,t)
N
6

AN —
+ 28 Fhcgeq (1 + o(l))(lnt)k< ; > 0-OVTN (o) (o= D)/2g=mt/2,

Since _
2mie™*®
Il —s)’
we have Ij(s) = h(s)Sk(N;0,t) + Ri(N;o,t), where
h(S) — i_l e~ ‘n'isl—\(l . S)(_1)m—lem'(s—l)/2(27rt)(s—1)/2e—it/2—57ri/8
— ie—wis/QF(l _ S)(_1)m—1(QWt)(s—l)/Ze—it/Q—&ri/S

ot it/2
— (_1)m 71'2/8 77rzs/2F(1 —S)(Zﬂ't)(g 1)/2( m ) ,
(&

F(S)(eQﬂiS _ 1) _

and the quantity Ry = R (NN;0,t) obeys the inequalities

0.5—k N/6 /2
|Ry| < 2 coeo (1 +0(1))(Int)” <g> 60~5m<2i> .
& s

Now we choose the parameters ¢, 8, and k. When we deduced (ZII), it was assumed
that x3 > 2v/2c¢7y. Also, the estimate ([[J) of |Ax(2)| was obtained under the assumption
that |z] < kR, R < B/, i.e., under the condition |z| < x3v/t. Then this estimate was
used for z running over Cy, i.e., for |z| < ¢v/2t. To have right to apply the estimate of
|An(2)], it suffices to require that cv/2 < k3. Finally, everywhere above it was assumed
that 0 < 8, k < 1.

Let ¢ — 0. We put x = ¢'/3 and § = 1.5k%. Then 0 < 3, k < 1 if ¢ is sufficiently
small. Also, it is obvious that Bx = 1.5k = 1.5¢ > ¢v/2. Identity (7)) implies that

2\/507—2\/§c< qc

Since 3, k — 0 as ¢ — 0, we have

2/3 4/3 5/3 3
/+—20c/+...)——c—|—0( /)<C—K.

1 4K T Y 2
1_HK(_(1—5)2)—K(0>+o(1>—§+0(1>7 = BH0350) — 1 4 o(1),

whence ¢y =14 o(1) and

20.571{7 2- k 1 2
. 6060—7 < <1—§) >_C2k

Finally, A = (37)%e~! = e~! + o(1). Therefore, given €, we can choose ¢ so small that

& —0o/2
Rk(N;o,t)|<2kC<w> eO‘Sm(lnt)k<i> .

et 2T

for t > to(e).
The lemma is proved. O
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Lemma 6. For sufficiently large t we have |Qy (5 +it)| < cx(t/(27)) 1/4(1n15)k, where
co=1,c1=14, co =2.1.
Proof. The definition of the quantities Q = Qk(% + z't) shows that
Qo = hSo + Ry, Q1 = h(S1— 1)+ R1 — ¥Ry,
Qs = h(S2 — 2481 + (¥ = ¢')So) + Ry — 2¢Ry + (¥ — ¢') Ry,
where, for brevity, we have put
h=h(3+it), Sk==5k(N;3,t), Ri=Ry(N;3,t), P = 1/)(")( + it).
We set N =1, ¢ =1/3 and observe that, in this case,

So = ®(2a), S1=BeP(2a)= (ln 2t + i) @ (2v),
Sy = Co®(2a) = i(ln 27t + 7ri)2<I)(2a).

Since for 0 < < 2 we have 0.382 < ®(z) < 0.924, application of the preceding lemma
yields the estimates

£\ /4 s 05e £\ L4
|Q0|<(%) (0.924 + C(2t) /% )<(%> ,

—1/4
Q1] < (%) (% In2mt+ = +Int+ ~ + A’(t)> (0.924 + C(2t) 7/ 0e05VT)

2 2
¢ —1/4

t\ VY41 m\° 1 0 ™ ,
|Q2] < o 5111271’154-5 +2 5111271’154-5 1Ht+§+A(t)

2
2
+ <1nt + g + A’(t)) + ;) (0.924 + C(2t)~1/005VT)

" —1/4
< 2.1(2—) (Int)2.
0

This proves Lemma 6. O

Corollary. Let m = [ t/(27r)}. Then for all sufficiently large t we have

(2 +it) Z
72219(15 Z

¢"(3 +1t) Z

(29) —2119(t) Z \/_ <(1H L 2A/( )>2 n ZZﬁ/l(t)>

+Q2(3 + zt) + g2,

(28)

S

<1n— +2A/(t )) +Q1(% +it) + 617>,

Proof. We obtain these formulas by putting s = 1 + it in (I3) and ([I4) and applying
Lemma 1, together with the estimates of Lemma 6. (]
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84. PROOF OF THEOREMS 1 AND 2

Put s = 1 + it in formula (IZ). The definition of Q(s) and Lemmas 3 and 5 show
that

m —i m it
n
+ zt Z e 20() Z
n=1 n=1 \/ﬁ
-1 m—1 t —1/4
f_ge_m <%> e W i8S, + 60 De),

where we have denoted
(1+¢e)N 0 Jvan( t —1/4
. _ 0.5V7N
S = Su (Vi) Dle) = Dlesive) = (LR ) Terevan (1)
As has already been mentioned, the first terms of the expansion of
e—z’A(t)SO

1 —de—"t

0

are well known, so that we do not present them here.
By Lemma 5 and the corollary to Lemma 2, we have

1 3
|R1 — ¥ Ro| < CD(¢/2) (5 Int+1Int+ g + A’(t)) <3 CD(/2)(1+ o(1))(Int),
where, as before, ¥ = 1 (% + it) , Ry = Ry (N, > t) When calculating the quantity
Q1 (% +it) = h(S1—1Sy)+ R1 — 1 Ro, the replacement of the denominator 1 —ie™ ™" in the
expression for h(1+it) (see Lemma 3) produces the error ie ™™ (Q1 (5 +it) — (R1 —¥Ry)),

which, by Lemma 6 and (B0), does not exceed 1.5(¢/(27))~ */4(Int)e~™" in the absolute
value. Thus, for sufficiently large ¢, (28) implies the identity

(b + i) i —Wﬂz 2 (g 4280

—1/4
+ (=1)mt (%) e DWW (N;t) +1.50CD(e)(Int),

where Wy = Wi (N;t) = e "2 (S; —4)Sy). We transform W, (N;t) as follows. First, we

write

N-1 nliv—n 2 n/2—v (n—2v)
(31) So — Sy = Z Up Z — o (;) P (2a),

| —_ |
s vi(n — 2v)12n

where v, = B, — ®¥A,. The v, can be found with the help of the recurrence rela-
tions (I4]). However, their calculation can be simplifies somewhat. For this, we put
v(z) = Z:g vpz®. Then v(z) = B(z) — Y A(z) = A(z)u(z), where u(z) = Inw — 1. By

Lemma 1,

—t

e

_ I BYPIN gt -
u(z)-ln(l—i— ) L —2A'(t), £—21n27r—|—5(t), 6(t)_1+ie*“t'

Vit
Consequently, v(z) = b(z) — (L 4+ 2A’(t))a(z), where

a(z) = A(z), b(z) =a(z)In(1+ z/\/z?)
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Denoting by a,, b, the Taylor coefficients of a(z), b(z), we get

n—1 (_1)]671 1 k
32) ap = A, by =S aply p, L _7<—> = by — (£ + 28 (1))an
(52) Satun =R (7 (£+26'(1)

The last identity implies, in particular, that the coefficients v,, are linear functions of L.
Computing v,, via (32), plugging the result in [BI]), and, finally, multiplying by the partial
sums of the series
; 2 43
e—iA(t) —1_ 1t _ t _ 4027lt T 7
24 .3 29 .32 213 .34 .5

we arrive at the expansion ) with

?3 )
0 05 1 22 372 ? o

Dy Dg S Do Dy
Hy=—L ),
2 (24~7r2+25~327T4)+Z<23~7r+23~37r3

51 s Dgy S P3 D7
Hy =L -
s (25-7T2+23-3~57r4+27-347r6) Z<24~7T3+26~327T5>7

_ <1>0 199, 11dg o d
72 29374 T 29.32. 556 | 211.3558 ) T 26352

1 7(1)2 + 73(1)6 + ‘1>10
7
27 . 7T3 28 . 32 . 57‘1’5 28 . 347T7 ?

(33)

o —r 5P4 17 - 53P rCOE D5
57 M\ 27 358 T 211.32. 5. 746 " 210. 34 . 58 ' 213.36. fyrl0
L . ] 3-23P5 67dg D3
98.3274 "\ 95. 13 T 910 .55 ' 99.34.5;7 ' 912.3579

and so on (here and in the sequel ®; = ®U)(2q)).
Similarly, by Lemma 5 and the corollary to Lemma 2, we have

2
(34) |Ry — 20Ry + (¥* — )Ry | < (g) CD(g/2)(1+ o(1))(Int)*.
Also, when calculating the quantity
Q2(% +it) = h(S2 — 2051 + (¥* — ¢')Sp) + Ro — 20 Ry + (* — ¢')R

—7t

the replacement of the denominator 1—¢e~"™" in the expression for h(% +it) (see Lemma 3)

produces the error
ie”™(Q2(5 +it) — (R2 — 2Ry + (¥ — ') Ry)),

which, by Lemma 6 and estimate (B4)), does not exceed 2.2(¢/(27))~ /4(Int)?e~™*. Thus,
from (29]) we obtain the indentity

2
¢"(3 +1it) Z )2 — 7200 Z (( 5 F2A(t )) +2i19”(t)>

(=1)m~t (i) ) 1/46_“9(t)W2(N; t) + (;)260D(5)(lnt)2,

+

2
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where Wo = Wa(N;t) = e AW (S, — 2051 + (2 — ¢')So). Repeating the above argu-
ments word for word, we arrive at the relation

N-1 liv—n n/2—v
So— 2081+ (W2 —)So =D wa Y V,(L <3> ") (20),
n=0 ’

n—2v)127 \ «
0<v<n/2

where the coefficients w,, are defined by the formulas

Wy, = cp — 2(L+ 20 ()b, + (£ 4 24"(1)% + 2i(9"(t) — €(t))) an,

Tee
Cp = Zbkén_k, E(t) = m
k=1

The calculation of w,, leads to the expansion (@) with

(35) Hy(t) = Fo(t) +iGi(t), k=0,1,2,...,
and
) )
_ p2 —0- _ _pr2 3 R
Fo=L%, Go=0; Fi=—L15—s Gi=L—
o P P
_ r2 2 6 2
R=L <247T2 + 25.327r4) T 92,2
D, D, 3®
Gy= L[ > -2
? (2% * 22~37r3) 2’
D, o5 Dy @, s
Fy = -2
i s (2571'2+23-3-57T4+27~347T6>+227r2+24-37r4’
(36) oo o o &, @, O
37\ T e ) T me T ot 3t
(I)O 19(1)4 11‘1)8 (1)12
Fy=1r?
4 <277T2 + 29.374 " 99.32. 5,6 ' 9ll. 357r8)

50,  11d, Dy
2672 26.374 © 27.3276 )7

7P, 7304 P19 3P, D¢
Gs=-L _
4 (267T3+27.32.57T5+27.347T7> (26ﬂ-3 +27.37T5)

and so on. Theorem 1 is proved.
We turn to the proof of the formulas for Z'(t), Z”(t) in Theorem 2. Differentiating
the relation

Z(t) = " W¢ (L +it),
we see that
(37) Z't) = (¥ ()¢ (L +it) + PO (L +it)).

Now we use identities (I2), [28) and Lemma 1 to show that (s = § + it)

’ G n\S G n(S _on
2= Y L 59 ) e,
n=1 n=1
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where
fa(s) = ie™® (9 (t) — Inn),
gn(s) = ie”Ox(s) (ﬂ’(t) +1In2mn — (s) + gtan g)
q(s) = ie™”® (9 (£)Qo(s) + Q1(5)).

Next, we have

) 1 t : 1 t
fu(s) = ie??® (5 In o Inn + A’(t)) = jet?®) (5 In 53 T A’(t)),

. - 1 t a
=i ;L —id
gn(s) = ie” W (=9 (t) + Inn) = —ie " (5 In 53 T A’(t)) = fu(s).

Finally, using Lemma 5, we get
q(s) = ie??® (Ii(s) + (9" = ¥)Io(s))
= ieOh(S; — (9 —)Sp) + i Dh(Ry — (9 —¥)Ry),

where ¢ = ¥'(t). We reshape the expression S; — (¢ — )Sy like it was done above,
obtaining

) N-1 nliv—n 9 n/2—v (n—2v)
S1= 0 =) = Z Un Z vi(n — 2v)12n <;> ¢ (20),
n=0 0<v<n/2
£\ /4
q(s) = (—1)™* (2—) Wi +0CD(g/2) Int,
T
where
e—iA(t) N-1 nliy—m 2 n/2—v
— A S S N (n—2v)
Wi =Wi(N:t) 1 —ide-mt Z Un Z vi(n —2v)12n (71') e (20,

n=0 0<v<n/2
vy = B, + (19’ — w)An.

Putting v(z) = 325 v,2", we see that

v(2) = A(2)u(z), u(z) =lnw+9—=In (1 + %) —A(t) - 8(D),
Un = by, — (A'(t) + 6(t)) an,
with ay, b,, and 6(t) as before. These relations show that the expressions for u,, do not

involve the quantities £ = In (¢/(27)). Calculating, we arrive at the expansion (@) with
the coefficients

o, Qg Dy O3 o,
H = 0 H = — H = —_—-—— = — Q= — D ———
0=0 =50 M=o T mam BT s T g
TP, 73 &g D9
Hi= -5~ o5 s 5 98.94._ 7’
(38) 20 28 .32 .51 28 . 3%
oo &1 3230 6Td 3
° 7 25x3 T 210 5g5 T 9934 5T T 2123579
g 3% 2518, 11-313® 71 ®55 Dy
6= To10,3 912, 375 914.3577 914,34 . 579 914 .36.5. 7,11
and so on.

Next, differentiating [B7) results in the identity
Z"(t) = (i0"(t) — (9 (1)) e V¢ (3 +it) — 20" (1) (4 +it) — D" (5 +it).
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For s =  +it, from (EIZI), (DEI), and Lemma 1 we obtain the formulas

Z// Z fn in(s) + q(s) + 96727”,

1—s
n=1

fn(s) = em(t) (0" (t) — (19’(15))2 —29'(t)Inn — (Inn)?)
2
gn(s) = e x(s) (w/'(t) — (1) - 20'(¢) (m 21n — ¥(s) + = tan 13)
- (ln 2mn —P(s) + T tan 7T—> — (s

)
_mit(D) <i19”(t) + (% In 27:? + A'(t)) 2) ;

(

)

q(s) = €O (@ (t) — (9'(£))*)Qo(s) — 20" (1) Q1 (s) — Qa(s))
= O (Lo (s)(' + 90" — (b —9)?) + 201 (s) (¢ — 9') — ).

Lemmas 3 and 5 yield a representation of the form

—1/4
t
i) = 0 () Wk 0O/ 1m0
where
71A(t N-1 nliv—n 9 n/2—v
_ . . “ (n—2v)
We = We(N3t) = 1—iemt Z tn Z vi(n —2v)12n <7r> ¢ (22,

n=0 0<v<n/2
= (9" (t) = £(t)) — (A(t) + 6(1)*) an + 2(A"() + 5(£)) bn — cn,

with an, by, cn, 0(t), €(t) as before. Like in the case of Z’'(t), the expressions for the u,
do not involve £. Calculations result in the expansion {) with the coefficients

Dy o, D

Hy=0, H =0, Hy=—==, Hi=——S=——F—"—
0 ) 1 ’ 2 92,2 ) 3 92,2 24 37T4 )
5P 11dy bg
H, =
(39) 262 26 . 374 27 .3276°
o — 3703 3P, Dy
57 T 984 27 . 5g6 99 .34,8’
I 79 O, 71 Og 179 &4 Dy
6= 9104 " 910 .56 ' 911.34. 5,8 ' 913 . 35,10
and so on. Theorem 2 is proved. |
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