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REPRESENTATION OF FUNCTIONS IN AN INVARIANT SUBSPACE

WITH ALMOST REAL SPECTRUM

O. A. KRIVOSHEEVA AND A. S. KRIVOSHEEV

Abstract. The invariant subspaces with almost real spectrum are studied. By a
method based on the Leont′ev interpolation function, a criterion of the fundamen-
tal principle is obtained for these spaces. This criterion only consists of a simple
geometric condition on the local distribution of the points of the spectrum with mul-
tiplicities. A complete characterization is given for the space of coefficients of the
series that represent functions in an invariant subspace.

§1. Introduction

Let Λ = {λk, nk}∞k=1 be a sequence of complex numbers λk and their multiplicities nk.
We assume that |λk| is strictly monotone increasing and |λk| → ∞ as k → ∞. We say
that the sequence Λ is almost real if Reλk > 0 and Imλk/Reλk → 0 as k → ∞.

Let W be a nontrivial closed subspace of the space H(D) of analytic functions in
a convex domain D ⊂ C (endowed with the topology of uniform convergence on com-
pact subsets of D), and let W be invariant under the operator of differentiation. Let
Λ = {λk, nk}∞k=1 be the multiple spectrum of this operator on W , and let E(Λ) =

{zn exp(λkz)}∞,nk−1
k=1,n=0 be the family of its eigenfunctions and generalized eigenfunctions

on W . The paper is devoted to the study of invariant subspaces with almost real spec-
trum Λ.

As partial cases of invariant subspaces, we mention the spaces of solutions of linear
homogeneous differential equations, difference or differential-difference equations with
constant coefficients of finite or infinite order, as well as more general convolution equa-
tions and systems of convolution equations.

The basic problem in the theory of invariant subspaces is to represent an arbitrary
function in W in terms of elements of the system E(Λ). Depending on the structure of
such a representation, one can distinguish several different problems. The most difficult
situation arises when we consider the “weakest” case. This can be described as the prob-
lem of spectral synthesis, i.e., approximation of all functions in W by linear combinations
of elements of E(Λ). A criterion for the possibility spectral synthesis was obtained by
I. F. Krasichkov-Ternovckǐı in the paper [1] for an arbitrary invariant subspace on a con-
vex domain. It is formulated in terms of the stability of the annihilator submodule for
the subspace W (this is the set of all functions of exponential type that are the Laplace
transforms of functionals annihilating W in the space H∗(D) strongly dual to H(D)). In
the paper [2], this result was applied to solve the problem of spectral synthesis in some
particular cases. For example, it was proved that each space of solutions of a homo-
geneous convolution equation in a convex domain admits spectral synthesis. Moreover,
it was established that an invariant subspace on an unbounded convex domain always
admits spectral synthesis.
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If W admits spectral synthesis, a natural desire is to “improve” the approximation.
Definitely, most desirable is the representation of any function g ∈ W by a “pure” series

(1.1) g(z) =

∞,nk−1∑
k=1,n=0

dk,nz
n exp(λkz), z ∈ D,

converging uniformly on the compact subsets of D. This problem is called the problem
of fundamental principle. The name comes from a partial case of an invariant subspace,
the space of solutions of a linear homogeneous differential equation with constant coef-
ficients. It is known that each solution of such an equation is a linear combination of
elementary solutions, i.e., the exponential monomials zn exp(λkz) whose exponents are
the zeros (possibly multiple) of the characteristic polynomial. The existence of such a
representation is called the Euler fundamental principle.

Via the Laplace transform, the fundamental principle problem can be reduced to a
dual problem of multiple interpolation in the space of entire functions of exponential
type. The analysis of these two problems, first conducted independently of each other,
has a long history. Its basic steps were described in the papers [3] and [4]. In [4], the
author solved the fundamental principle problem for the invariant subspaces that admit
spectral synthesis, and the interpolation problem for an arbitrary convex domain D ⊂ C

under the restriction (mD(Λ) = 0): nk(j)/|λk(j)| → 0 as j → ∞ for any subsequence
{λk(j)} “accumulating” to the direction where the support function HD of the domain D
is bounded (i.e., λk(j)/|λk(j)| → ξ and HD(ξ) < +∞). In the paper [5], this restriction
was lifted for a bounded domain. This means that the criterion for the fundamental
principle was found for an invariant subspace in a bounded convex domain D. It consists
of two conditions. The first is related to a local distribution of points in the spectrum
and means, in a sense, that they are “separated away” from each other (the condensation
index SΛ equals 0, see the next section). The second condition corresponds to the global
distribution of the λk. This is a condition of compatibility of a sequence Λ and the
domain D. It is required that Λ be a part of the zero set of an entire function of
exponential type and regular growth whose conjugate diagram coincides with the closure
of D. By the well-known result of Levin [6], this is equivalent to the fact that Λ is a
subset of a special regularly distributed set.

If the condition SΛ = 0 fails, it is impossible to represent all functions g ∈ W by a
series of type (1.1). In this connection the following problem arises naturally: to represent
g by the series (1.1) “with parentheses”:

(1.2) g(z) =

∞∑
m=1

( ∑
λk∈Um

nk−1∑
n=0

dk,nz
n exp(λkz)

)
.

The monograph [7] by A. F. Leont′ev is devoted to the study of the problems mentioned
above (see also [22]). Many results of that author and his predecessors were presented
there.

The desire to “improve” representation (1.2) leads to a basis problem in an invariant
subspace, which is formulated as follows. Under what conditions can one construct a
partition U = {Um}∞m=1 of the sequence Λ in groups Um and choose in these groups
some fixed linear combinations em,j , j = 1, . . . , Nm, of elements of E(Λ) so that the
family of exponential polynomials E(Λ, U) = {em,j} is a basis in W? A series of addi-
tional questions arises in the case where a basis as above exists. How can one realize
the partition U , and is it possible to describe all admissible partitions? How can one
compose linear combinations inside each group and is it possible to describe all admis-
sible combinations? How small can one make the diameter of the groups Um? Finally,
how can one describe the space of coefficients of the series with respect to the system
E(Λ, U)? In the case of a bounded convex domain D, all these questions were answered
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in the papers [8–11]. In particular, a criterion for the existence of a basis was found for
a subspace W constructed by a partition U in a relatively small groups Um, i.e., groups
whose diameters and the number of elements are infinitely small (in comparison with
the modulus of their elements) as m → ∞. This criterion consists of one condition:
compatibility of the sequence Λ with the domain D.

Therefore, the problem of representation of functions in an invariant subspace is com-
pletely investigated in the case of a bounded convex domain. The situation is much worse
in the case of unbounded convex domains. Indeed, the fundamental principle criterion of
the paper [4], as well as the majority of results of the carlier papers, involve the following
condition. The existence is required of an entire function with zeros at the points λk of
multiplicities at least nk, or of a family of such functions whose growth is close to regular
and depends on the domain D. The question about conditions on Λ and D that ensure
the existence of such a family of functions remains open. The problem of constructing
such a family is quite difficult. For bounded domains this problem was solved with the
help of the result by Levin mentioned above. For unbounded domains only two cases
were investigated: D is the plane or a half-plane.

A complete solution of the representation problem for invariant subspaces of entire
functions was obtained in the paper [12]. It was proved that in each subspace of this sort
there exists a basis consisting of linear combinations of eigenfunctions and generalized
eigenfunctions. The linear combinations are formed within groups of exponents with
arbitrarily small relative diameter. A criterion for the existence of a basis generated
by groups of zero relative diameter (i.e., relatively small groups) was also found. As a
special case, this gives a solution of the fundamental principal problem under the above
assumptions.

The invariant subspaces on a half-plane were mostly investigated in the case of a simple
positive spectrum with a density (see [7]). In this case, the problem of fundamental
principle can be stated as a problem of closedness of the set of sums of the Dirichlet
series. This problem was solved completely in the paper [13] for an arbitrary convex
domain D. The solution was found in terms of simple geometric characteristics of the
sequence Λ and the domain D. It contained an essentially new idea. It turns out that in
the case of a vertical half-plane, for the validity of the fundamental principle we need to
require neither the measurability of the sequence Λ, nor the finiteness of its maximum
density (despite the fact that the support function of a half-plane is bounded in the
positive direction). In this case, a necessary and sufficient condition is the vanishing of
the characteristics SΛ.

The present paper is devoted to the study of invariant subspaces with almost real
spectrum. At first sight, it seems that this case is very similar to that of positive spec-
trum studied in [13]. However, these two cases differ principally from each other. First,
in the present paper we allow the points λk to be multiple. The most important fact
is that, in contrast with the paper [4], we do not impose any additional restrictions on
the multiplicity. In comparison with the case of a simple spectrum, the investigation
becomes more difficult. Moreover, unlike the case of positive spectrum, the results ob-
tained for invariant subspaces with spectrum “accumulating” to the positive half-axis
may be applied for the study of invariant subspaces with arbitrary spectrum. This fact
is demonstrated in the present paper. Furthermore, the appearance of this paper was
motivated by the necessity to remove the only restriction in [4] (mD = 0) on the way
of the complete solution of the fundamental principal problem for arbitrary invariant
subspaces.

The paper consists of four sections. §2 is devoted to the construction of a special family
of entire functions of exponential type (Theorems 2.2, 2.4, 2.5). In the next section, we
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use that family and the Leont′ev interpolation function to obtain (Theorems 3.1 and
3.3) a representation of functions in invariant subspaces with almost real spectrum on
half-planes with a vertical boundary (and located to the left of the boundary). Note
that in the paper [4] (as well as in many other earlier papers), the solution of the dual
interpolation problem was applied for this purpose. But the duality of the representation
and interpolation problems was established in [4] under the additional restriction on the
multiplicities of the points λk : mD(Λ) = 0. It is not known whether duality still
occurs without this restriction. But even if duality is preserved without this additional
restriction, it is still not clear how to solve the interpolation problem. For that reason,
the paper [4] contains a restriction on Λ. In the present paper, we use the interpolation
function to obtain the fundamental principle criterion (Theorem 3.5) in the case under
consideration without any additional restrictions on multiplicities. This criterion involves
only a simple geometric condition on the local distribution of points (with multiplicities)
of the sequence Λ : SΛ = 0. Also, we give a complete characterization of the space
of coefficients of the series (1.1) representing functions in an invariant subspace. As a
result, it is shown that the restrictions imposed on the multiplicities in the paper [4] are
technical in the case of an invariant subspace with almost real spectrum in a half-plane
with vertical boundary. Later in §4 we explain that, in essence, this situation is the only
model case when the restriction mD(Λ) = 0 is technical.

In §3, we consider all cases of invariant subspaces with almost real spectrum on an
unbounded convex domainsD such that the positive half-axis is either inside the set J (D)
where the support function HD of the domain D is not bounded, or on its boundary
(but not necessarily in the set itself). Via one new and several known results related
to the solution of a different problem (simultaneous analytic continuation of functions
in invariant subspaces), these cases reduce to two situations. Namely, to the case of
a half-plane treated before (Theorem 3.5) and to the case where all functions in an
invariant subspace are entire (this case was investigated in the paper [4]). The case of
any unbounded convex domain D “similar” to a vertical half-plane reduces to the case
of a half-plane (Theorem 3.8). This includes the situation when the boundary of D
contains a vertical ray, or a vertical line is its asymptote. For such a domain, the positive
half-line belongs to the boundary of the set J (D), but at the same time the function
HD is bounded on this half-axis. In Theorem 3.9, for the first time for one of the classes
of invariant subspaces, a simple criterion is obtained for each function in this subspace
to be an entire function, without any assumptions about the existence of any families
of entire functions. On that basis, with the help of Theorem 5.1 in [4], a fundamental
principle criterion is obtained (Theorem 3.10) for invariant subspaces with almost real
spectrum in an arbitrary convex domain for which the positive half-axis belongs to the
set J (D) (including the case where it belongs to the boundary of the domain J (D)).

In the last section, the remaining case is studied, where the support function HD is
bounded in a neighborhood of the positive half-axis. It is proved (Theorem 4.1) that a
necessary condition for the validity of the fundamental principle in an invariant subspace
with almost real spectrum is the relation m(Λ) = limj→∞ nk/|λk| = 0. On that basis in
Theorem 4.2 we obtain a necessary condition for the validity of the fundamental principle
in arbitrary invariant subspaces. This result contains the main result of the paper [5]
(Theorem 1) as a special case. In particular, Theorem 4.2 means that the condition
mD(Λ) = 0 is a necessary condition for the validity of the fundamental principal in
arbitrary invariant subspaces and any convex domains that are not “similar” to a half-
plane (i.e., their boundary contains no rays and does not admit any asymptotes). Due to
Theorem 4.2, the only restriction in Theorem 5.1 of the paper [4] “narrows” substantially.
This fact is reflected in Theorem 4.3, giving a criterion for the validity of the fundamental
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principle under the following restriction, which is considerably weaker than that in [4]:
limj→∞ nk(j)/|λk(j)| = 0 for any subsequince {λk(j)} such that {λk(j)/|λk(j)|} converges
to a point ξ ∈ ∂J (D) \ J (D) (there can be at most two such points).

Due to Theorem 4.1, the last result of the paper, Theorem 4.4, (and only it) is a
complete analog of the corresponding result (Theorem 4) of the paper [13]. It represents
a simple criterion for the validity of the fundamental principle for invariant subspaces with
almost real spectrum in the case where the function HD is bounded in a neighborhood
of the positive half-axis.

Finally, it should be noted that, in this paper, the problem of the removal of the
“technical” restriction remaining in Theorem 4.3 is basically solved. Some principal steps
to its solution are demonstrated in the proofs of Theorems 2.2, 2.4, and 3.3. However, a
complete solution of this problem is technically difficult, requiring a separate study.

§2. Construction of special entire functions

In this section, we construct entire functions of exponential type that vanish on an
almost real sequence Λ and have growth close to regular.

Let B(z, r) and S(z, r) be the open disk and circle centered at a point z and of radius r.
Denote by n(z, r,Λ) the number of points λk (with multiplicities nk) belonging to the

closure B(z, r), and by sn(Λ) the upper density of the sequence Λ:

sn(Λ) = lim
r→∞

n(0, r,Λ)

r
.

Let f be an entire function. We say that f is of exponential type if for some A,B ≥ 0
we have ln |f(λ)| ≤ A+B|λ|, λ ∈ C. The function

hf (λ) = lim sup
t→∞

ln |f(tλ)|
t

, λ ∈ C,

is called the indicator of f . This function is convex and positive homogeneous of or-
der one, because it coincides with the support function of some compact set called the
indicator diagram of f (see, e.g., [15, Chapter I, §5, Theorem 5.4]).

Let d > 0. As in [16], we say that a sequence {ςl} is asymptotically d-close to {ξl} if
lim supl→∞ |ςl − ξl|/|ξl| ≤ d.

We also say that a collection of disks E =
⋃
Bi is centered with a sequence {ξl} if

every point ξl belongs to at least one disk Bi, and each disk Bi contains at least one
point ξl. Recall that the number

ρE = lim sup
r→∞

1

r

∑
|zi|<r

ρi

is called the linear density of the set E =
⋃
B(zi, ρi).

The next statement is a refinement of the theorem that estimates from below the
modulus of an entire function of exponential type (see [17, Chapter I, §1, Theorem 1.1.9]).

Lemma 2.1. Let f be an entire function, f(0) �= 0, satisfying the estimate

ln |f(λ)| ≤ A+B|λ|, λ ∈ C,

for some A,B > 0. Then for each β ∈ (0, 1) there exists a set of disks E(β) centered
with the zero set of f , having linear density of at most β, and such that

ln |f(λ)| ≥ ln |f(0)| − b(β)(A+ 12B|λ|), λ ∈ C \ E(β),

where b(β) = 3 + ln(48/β).
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Proof. Let β ∈ (0, 1) and m ≥ 1. In accordance with the theorem estimating from below
the modulus of a function analytic in a disk (see [15, Chapter I, §4, Theorem 4.2]), we
have

ln |f(λ)| ≥ |f(0)| − (2 + ln(48e/β))(A+ Be2m+1)

in the disk B(0, 2m) but outside of exceptional disks with the total sum of radii equal to
β2m/8. Note that this theorem is based on the theorem of Cartan (see [15, Chapter I,
§4, Theorem 4.1]) about a lower estimate for a polynomial. The proof of that theorem
shows that the number of exceptional disks is finite, and each contains at least one zero
of the function f . Let B(zj,m, rj,m), j = 1, . . . , j(m) be the subset of all exceptional disks
that intersect the annulus Km = B(0, 2m) \ B(0, 2m−1). Then

∑
j rj,m ≤ β2m/8. Since

2m+1 ≤ 4|λ| for λ ∈ Km, we have

ln |f(λ)| ≥ ln |f(0)| − b(β)(A+ 12B|λ|), λ ∈ Km \
⋃
j

B(zj,m, rj,m).

Therefore, setting E(β) = B(0, R)
⋃

j,mB(zj,m, rj,m), where R ≥ 1, we obtain the desired

inequality. The set E(β) is centered with the zero set of f . Indeed, each element of the
last set obviously belongs to E(β). Moreover, every disk B(zj,m, rj,m) contains at least
one zero of f . If R > 0 is sufficiently large, the same is true for the disk B(0, R).

It remains to prove that the linear density of E(β) does not exceed β. Let r > 0
and |zj,m| < r. Then, in accordance with our choice of the disks B(zj,m, rj,m), we have
r + (β2m)/8 > 2m−1. Hence, we obtain 4r > 2m. Denote by m(r) the maximum of all
numbers m such that 4r > 2m. We have

∑
|zj,m|<r

rj,m ≤
m(r)∑
m=1

j(m)∑
j=1

rj,m ≤
m(r)∑
m=1

β2m

8
=

m(r)∑
m=1

β2m(r)

2m(r)−m8
≤

m(r)∑
m=1

βr

2m(r)+1−m
≤ βr.

Thus, ρE(β) ≤ β. The lemma is proved. �

Let δ ∈ (0, 1). We set Γ(δ) = {tλ : λ ∈ B(1, δ), t ∈ R}.

Theorem 2.2. Let Λ = {λk, nk}∞k=1 be an almost real sequence such that sn(Λ) < +∞.
Then for any ε > 0 and any δ ∈ (0, 1), there exist γ ∈ (0, 1), an entire function of expo-
nential type f , and a strictly monotone increasing sequence of positive numbers {ti}∞i=1

such that ti+1 ≤ (1 + δ)ti, i ≥ 1, ti → ∞ as i → ∞, f has zeros at the points λk of
multiplicities at least nk, and the following inequalities hold true:∣∣∣∣ln |f(λ)| − π| Imλ|

γ

∣∣∣∣ ≤ ε|λ|,

λ ∈ (C \ (Γ(δ) ∪B(0, t1))) ∪
( ∞⋃

i=1

S(0, ti)

)
,

(2.1)

hf (λ) ≤ π| Imλ|/γ + ε|λ|, λ ∈ C.(2.2)

Proof. We fix ε, δ > 0. If necessary, one may assume that ε are δ are arbitrarily small.
To define our desired function f , we need to construct its zero set. This will be done in
6 steps.

1) At the first step we replace Λ by the sequence of positive numbers Λ1 = {ξl},
consisting of the real parts Reλk of the elements of Λ. We assume that the number of
each Reλk belonging to Λ1 coincides with the sum of multiplicities of the points λj with
real part Reλk. Consider the functions

L(λ) =
∞∏
k=1

(
1− λ2

λ2
k

)nk

, L1(λ) =
∞∏
l=1

(
1− λ2

ξ2l

)
.
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Obviously, both Λ1 and Λ have finite upper density. This implies (see, e.g., [17, Chap-
ter. I, §1, Theorem 1.1.5]) that L(λ) and L1(λ) are entire functions of exponential type.
We compare their behavior. For this purpose, we use the results of [16].

Since Λ1 has finite upper density, the number C = supr n(0, r,Λ
1)/r is finite. Let

Λ(rΛ1) be the union of Λ(Λ1) and the set −Λ(−Λ1) symmetric to Λ(Λ1) about the origin.
By assumption, Λ is almost real. Thus, Λ is asymptotically d-close to Λ1 for any d > 0.
Then by Theorem B in [16] (since the zeros of L and L1 are symmetric about the origin),
for any d ∈ (0, 1/2) we can find C1 > 0 (depending only on C) and a union of disks

E1(d) =
⋃
B(yi, qi) such that E1(d) is centered with rΛ ∪ rΛ1, has linear density of at

most 4
√
d, and

(2.3) |ln |L(λ)| − ln |L1(λ)|| ≤ C1

√
d|λ|, λ ∈ C \ E1(d).

2) At the second step we split Λ1 in groups belonging to special semiopen intervals of
the real line. We fix γ ∈ (0, 1/4C), γ < 1. Using induction, we construct groups Λ1

p(γ),

p ≥ 1, so that Λ1 =
⋃

p Λ
1
p(γ). Let p = 1, and let l1(γ) ≥ 0 be the smallest integer

for which the semiopen interval (l1(γ)γ, (l1(γ) + 1)γ] contains at least one point of Λ1.
Now we choose the smallest natural number m1(γ) > l1(γ) such that (l1(γ)γ,m1(γ)γ]
contains at most m1(γ)− l1(γ) elements of the sequence Λ1. This number exists because,
by the definition of C and our choice of γ, for sufficiently large m we have n(0,mγ,Λ1) ≤
Cmγ ≤ m(1 − (l1(γ))/m) = m − l1(γ). We define Λ1

1(γ) as the set of elements of
Λ1 lying on (l1(γ)γ,m1(γ)γ]. Suppose that we have constructed the groups Λ1

p(γ) ⊂
(lp(γ)γ,mp(γ)γ], p = 1, . . . , j. Let lj+1(γ) ≥ mj(γ) be the smallest natural number such
that (lj+1(γ)γ, (lj+1(γ) + 1)γ] contains points of Λ1. As above, take the smallest natural
number mj+1(γ) > lj+1(γ)γ such that

(2.4) n(0,mj+1(γ)γ,Λ
1)− n(0, lj+1(γ)γ,Λ

1) ≤ mj+1(γ)− lj+1(γ).

We define Λ1
j+1(γ) as the set of all elements of Λ1 belonging to the semiopen interval

(lj+1(γ)γ,mj+1(γ)γ]. Thus, we have split Λ1 in the groups Λ1
p(γ), p ≥ 1.

By the definition of mp(γ), we have n(0, (mp(γ)−1)γ,Λ1)−n(0, lp(γ)γ,Λ
1) > mp(γ)−

1− lp(γ). Therefore,

n(0,mp(γ)γ,Λ
1)− n(0, lp(γ)γ,Λ

1) ≥ mp(γ)− lp(γ).

The last inequality together with (2.4) yields

(2.5) n(0,mp(γ)γ,Λ
1)− n(0, lp(γ)γ,Λ

1) = mp(γ)− lp(γ), p ≥ 1.

3) At the third step we construct an auxiliary sequence Λ2(γ) whose elements lie on
the semiopen intervals (lp(γ)γ,mp(γ)γ] in a regular way. We put Λ2(γ) =

⋃
p Λ

2
p(γ),

where Λ2
p(γ) = {(lp(γ) + 1)γ, . . . ,mp(γ)γ}, p ≥ 1. Then

(2.6) n(0,mp(γ)γ,Λ
2(γ))− n(0, lp(γ)γ,Λ

2(γ)) = mp(γ)− lp(γ), p ≥ 1.

We define the function

L2(λ, γ) =
∏

ηj∈Λ2(γ)

(
1− λ2

η2j

)
.

Let us compare the zero sets of L2(λ, γ) and L1(λ). By (2.5) and (2.6), there is a one-
to-one correspondence between these sets, so that with each zero ξj of L1(λ) lying in
the semiopen interval (lp(γ)γ,mp(γ)γ] (or symmetric to it with respect to the origin) we
associate the zero ηj of L2(λ, γ) lying in the same interval. Hence,

|ξj − ηj |
ξj

≤ mp(γ)γ − lp(γ)γ

lp(γ)γ
=

mp(γ)− lp(γ)

lp(γ)
.
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By (2.5) and the definition of C, we have

mp(γ)− lp(γ) = n(0,mp(γ)γ,Λ
1)− n(0, lp(γ)γ,Λ

1) ≤ n(0,mp(γ)γ,Λ
1) ≤ Cmp(γ)γ.

Hence, lp(γ) ≥ mp(γ)(1− Cγ). It follows that

(2.7)
|ξj − ηj |

ξj
≤ mp(γ)− lp(γ)

lp(γ)
≤ Cmp(γ)γ

mp(γ)(1− Cγ)
=

Cγ

1− Cγ
≤ 2Cγ =: d(γ).

Thus, rΛ2(γ) = Λ2(γ) ∪ (−Λ2(γ)) is asymptotically d(γ)-close to rΛ1. Then, by Theo-

rem B in [16] (taking the symmetry of rΛ1, rΛ2(γ) with respect to the origin into account),
we find C2 > 0 (depending only on C) and a union of disks E2(γ) =

⋃
B2

i (γ) such that

E2(γ) is centered with rΛ1 ∪ rΛ2(γ), the set E2(γ) has linear density of at most 4
√
d(γ),

and

(2.8)
∣∣ ln |L1(λ)| − ln |L2(λ, γ)|

∣∣ ≤ C2

√
d(γ)|λ|, λ ∈ C \E2(γ).

4) At the fourth step we improve, in comparison with (2.8), the upper estimates for

ln |L1(λ)| along the real line. Since rΛ1, rΛ2(γ) are symmetric with respect to the origin,
the statement preceding Theorem 4 in [16] (formula (3.8)) shows that

(2.9)
∣∣ ln |L1(λ)| − ln |L2(λ, γ)|+ I(λ, γ)

∣∣ ≤ C3d(γ)|λ|, |λ| ≥ R,

where the constants C3, R depend only on C, and

I(λ, γ) =

∫ 1

0

n(λ, t|λ|, rΛ1)− n(λ, t|λ|, rΛ2(γ))

t(1 + t)
dt.

Let rδ > 0. We want to find upper estimates for −I(λ, γ) on the real line outside of

the disks B(ηj , rδγ), ηj ∈ rΛ2(γ). In view of the symmetry of the sets rΛ1 and rΛ2(γ), it
suffices to do this for the positive half-line of R. Suppose λ > 0 and |λ − ηj | ≥ γ/4
for all ηj ∈ Λ2(γ). For convenience, we set m0(γ) = 0. Let p(0) ≥ 0 be the greatest
integer such that λ > mp(0)(γ)γ, and let p(1) be the smallest natural number satisfying
λ < lp(1)(γ)γ. We split Λ1 in three parts:

Λ1(γ, 0) =

p(0)⋃
p=1

Λ1
p(γ), Λ1(γ, 2) =

⋃
p≥p(1)

Λ1
p(γ),

Λ1(γ, 1) = Λ1 \ (Λ1(γ, 0) ∪ Λ1(γ, 2)).

If p(0) = 0, then Λ1(γ, 0) is empty. In the case where p(0) = p(1)− 1, Λ1(γ, 1) is empty.
Otherwise, Λ1(γ, 1) = Λ1

p(0)+1(γ) = Λ1
p(1)−1(γ). Similarly, we define Λ2(γ, 0), Λ2(γ, 1),

and Λ2(γ, 2). Using this notation, we obtain

(2.10) −I(λ, γ) =

2∑
i=0

∫ λ

0

n(λ, y,Λ2(γ, i)− n(λ, y,Λ1(γ, i))

y(1 + y/λ)
dy.

If Λ1(γ, i) is empty, then the corresponding term of the sum is missing. Let us estimate
each of them from above. Since Λ1 and Λ2(γ) belong to the intervals (lp(γ)γ,mp(γ)γ],
p ≥ 1, by (2.5) and (2.6) we have n(λ, y,Λ2(γ, 2)) − n(λ, y,Λ1(γ, 2)) = 0, λ + y /∈
(lp(γ)γ,mp(γ)γ]. Let λ + y ∈ (lp(γ)γ,mp(γ)γ], p ≥ p(1). We choose the smallest
natural number s(y) such that λ + y ∈ (lp(γ)γ, s(y)γ]. Let s(y) = lp(γ) + 1. If λ + y =
s(y)γ, then n(lp(γ)γ, λ+ y − lp(γ)γ,Λ

2
p(γ)) = 1 and the definition of lp(γ) implies that

n(lp(γ)γ, λ + y − lp(γ)γ,Λ
1
p(γ)) ≥ 1. Otherwise, n(lp(γ)γ, λ + y − lp(γ)γ,Λ

2
p(γ)) = 0.

Suppose that s(y) > lp(γ) + 1. Then, by the definitions of Λ2
p(γ) and mp(γ), we have

n(lp(γ)γ, λ + y − lp(γ)γ,Λ
2
p(γ)) ≤ s(y) − lp(γ) and n(lp(γ)γ, λ + y − lp(γ)γ,Λ

1
p(γ)) ≥
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n(lp(γ)γ, (s(y) − lp(γ) − 1)γ,Λ1
p(γ)) > s(y) − lp(γ) − 1 ≥ s(y) − lp(γ). Hence, the

integrand in the third term in (2.10) is nonpositive. Therefore,

(2.11)

∫ λ

0

n(λ, y,Λ2(γ, 2))− n(λ, y,Λ1(γ, 2))

y(1 + y/λ)
dy ≤ 0.

Now we estimate the second term in (2.10). If Λ2(γ, 1) �= ∅, then Λ2(γ, 1) = Λ2
p(0)+1(γ)

and λ ∈ (lp(0)+1(γ)γ,mp(0)+1(γ)γ]. We set

y(λ) = max{λ− lp(0)+1(γ)γ,mp(0)+1(γ)γ − λ}.

Taking into account the inequality |λ− ηj | ≥ rδγ for all ηj ∈ Λ2(γ) and the definition of
Λ1
p(0)+1(γ), we have∫ λ

0

n(λ, y,Λ2(γ, 1))− n(λ, y,Λ1(γ, 1))

y(1 + y/λ)
dy

≤
∫ y(λ)

rδγ

n(λ, y,Λ2
p(0)+1(γ)) dy

y(1 + y/λ)
≤

∫ y(λ)

rδγ

2y/γ + 2

y(1 + y/λ)
dy

≤ 2a(λ, γ, rδ) +
2λ ln(1 + y(λ)/λ)

γ
≤ 2a(λ, γ, rδ) +

2y(λ)

γ
,

(2.12)

where
a(λ, γ, rδ) =

∫ λ

rδγ

dy

y(1 + y/λ)
= ln

λ

rδγ
− ln

2λ

rδγ + γ
= ln

rδγ + λ

2rδγ
.

To estimate the first term in (2.10), we observe that, as above,

n(λ, y,Λ2(γ, 0))− n(λ, y,Λ1(γ, 0)) = 0, λ− y /∈ (lp(γ)γ,mp(γ)γ].

Suppose λ − y ∈ (lp(γ)γ,mp(γ)γ], p ≤ p(0). We set yp = y + λ − mp(γ)γ. From the
definition of Λ2

p(γ) we deduce that

(2.13)

∫ λ

0

n(λ, y,Λ2(γ, 0))− n(λ, y,Λ1(γ, 0))

y(1 + y/λ)
dy

≤
p(0)∑
p=1

∫ (mp(γ)−lp(γ))γ

0

n(mp(γ)γ, y,Λ
2
p(γ))

yp(1 + yp/λ)
dy

≤
p(0)∑
p=1

∫ λ−lp(γ)γ

λ−mp(γ)γ

yp − λ+mp(γ)γ + γ

γyp(1 + yp/λ)
dyp

≤
p(0)∑
p=1

∫ λ−lp(γ)γ

λ−mp(γ)γ

dyp
γ(1 + yp/λ)

dyp +

p(0)∑
p=1

∫ λ−lp(γ)γ

λ−mp(γ)γ

mp(γ)γ − λ

γyp(1 + yp/λ)
dyp + a(λ, γ, rδ)

=

p(0)∑
p=1

λ

γ
ln

(
2λ− lp(γ)γ

2λ−mp(γ)γ

)

+

p(0)∑
p=1

mp(γ)γ − λ

γ

(
ln

(
λ− lp(γ)γ

λ−mp(γ)γ

)
− ln

(
2λ− lp(γ)γ

2λ−mp(γ)γ

))
+ a(λ, γ, rδ)

= a(λ, γ, rδ) +

p(0)∑
p=1

2λ−mp(γ)γ

γ
ln

(
1 +

mp(γ)γ − lp(γ)γ

2λ−mp(γ)γ

)

−
p(0)∑
p=1

λ−mp(γ)γ

γ
ln

(
1 +

mp(γ)γ − lp(γ)γ

λ−mp(γ)γ

)

=

p(0)∑
p=1

ap(λ, γ) + a(λ, γ, rδ).



612 O. A. KRIVOSHEEVA AND A. S. KRIVOSHEEV

Consequently, from (2.5) it follows that∫ λ

0

n(λ, y,Λ2(γ, 0)− n(λ, y,Λ1(γ, 0))

y(1 + y/λ)

≤
p(0)∑
p=1

2λ−mp(γ)γ

γ
ln

(
1 +

mp(γ)γ − lp(γ)γ

2λ−mp(γ)γ

)
+ a(λ, γ, rδ)

≤
p(0)∑
p=1

(mp(γ)− lp(γ)) + a(λ, γ, rδ)

≤ n(0, λ,Λ1) + a(λ, γ, rδ)

≤ Cλ+ a(λ, γ, rδ).

Using (2.10)–(2.12), we get

−I(λ, γ) ≤ Cλ+ 2
(
mp(0)+1(γ)− lp(0)+1(γ)

)
+ 3a(λ, γ, rδ).

In view of (2.5), the inequality mp(0)+1(γ)− lp(0)+1(γ) ≤ Cmp(0)+1(γ)γ is true. Hence,
λ ≥ lp(0)+1(γ)γ ≥ mp(0)+1(γ)(1− Cγ)γ. Therefore,

(2.14) −I(λ, γ) ≤ Cλ+ 4Cλ(1− Cγ)−1 + 3a(λ, γ, rδ) ≤ 7Cλ+ 3a(λ, γ, rδ).

Now we are going to obtain a more general estimate of I(λ, γ) outside a special set
of intervals. Fixing ε1 > 0, we denote by P (ε1) the collection of all indices p such that
mp(γ)− lp(γ) > ε1mp(γ)γ. Put

E(γ, ε1) =
⋃

p∈P (ε1)

(
lp(γ)γ,mp(γ)γ(1 + 4Cd(γ)ε−1)

)
.

Let λ /∈ E(γ, ε1). If to the left of λ there are points in E(γ, ε1), then one can find the
greatest index p(2) ∈ P (ε1) such that p(2) ≤ p(0). Otherwise, we set p(2) = 0. Let
p(2) �= 0. Taking (2.7) into account, we obtain

p(2)∑
p=1

ap(λ, γ) ≤
p(2)∑
p=1

mp(γ)γ − lp(γ)γ)
2

2γ(λ−mp(γ)γ)
≤ ε

p(2)∑
p=1

mp(γ)− lp(γ))
2

8Cd(γ)mp(γ)

≤ ε

p(2)∑
p=1

mp(γ)− lp(γ)

8C
≤ εn(0, λ,Λ1)(8C)−1 ≤ ελ/8.

(2.15)

Starting with p(s) < p(0), we choose the greatest indices p(s) > · · · > p(3) ≥ p(2) such
that p(0)∑

p=p(s)+1

(mp(γ)− lp(γ)) > ε1λ,

p(j)∑
p=p(j−1)+1

(mp(γ)− lp(γ)) > ε1λ, j = 4, . . . , s,

p(3)∑
p=p(2)+1

(mp(γ)− lp(γ)) ≤ ε1λ.

(2.16)

If p(3) = p(2) or s = 3, the situation simplifies. We consider the general case. We have

λ−mi(γ)γ ≥
p(0)∑

p=i+1

(mp(γ)− lp(γ)) γ, i < p(0).
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Using (2.16), the definition of p(2), and the fact that p(j) is maximal, we obtain

p(j)∑
p=p(j−1)+1

ap(λ, γ) ≤
p(j)∑

p=p(j−1)+1

γ(mp(γ)− lp(γ))
2

2(λ−mp(γ)γ)

≤
p(j)∑

p=p(j−1)+1

(mp(γ)− lp(γ))
2

2ε1λ(s+ 1− j)
≤

p(j)∑
p=p(j−1)+1

mp(γ)− lp(γ)

2(s+ 1− j)

≤ ε1λ

s+ 1− j
, j = 3, . . . , s.

(2.17)

Moreover,

(2.18)

p(0)∑
p=p(s)+1

ap(λ, γ) ≤
p(0)∑

p=p(s)+1

(mp(γ)− lp(γ)) ≤ 2ε1λ.

Since λ /∈ E(γ, ε1), we have mp(0)+1(γ) − lp(0)+1(γ) ≤ ε1mp(0)+1. Then, applying
(2.12) and the inequalities λ > lp(0)+1(γ)γ ≥ mp(0)+1(γ)(1− Cγ)γ, we see that

(2.19)

∫ λ

0

n(λ, y,Λ2(γ, 1))− n(λ, y,Λ1(γ, 1))

y(1 + y/λ)
dy ≤ 2ε1λ+ 2a(λ, γ, rδ).

Thus, from (2.10), (2.11), (2.13), (2.15), and (2.17)–(2.19) it follows that

−I(λ, γ) ≤ ελ/8 +
s∑

j=3

ε1λ

s+ 1− j
+ 8ε1λ+ 3a(λ, γ, rδ),

λ /∈ E(γ, ε1), |λ− ηj | ≥ rδγ, ηj ∈ Λ2(γ).

By (2.19) and (2.5), we have

(s− 2)ε1λ ≤
p(0)∑

p=p(3)+1

(mp(γ)− lp(γ)) ≤ n(0, λ,Λ1) ≤ Cλ.

The Euler formula shows that one can find an absolute constant B > 0 such that

s∑
j=3

1

s+ 1− j
≤ ln(s− 2) +B − 8.

Thus, the following inequality is valid:

−I(λ, γ) ≤ ελ/8 + ε1λ

(
ln

C

ε1
+B

)
+ 3a(λ, γ, rδ),

λ /∈ E(γ, ε1), |λ− ηj | ≥ rδγ, ηj ∈ Λ2(γ).

(2.20)

5) At the fifth step we slightly “correct” the function L1(λ) in order to reduce the
possible “splashes” of ln |L1(λ)| on the set E(γ, ε1). For this, we need to complete the
sequence Λ1 in a special way. First, we observe that

(2.21) E(γ, ε1) ⊂
⋃

p∈P (ε1)

(mp(γ)γ(1−Θ(γ)),mp(γ)γ(1 + Θ(γ))) ,

where Θ(γ) = 8C2γε−1. Here, it is assumed that 2Cε−1 ≥ 1. Suppose that α > 0 and
β(p, α, γ) is the integral part of αmp(γ)γ. Denote by Λ3(γ, α, ε1) the sequence consisting
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of all points mp(γ)γ, p ∈ P (ε1), such that each of them appears in the sequence exactly
β(p, α, γ) times. Consider the function

L3(λ, α, γ, ε1) =
∏

p∈P (ε1)

(
1−

(
λ

mp(γ)γ

)2
)β(p,α,γ)

.

Let p ∈ P (ε1). By (2.5) and the definition of P (ε1), we have

Cmp(γ)γ ≥ n(0,mp(γ)γ,Λ
1) ≥

∑
j≤p,j∈P (ε1)

ε1mj(γ)γ.

It follows that

n(0,mp(γ)γ,Λ
3(γ, α, ε1)) =

∑
j≤p,j∈P (ε1)

β(j, α, γ) ≤
∑

j≤p,j∈P (ε1)

αmj(γ)γ ≤ αCmp(γ)γ

ε1
.

Therefore,

lim sup
r→∞

n(0, r,Λ3(γ, α, ε1))

r
= lim sup

r→∞

n(0,mp(γ)γ,Λ
3(γ, α, ε1))

mp(γ)γ
≤ αC

ε1
= B(α, ε1).

Hence (see [15, Chapter II, §2, Lemma 2.2]), for some A(α, ε1) > 0 we have

(2.22) ln |L3(λ, α, γ, ε1)| ≤ A(α, ε1) + 2πB(α, ε1)|λ|, λ ∈ C.

Let β ∈ (0, 1). By Lemma 2.1, we also have the estimate

ln |L3(λ, α, γ, ε1)| ≥ ln |L3(0, α, γ, ε1)| − b(β)(A(α, ε1) + 24πB(α, ε1)|λ|),
λ ∈ E3(β),

(2.23)

where the set E3(β) =
⋃
B3

i is centered with the zero set of the function L3 and has
linear density of at most β.

For p ∈ P (ε1), consider the function

gp(λ) = L3(λ, α, γ, ε1)(1− λ/mp(γ)γ)
−β(p,α,γ).

This is an entire function that also satisfies estimate (2.22) on the circle S(mp(γ)γ,
mp(γ)γ). Using some simple estimates and the maximal modulus principle, we obtain

ln |gp(λ)| ≤ A(α, ε1) + 8πB(α, ε1)|λ|, λ ∈ B(mp(γ)γ,mp(γ)γ/2).

Let γ > 0 be such that Θ(γ) < 1/2. Then for all λ ∈ B(mp(γ)γ,Θ(γ)mp(γ)) we have

ln |L3(λ, α, γ, ε1)| = ln |gp(λ)|+ β(p, α, γ) ln |(1− λ)/(mp(γ)γ)|
≤ A(α, ε1) + 8πB(α, ε1)|λ|+ (αmp(γ)γ − 1) lnΘ(γ)

≤ A(α, ε1) + 8πB(α, ε1)|λ|+ (α|λ|/2− 1) lnΘ(γ).

Hence, taking (2.9), (2.14), and (2.21) into account, we obtain

ln |L1(λ)|+ ln |L3(λ, α, γ, ε1)|
≤ ln |L2(λ, γ)|+A(α, ε1, γ) +B(α, ε1, γ)λ+ 3a(λ, γ, rδ),

λ ≥ R, |λ− ηj | ≥ rδγ, ηj ∈ Λ2(γ), λ ∈ E(γ, ε1),

(2.24)

where

A(α, ε1, γ) = A(α, ε1)− lnΘ(γ),

B(α, ε1, γ) = 8πB(α, ε1) + 7C + C3d(γ) + (α lnΘ(γ)/2.
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Moreover, by (2.9), (2.20), and (2.22), the following inequality is valid:

ln |L1(λ)|+ ln |L3(λ, α, γ, ε1)|
≤ ln |L2(λ, γ)|+A(α, ε1) + rB(α, ε1, γ)λ+ 3a(λ, γ, rδ),

λ ≥ R, |λ− ηj | ≥ rδγ, ηj ∈ Λ2(γ), λ /∈ E(γ, ε1),

(2.25)

where rB(α, ε1, γ) = ε/8 + ε1(ln(C/ε1) +B) + C3d(γ) + 2πB(α, ε1).
6) At our last step we construct the desired function f . First, we define two auxiliary

functions. We put Λ4(γ) =
⋃

p Λ
4
p(γ), where Λ

4
p(γ) = ∅ if mp(γ) = lp+1(γ), and Λ4

p(γ) =

{(mp(γ) + 1/2)γ, . . . , (lp+1(γ)− 1/2)γ} otherwise. We also put Λ5(γ) = Λ2(γ) ∪ Λ4(γ),
Λ6(γ) = Λ1 ∪ Λ3(γ, α, ε1) ∪ Λ4(γ) and

L5(λ, γ) =
∏

ηj∈Λ5(γ)

(
1− λ2

η2j

)
, rf(λ) =

∏
ηj∈Λ6(γ)

(
1− λ2

η2j

)
.

It is not difficult to check that Λ5(γ) has density 1/γ (n(0, r,Λ4(γ))/r → 1/γ) and is
regular (with distances between elements of at least γ/2). Hence (see [17, Chapter I, §2,
Theorem 1.2.9] and [6, Chapter II, §1, Theorem 5]), for each rδ > 0 and some r(rδ) > 1,
we have

(2.26) | ln |L5(λ, γ)| − π| Imλ|/γ)| ≤ ε|λ|/8, λ ∈ C \
(
B(0, r(rδ)) ∪ E5(rδ)

)
,

where E5(rδ) =
⋃

∓ηj∈Λ5(γ)B(ηj , rδγ). Sequentially, we fix ε1, β, α, γ > 0 such that

ε1(ln(C/ε1) +B) < ε/8,(2.27)

β < δ/72,(2.28)

πB(α, ε1) < ε/8, 24b(β)πB(α, ε1) < ε/8,(2.29)

γ < 1/4C, Θ(γ) < 1/2, 7C + (α lnΘ(γ)/2 < 0,

C2

√
d(γ) < ε/8, C3d(γ) < ε/8, 4

√
d(γ) < δ/72.

(2.30)

Then applying (2.24)–(2.27), (2.29), and (2.30), we see that

(2.31) ln | rf(λ)| ≤ A(α, ε1, γ) + ελ/2 + ε/32 + 3a(λ, γ, rδ) ≤ 5ελ/8

for all λ /∈ E5(rδ), λ ≥ R(α, ε1, γ, rδ) ≥ max{R, r(rδ)}. It follows that
(2.32) h

rf (λ) ≤ 2ελ/3, λ ≥ 0.

Indeed, if this is not the case, then the Bernstein theorem (see [6, Chapter I, §18,
Theorem 31]) allows us to find τ > 0 and a sequence 0 < rn → ∞ such that on each
interval (rn, (1 + τ )rn) the inequality

(2.33) ln | rf(λ)| > 5ελ/8

is fulfilled everywhere except possibly a set of measure at most τrn/2. On the other hand,

the measure of the set E5(rδ)∩ (rn, (1+ τ )rn) does not exceed 2rδγ(τrn/γ+1). Hence, for
rδ < 1/4 and for any sufficiently large n, on to the interval (rn, (1 + τ )rn) we can find a
point λ for which (2.31) and (2.33) are valid. We get a contradiction. Therefore, (2.32)
is true.

Finally, we define the function f . We put Λ7(γ) = Λ3(γ, α, ε1) ∪ Λ4(γ) and

f(λ) = L(λ)
∏

ηj∈Λ7(γ)

(
1− λ2

η2j

)

(assuming that nk equal multipliers correspond to each λk ∈ Λ). As above, f is an
entire function of exponential type. At the points λk it has zeros of multiplicity at least
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nk. Let ε′ > 0. Since the function h
rf is continuous, one can find τ ∈ (0, 1) such that

h
rf (λ) ≤ h

rf (1) + ε′, λ ∈ B(1, τ ). Then (see [6, Chapter I, §18, Therem 28]) for some

R′ > 0 we have

(2.34) ln | rf(tλ)| ≤ h
rf (t) + 2ε′t, t ≥ R′, λ ∈ B(1, τ ).

By (2.3),

(2.35) ln |f(λ)| − ln | rf(λ)| ≤ C1

√
d|λ|, λ ∈ C \ E1(d),

for any d ∈ (0, 1/2), where E1(d) =
⋃
B(yi, qi) has liner density of at most 4

√
d. We

choose d such that C1

√
d ≤ ε′ and 4

√
d ≤ τ/6. Then for some r′ > 0 and any r ≥ r′ we

have
∑

|yi|<r qi ≤ τr/5.

Suppose r ≥ r′ and B(yi, qi) intersects B(0, r). If |yi| ≥ r, then, as above, qi ≤ τ |yi|/5.
Thus, (1− τ/5)|yi| < r. It follows that |yi| < 5r/4. Therefore, the sum of the radii of all
disks B(yi, qi) that intersect B(0, r) is not greater than τr/4.

Let λ ≥ r′. As it has been proved, the sum of the diameters of the disks B(yi, qi)
intersecting B(λ, τλ) does not exceed τ (1 + τ )λ/2 < τλ. Thus, we can find τ ′ ∈ (0, τλ)
such that the circle S(λ, τ ′) does not intersect the set E1(d). Then using (2.34) and
(2.35) and recalling our choice of d and the maximum of the modulus principle, we
obtain ln |f(λ)| ≤ ε′(1 + τ )λ + h

rf (λ) + 2ε′λ. Since ε′ > 0 is arbitrary, now from (2.32)

we deduce that

(2.36) hf (λ) ≤ 2ελ/3, λ ≥ 0.

Now we choose d ∈ (0, 1/2) and rδ > 0 so that C1

√
d < ε/8, 4

√
d < δ/72, and the linear

density of E5(rδ) is at most δ/72. Put

E = E1(d) ∪ E2(γ) ∪ E3(β) ∪ E5(rδ).

(Obviously, we may assume that E is symmetric about the origin.) Then by (2.28) and
(2.30), the inequality pE ≤ δ/18 is true. Thus, as above, we can find r′′ > 0 such that
for r ≥ r′′, the sum of the diameters of all disks in E with nonempty intersection with
B(0, (1 + δ)r) is strictly less than δr/3. Let r0 > r′′. Then for each i ≥ 1, there exists a
number ti in the interval ((1 + δ/3)i−1r0, (1 + δ/3)ir0) for which the circle S(0, ti) does
not intersect E. By our choice, we have ti+1 > ti > (1 + δ/3)i−1r0 → ∞ as i → ∞, and
ti+1 < (1 + δ/3)i+1r0 < (1 + δ/3)2ti < (1 + δ)ti. It remains to verify (2.1) and (2.2).

By our choice of d and inequalities (2.3), (2.8), (2.22), (2.23), (2.26), and (2.29), we

can find rr ≥ r(rδ) such that

(2.37) | ln |f(λ)| − π| Imλ|/γ)| ≤ 2ε|λ|/3, λ ∈ C \ (B(0, rr) ∪ E).

Let us show that the part of E lying in the exterior of a sufficiently large ball centered
at the origin, is contained in Γ(δ). We may assume that E is symmetric about the origin
because all functions in our proof are even. Hence, it suffices to consider the part of E in
the right half-plane. It is centered with the set Λ′′ = Λ∪Λ1∪Λ2(γ)∪Λ3(γ, α, ε1)∪Λ4(γ).
All components of that set except for the first lie in the positive half-axis. Since Λ is
almost real, there exists rr1 ≥ max{rr, r′′} such that | Imλk| < (δReλk)/6 for all k
satisfying |λk| ≥ rr1. Let B(y, q) be a disk that is included in E and contains a point
z′ with modulus of at least (1 + δ)rr1. Then B(y, q) ⊂ C \ B(0, rr1) (otherwise, as has
been proved above, 2q < (δrr1)/3, and so B(y, q) ⊂ B(0, (1 + δ)rr1). Hence, by our choice
of r′′, we have q < δ|y|/6. There exists a point ς ∈ Λ′′ belonging to the disk B(y, q).
Since ς ∈ B(y, q), we have |ς| ≥ rr1 and |ς| ≥ (1 − δ/6)|y|. By our choice of rr1, we have
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| Im ς| < δRe ς/6. Hence, for any η ∈ B(y, q), we obtain

|η − Re ς| ≤ |η − y|+ |y − ς|+ |ς − Re ς|
≤ δ|y|/6 + δ|y|/6 + δRe ς/6 ≤ δ|ς|/(3(1− δ/6)) + δRe ς/6

≤ δ(1 + δ/6)Re ς/(3(1− δ/6)) + δRe ς/6 < δRe ς.

It follows that E \ B(0, (1 + δ)rr1) ⊂ Γ(δ). Let r0 > (1 + δ)rr1 be fixed. Then (2.37) is
valid for all points of the circles S(0, ti), i ≥ 1. This completes the proof of (2.1).

To prove (2.2), consider the function h(λ) = hf (λ)−2εReλ/3−2ε Imλ/3−π Imλ/γ.
The imaginary axis does not pass through Γ(δ). Thus, by (2.36) and (2.37), we have
h(t) ≤ 0, h(it) ≤ 0, t ≥ 0. Since the function h(λ) is convex, we have

hf (λ) ≤ π| Imλ|/γ + 2εReλ/3 + 2ε Imλ/3 ≤ π| Imλ|/γ + ε|λ|
for all points in the first quadrant. A similar inequality is valid for the points in the
fourth quadrant, and so everywhere on the plane because f is even. The theorem is
proved. �
Remarks. 1. The statement of Theorem 31 in Chapter I of the book [6] (Bernstein’s
theorem) mentioned above contains an inaccuracy. Specifically, ε, δ > 0 are assumed to
be arbitrary numbers. In fact, ε > 0 is allowed to be any number, while δ > 0 only exists
and depends on ε. The theorem was proved under such assumptions. We used it above
in this formulation. Note that in the English version [23] of the book [6] the theorem of
Bernstein is formulated consistently.

2. The idea of the proof of Theorem 2.2 (steps 2, 3, 6) is borrowed from the paper [13]
(Lemma 9). For the steps 4, 5 we use the method described in the proof of Theorem 8.3
in [2].

3. Suppose that in the statement of Theorem 2.2 yet another condition is imposed:

M(Λ) = lim
δ→0

lim sup
λ→∞

n(λ, δ|λ|,Λ)
|λ| = lim

δ→0
lim sup
k→∞

n(λk, δ|λk|,Λ)
|λk|

= 0.

Then the function ln |L1(λ)| has no “splashes” on the set E(γ, ε1). Therefore, we do not
need step 5, and the desired function f can be defined by the product L(λ)L4(λ), where
L4 is constructed from Λ4(γ) in the same way as L2 was constructed from Λ2(γ). Indeed,
let

λ ∈
(
lp(γ)γ,mp(γ)γ(1 + 4Cd(γ)ε−1)

)
, p ∈ P (ε1).

By (2.12), the second term of (2.10) does not exceed 2a(λ, γ, rδ) + 2d(γ)λ.

Let rp be the smallest index satisfyingm
rp(γ)γ ≤ (1−4Cd(γ)ε−1)λ. Then for sufficiently

small γ and sufficiently large λ > 0, we have

p(0)∑
p=rp+1

ap(λ, γ) ≤
p(0)∑

p=rp+1

2λ−mp(γ)γ

γ
ln

(
1 +

mp(γ)γ − lp(γ)γ

2λ−mp(γ)γ

)

≤
p(0)∑

p=rp+1

(mp(γ)− lp(γ)) ≤ n(λ, (4Cε−1 + 1)d(γ)λ,Λ) ≤ ελ/8.

Estimation of the remaining sum
∑

rp
p=1 ap(λ, γ) is done in the same way as in (2.15).

Hence, in this case the required upper estimate of ln |L1(λ)| is obtained without con-
structing the additional function L3, which makes the calculations considerably simpler.

Let Λ = {λk, nk}∞k=1. As in the paper [4], we set

qΛ(λ,w, δ) =
∏

λk∈B(w,δ|w|)

(
λ− λk

3δ|λk|

)nk

.
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In the case where the disk B(w, δ|w|) does not contain any of λk, we put qΛ(λ,w, δ) ≡ 1.
The modulus of qΛ(λ,w, δ) can be interpreted as a characteristic for the concentration
of points λk ∈ B(w, δ|w|) near λ. The meaning of the quantity ln |qΛ(λ,w, δ)|/|w| is
similar to the logarithm of the geometric mean (or the arithmetic mean of the loga-
rithms) of the normalized distances from λk ∈ B(w, δ|w|) to λ. If δ ∈ (0, 1), then the
modulus of each factor qΛ in the disk B(w, δ|w|) is estimated from above by the number
2(3(1− δ))−1. Hence, for δ ∈ (0, 1/3), it is less than or equal to 1. Moreover, if δ1 ≤ δ2
and B(w1, δ1|w1|) ⊂ B(w2, δ2|w2|), then the number of the factors qΛ(z, w1, δ1) is not
greater than the number of the factors qΛ(z, w2, δ2), and the modulus of each factor
qΛ(z, w1, δ1) is at least the modulus of the corresponding factor qΛ(z, w2, δ2). Hence,
|qΛ(z, w1, δ1)| ≥ |qΛ(z, w2, δ2)|, z ∈ B(w2, δ2|w2|). We introduce the function

qmΛ (λ, δ) =
∏

λk∈B(λm,δ|λm|)
k 
=m

(
λ− λk

3δ|λk|

)nk

, m ≥ 1.

If the disk B(λm, δ|λm|) contains no points λk with k �= m, then qmΛ (z, δ) ≡ 1. We set
(see [4])

SΛ = lim
δ→0

lim inf
m→∞

ln |qmΛ (λm, δ)|/|λm|.

The first limit (as δ → 0) exists, because, by our previous observation, the function
under the limit sign is monotone nondecreasing as δ → 0. Moreover, this function is
nonpositive. Consequently, SΛ ≤ 0. The meaning of SΛ is similar to that of the classical
Bernstein index of condensation (see, e.g., [15, Chapter II, §5, Subsection 2]), but is
applicable (unlike the Bernstein condensation index) to any complex sequence (not only
a measurable positive sequence or a complex sequence of zero density). Note also that
the coefficient 3 in the definition of qΛ is chosen for convenience (see the remark to
Theorem 5.1 in [4]). It provides the inequality SΛ ≤ 0.

The fact that SΛ = 0 means that the points λk are separated away from each other in
a sense. The character of this sparseness is specified in Lemma 2.3 in [12]. We formulate
that statement in a partial case and in a form convenient to us. We need the following
notation.

Let Θ ∈ (0, 1). For any k ≥ 1, we denote by βk the minimum of all distances from λk

to the points λm, m �= k. We fix k ≥ 1. If nk ≤ βk/2, we put γk(Θ) = Θnk. Otherwise,
we define γk(Θ) = (Θβk)/2.

It is not difficult to check that limk→∞ nk/|λk ≤ sn(Λ). Therefore, by Lemma 2.3
in [12] (in view of the definition of γm,l at the beginning of its proof), the following
statement if true.

Lemma 2.3. Let a sequence Λ = {λk, nk} have finite upper density, and let SΛ = 0.
Then for every ε > 0 and Θ ∈ (0, 1), there exists R > 0 and δ ∈ (0, 1/3) such that for all
|w| ≥ R and k ≥ 1 we have

ln |qΛ(λ,w, δ)| ≥ −ε|λ|, λ ∈ B(λk, γk(1)) \B(λk, γk(Θ)) ∩B(w, δ|w|).
In what follows by a contour we mean a simple closed continuous rectifiable curve.

Theorem 2.4. Suppose Λ = {λk, nk} is an almost real sequence, sn(Λ) < +∞, and
SΛ = 0. Then for any ε0 > 0 and δ0 ∈ (0, 1/3), there exists γ > 0, an entire function of
exponential type f , an index k0, and numbers rk ∈ (0, δ0|λk|), k ≥ k0, such that:

1) f has zeros at the points λk, k ≥ 1, of multiplicities at least nk;
2) for all k ≥ k0, in the disk B(λk, rk) there are no points belonging to Λ and different

from λk;
3) ln |f(λ)| ≥ π| Imλ|/γ − ε0|λ|, λ ∈ S(λk, rk), k ≥ k0;
4) hf (λ) ≤ π| Imλ|/γ + ε0|λ|, λ ∈ C.
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Proof. We fix ε0 > 0 and δ0 ∈ (0, 1/3), and let ε ∈ (0, ε0). By assumption, we have
SΛ = 0. Then Lemma 2.3 shows that we can find k1 and δ1 ∈ (0, δ0) such that

(2.38) ln |qΛ(λ, λk, δ1)| ≥ −ε|λ|, λ ∈ B(λk, γk(1)) \B(λk, γk(1/4)),

whenever γk(1) < δ1|λk| é k ≥ k1.
Suppose that ε1 > 0 satisfies (2.27), where the constants C,B are the same as in

Theorem 2.2. We choose s > 2 such that ε1 ln(2/s) < −2ε and fix δ ∈ (0, δ1/s). Let
f be a function constructed for the numbers ε1, β, α, γ > 0, satisfying (2.27)–(2.30) and
yet another condition: Θ(γ) < δ1/2s. Then statements 1) and 4) are true. It remains
to determine an index k0 and numbers rk ∈ (0, δ0|λk|), k ≥ k0, such that 2) and 3) are
valid.

As in Theorem 2.2, we can find k0 ≥ k1 such that for k ≥ k0 the sum of the diameters
of all circles from E having a nonempty intersection with B(0, (1+ δ)|λk|) is strictly less
than δr/3. Taking k0 larger if necessary, we may assume that |λk| ≥ (1− δ1)

−1
rr, k ≥ k0,

where rr is as in (2.37).
Fixing k ≥ k0, we consider two different cases.
1. There are no points of Λ belonging to the disk B(λk, (δ1|λk|)/s) different from λk.

By our choice of k0, we can find rk ∈ (0, δ|λk|) ⊂ (0, δ0|λk|) such that (2.37) is valid for
all points belonging to the circle S(λk, rk). Thus, in this case, taking our choice of δ into
account, we obtain 2) and 3).

2. There is a point of Λ belonging to the disk B(λk, (δ1|λk|)/s) that differs from λk.
Then γk(1) < (δ1|λk|)/2s. As in (2.37), we obtain

(2.39) ln |f(λ)| − ln |L5(λ, γ)| ≥ −ε|λ|, λ ∈ C \ (B(0, rr) ∪ E1(d) ∪ E2(γ) ∪ E3(β)).

Moreover, (2.26) allows us to assume that

(2.40) ln |L5(λ, γ)| − π| Imλ|/γ ≥ −ε|λ|, λ ∈ C \ (B(0, rr) ∪E5(rδ)).

We recall that the numbers d and rδ were introduced in Theorem 2.2 before the definition
of the set E. By the choice of rδ, we have rδγ < γ/8 < 1/8.

As above, we find rrk ∈ (2δ1|λk|)/3s, δ1|λk|/s) such that the circle S(λk, rrk) does not
intersect the exceptional set in (2.39). Then

ln |f(λ)| − ln |L5(λ, γ)| ≥ −ε|λ|, λ ∈ S(λk, rrk).

Since Λ is an almost real sequence, we can choose k0 to be sufficiently large and assume
that |λ| ≤ 2Reλ, λ ∈ B(λk, (δ1|λk|)/s). Hence, using the definitions of the functions f
and L5, we obtain

(2.41) ln |L(λ)|+ ln |L3(λ, α, γ, ε1)| ≥ ln |L2(λ, γ)| − 2εReλ, λ ∈ S(λk, rrk).

Moreover, we may assume that γk(1) + 2 < (δ1|λk|)/2s + 2 < (2δ1|λk|)/3s. Then
ln |λ− ηi| ≥ 0, λ ∈ S(λk, rrk), i ∈ I(k). Here, I(k) is the set of all indices i for which the

disk B(ηi, rδγ) centered at the zero ηj ∈ Λ2(γ) of the function L2 intersects B(λk, γk(1)).
By (2.41),

ln |L(λ)|+ ln |L3(λ, α, γ, ε1)| ≥ ln |L2(λ, γ)| − ln |λ− ηi| − 2εReλ,

λ ∈ S(λk, rrk), i ∈ I(k).
(2.42)

The disks B(ηi, rδγ), ηj ∈ Λ5(γ) are pairwise disjoint because rδγ < γ/8. Hence, (2.40)
implies the estimate

ln |L5(λ, γ)| − ln |λ− ηi| ≥ π| Imλ|/γ − 2εReλ, λ ∈ S(ηi, rδγ), i ∈ I(k).
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The function on the left-hand side of the last inequality is harmonic in the disk B(ηi, rδγ).
Therefore,

(2.43) ln |L5(λ, γ)| − ln |λ− ηi| ≥ π| Imλ|/γ − 2εReλ, λ ∈ B(ηi, rδγ), i ∈ I(k).

Suppose that the disk B(λk, δ1|λk|/s) contains a zero mp(γ)γ, p ∈ P (ε1), of the
function L3. Then all elements of the group Λ1

p(γ) belong to B(λk, 7δ1|λk|/4s), be-
cause Θ(γ) < δ1/2s. The number of such elements is at least ε1mp(γ)γ. Since Λ is
an almost real sequence, the definition of Λ1 shows that we can assume that the disk
B(λk, 2δ1|λk|/s) contains at least ε1mp(γ)γ points of λm with multiplicities.

If λ, λm ∈ B(λk, 2δ1|λk|/s) ⊂ B(λk, δ1|λk|), then∣∣∣∣ λ− λm

3δ1|λm|

∣∣∣∣ ≤ 4δ1|λk|
3sδ1|λm| ≤

4|λk|
3s(1− 2δ1/s)|λk|

≤ 2/s.

Taking our choice of s into account, we obtain

ln |qΛ(λ, λk, δ1)| ≤ ε1mp(γ)γ ln(2/s) < −2ε(1− δ1/s)(1 + 2δ1/s)
−1|λ| ≤ −5ε|λ|/4,

for all λ ∈ B(λk, 2δ1|λk|/s). This contradicts (2.38) because γk(1) < (δ1|λk|)/2s. There-
fore, there are no zeros of L3 in the disk B(λk, δ1|λk|/s). This implies that the function
ln |L(λ)|+ln |L3(λ, α, γ, ε1)|−ln |qΛ(λ, λk, δ1)| is harmonic in that disk. By the inequality
|qΛ(λ, λk, δ1)| < 1, λ ∈ B(λk, δ1|λk|), in view of (2.41) and (2.42) we have

ln |L(λ)|+ ln |L3(λ, α, γ, ε1)| − ln |qΛ(λ, λk, δ1)| ≥ ln |L2(λ, γ)| − 2εReλ,

λ ∈ B(λk, rrk),
(2.44)

ln |L(λ)|+ ln |L3(λ, α, γ, ε1)| − ln |qΛ(λ, λk, δ1)|
≥ ln |L2(λ, γ)| − ln |λ− ηi| − 2εReλ, λ ∈ B(λk, rrk), i ∈ I(k).

(2.45)

Combining estimates (2.38), (2.40) and (2.43)–(2.45), we obtain

(2.46) ln |f(λ)| ≥ π| Imλ|/γ − 5ε|λ|, λ ∈ B(λk, γk(1)) \
(
B(λk, γk(1/4)) ∪E4(rδ)

)
,

where E4(rδ) =
⋃

ηj∈Λ4(γ)B(ηj , rδγ). Let ε ∈ (0, ε0/5). By the definition of γk(1), there

are no points of the sequence Λ in the disk B(λk, γk(1)) different from λk. Hence, by
(2.46), it remains to find rk ∈ [γk(1/4), γk(1)) ⊂ (0, δ0|λk|) such that the circle S(λk, rk)

does not intersect the set E4(rδ).
The definitions of the sequences Λ1 and Λ4(γ) imply that the distance from λk to any

point ηj ∈ Λ4(γ) is at least γ/2. If γk(1/4) ≤ γ/4, then the circle S(λk, γk(1/4)) does

not intersect E4(rδ). In this case, we put rk = γk(1/4).
Let γk(1/4) > γ/4. We know that B(λk, γk(1)) intersects at most γk(1)/γ + 1 disks

in E4(rδ). The sum of the diameters of these disks does not exceed the number

(γk(1)/γ + 1)γ/4 ≤ γk(1)/4 + γ/4 ≤ γk(1)/4 + γk(1/4) = γk(1)/2.

Therefore, there is a circle S(λk, rk) in the annulus B(λk, γk(1)) \ B(λk, γk(1/4)) that

does not intersect the set E4(rδ). The theorem is proved. �

Remarks. 1. Suppose that in the statement of Theorem 2.4 we have yet another con-
dition: lim supk→∞ nk/|λk| = 0. Together with the condition SΛ = 0, this gives
(see [12, Lemma 2.2]) the relation M(Λ) = 0. Then, as it was mentioned in Remark 3 to
Theorem 2.2, we can define the desired function f as the product L(λ)L4(λ).

2. It is not difficult to check that the conjugate diagram K (see [15, Chapter I, §5,
Section 2]) of the function f constructed in Theorems 2.2 and 2.4 contains the origin.
Indeed, the inequality hf (λ) ≥ 0, λ ∈ C, follows from the symmetry of the zeros of f , and
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by the Polya theorem (see [15, Chapter I, §5, Theorem 5.4]), we have hf (λ) = HK(λ),
λ ∈ C. Here,

HK(λ) = sup
z∈K

Re(λz), λ ∈ C,

is the support function of the compact convex set K (more precisely, the complex con-
jugate of K).

Let Λ = {λk, nk}. The number

n0(Λ) = lim sup
δ→0

lim sup
r→∞

n(0, r,Λ)− n(0, (1− δ)r,Λ)

δr

is called the maximal density of Λ.
For R ⊂ C, we denote by Rδ, δ > 0, the union of the disks B(λ, δ|λ|), λ ∈ R.

Theorem 2.5. Suppose Λ = {λk, nk} is an almost real sequence, sn(Λ), n0(Λ) < +∞,
and SΛ = 0. Then there exists an entire function of exponential type f satisfying the
following conditions:

1) f has zeros at the points λk, k ≥ 1, of multiplicities at least nk;
2) hf (λ) ≤ πn0(Λ)| Imλ|, λ ∈ C;
3) for ε > 0, δ ∈ (0, 1/3), there exists T > 0 such that λk ∈ Rδ whenever |λk| ≥ T ,

where R = {λ ∈ C : ln |f(λ)| ≥ πn0(Λ)| Imλ| − ε|λ|}.
Proof. Let Λ1 = {ξl} be a sequence consisting of the moduli |λk| of the elements of Λ.
Note that each number |λk| occurs in Λ1 exactly as many times as is the sum of the mul-
tiplicities of the points λj with modulus |λk|. Then we have n0(Λ) = n0(Λ

1). Consider
the functions

L(λ) =

∞∏
k=1

(
1− λ2

λ2
k

)nk

, L1(λ) =

∞∏
l=1

(
1− λ2

ξ2l

)
.

As in the proof of Theorem 2.2, for any d ∈ (0, 1/2), we can find C1 > 0 (not depending
on d) and a union of disks E1(d) such that E1(d) is centered with the zero sets of L and

L1, has linear density at most 4
√
d, and

(2.47) |ln |L(λ)| − ln |L1(λ)|| ≤ C1

√
d|λ|, λ ∈ C \ E1(d).

By Polya’s theorem (see, e.g., [13, Lemma 5]), there exists a sequence of positive
numbers Λ2 such that Λ3 = Λ1 ∪ Λ2 has density n0(Λ

1). Then (see [17, Chapter I, §2,
Theorem 1.2.9] and [6, Chapter II, §1, Theorem 5]) the function

L3(λ) =
∏

ηj∈Λ3

(
1− λ2

η2j

)

satisfies the estimate

(2.48) | ln |L3(λ)| − πn0(Λ)| Imλ| | ≤ ε(λ)|λ|, λ ∈ C \ E3,

where ε(λ) → 0 as |λ| → ∞, and E3 is a union of disks of zero linear density. We set

f(λ) = L(λ)
∏

ηj∈Λ2

(
1− λ2

η2j

)
.

By the construction of the function f , statement 1) of the theorem is true. We prove 3).

Fixing ε > 0 and δ ∈ (0, 1/3), we determine d ∈ (0, 1/2) from the conditions 4
√
d ≤ δ/18

and C1

√
d ≤ ε/2. As in Theorem 2.2, we find T1 > 0 such that the following statement

is valid. The sum of the diameters of all disks from E1(d) ∪ E3 whose intersection with
B(0, (1 + δ)r), r ≥ T1, is nonempty, is strictly less than δr/3. Now we choose T > T1

such that | Imλk| < (δReλk)/3, Reλk ≥ T1 provided that |λk| ≥ T , and ε(λ) < ε/2,
|λ| ≥ (1− δ)T.
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Let |λk| ≥ T . Then there exists τk ∈ (0, 1/3) such that the circle S(Reλk, τkδReλk)
does not intersect the set E1(d) ∪E3. By (2.47) and (2.48), we have

(2.49) | ln |f(λ)| − πn0(Λ)| Imλ| | ≤ ε|λ|, λ ∈ S(Reλk, τkδReλk).

Hence, S(Reλk, τkδReλk) ⊂ R. Let λ ∈ S(Reλk, τkδReλk). Taking into account our
choice of T , we obtain

|λk − λ| ≤ |λk − Reλk|+ |Reλk − λ| ≤ (2δReλk)/3 ≤ δ|λ|,
i.e., λk ∈ Rδ.

Finally, we prove 2). Let |λ| = 1 and rε > 0. We choose rε ∈ (0, 1/3) such that

πn0(Λ)| Imw| ≤ πn0(Λ)| Imλ|+ rε, w ∈ B(λ, rδ).

As in the proof of (2.49), we find rT > 0 such that

| ln |f(ξ)| − πn0(Λ)| Im ξ| | ≤ rε|ξ|, ξ ∈ S(tλ, τ (t)δt), t ≥ rT ,

where τ (t) is a number in the interval (0, 1/3). Therefore, the previous argument and
the maximum modulus principle show that

ln |f(tλ)| ≤ πn0(Λ)t| Imλ|+ 3rεt, t ≥ rT .

Since rε > 0 is arbitrary, this gives us statement 2). The theorem is proved. �

§3. Representation of functions in an invariant subspace

on the half-plane

In this section, we use Theorems 2.2 and 2.4 to establish the fundamental principle
for invariant subspaces with almost real spectrum on the half-plane and on some other
unbounded domains. The method of the Leont′ev interpolation function is applied. We
need the following auxiliary facts.

Let Λ = {λk, nk}∞k=1, let E(Λ) = {zn exp(λkz)}∞,nk−1
k=1,n=0, and let D be a convex domain.

Denote by W (Λ, D) the closure of the linear span of the system E(Λ) in the space H(D).
Suppose that there is an entire function f of exponential type that has zeros of multi-

plicities at least nk at the points λk and whose conjugate diagram is included in D (i.e.,
hf (λ) < HD(λ), λ �= 0). Then there exists (see [17, Chapter IV, §1, Subsection 2]) a

system of functionals Ξ(Λ, D) = {μk,n}∞,nk−1
k=1,n=0 defined on the space H∗(D) and biorthog-

onal to E(Λ) such that μk,n(z
l exp(λjz)) = 1 if j = k, l = n and μk,n(z

l exp(λjz)) = 0
otherwise. This system is constructed with the help of the function f and represents a

part of the system Ξ(rΛ, D) biorthogonal to E(rΛ), where rΛ is the multiple zero set of f .
Suppose that the series (1.2) converges uniformly on all compact subsets of the domainD.
Since the functionals μk,n are continuous and linear, we obtain dk,n = μk,n(g), k ≥ 1,
n = 0, . . . , nk − 1. Therefore, if the function f does exist, then its representation by the
series (1.2) is unique. In this case the coefficients of such a representation are calculated
via the biorthogonal system of functionals.

Let D be a convex domain, let g ∈ H(D), α ∈ C, and let f be an entire function of
exponential type such that the conjugate diagram K of f contains the origin, and the
shift K(α) = K+α belongs to D (K(α) is the conjugate diagram of f(λ) exp(αλ)). The
function

ωf (λ, α, g) = exp(−αλ)
1

2πi

∫
Ω

γ(ξ)

(∫ ξ

0

g(ξ + α− η) exp(λη) dη

)
dξ

is called the interpolation function of g (see [7, Chapter I, §2, Subsection 1]). Here, Ω is
the closed rectifiable contour surrounding the compact set K and lying in the domain
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D−α, and γ(ξ) is the function associated with f in the sense of Borel (see [15, Chapter I,
§5]). We list some properties of ωf (λ, α, g) and Ξ(Λ, D).

1. [7, Chapter I, §2, Theorem 1.2.5]. Let Ω be the boundary of a convex neighborhood
of a compact set K, and let Ω(α) = Ω + α ⊂ D. For any ε > 0 there exists A(ε) > 0
such that

|ωf (λ, α, g)| ≤ A(ε) exp (hf (λ) + ε|λ| − Re(αλ)) max
z∈Ω(α)

|g(z)|, λ ∈ C.

2. Suppose rg ∈ W (Λ, D) and dk,n = μk,n(rg), k ≥ 1, n = 0, . . . , nk − 1. Then

1

2πi

∫
Sk

ωf (λ, α, rg)

f(λ)
exp(λz) dλ =

nk−1∑
n=0

dk,nz
n exp(λkz), k ≥ 1,

where Sk is a circle surrounding no zeros of f different from λk. Moreover, if λ′ is a zero
of f that differs from λk, k ≥ 1, and S′ is a circle surrounding a single zero λ′ of f , then

1

2πi

∫
S′

ωf (λ, α, rg)

f(λ)
exp(λz) dλ = 0.

Indeed, let rg be the limit of the sequence

Pl(z) =

l∑
k=1

nk−1∑
n=0

dlk,nz
n exp(λkz), l ≥ 1,

uniformly convergent on all compact subsets of D. This sequence exists because rg ∈
W (Λ, D) and we may assume that some of dlk,n are zeros. By Theorem 1.2.4 in §2 of

Chapter I in [7], we have

1

2πi

∫
Sk

ωf (λ, α, Pl)

f(λ)
exp(λz) dλ =

nk−1∑
n=0

dlk,nz
n exp(λkz), k = 1, . . . , l,

1

2πi

∫
Sk

ωf (λ, α, Pl)

f(λ)
exp(λz) dλ = 0, k > l,

1

2πi

∫
S′

ωf (λ, α, Pl)

f(λ)
exp(λz) dλ = 0.

As above, the relations

(3.1) dk,n = μk,n(rg) = lim
l→∞

μk,n(Pl) = lim
l→∞

dlk,n, k ≥ 1, n = 0, . . . , nk − 1,

are valid (for k > l, we set dlk,n = 0). The estimate in property 1 implies that

ωf (λ, α, Pl) → ωf (λ, α, rg) as l → ∞ uniformly on any compact subset of the plane.
These gives us the required identities.

3. Let rg ∈ W (Λ, D), and let dk,n = μk,n(rg), k ≥ 1, n = 0, . . . , nk − 1. Suppose that
the series (1.2) converges uniformly on the compact subsets of D. Then rg ≡ g.

Indeed, if μ′ ∈ Ξ(rΛ, D) \ Ξ(Λ, D), then μ′(g) = μ′(rg) = μ′(Pl). From (3.1) and
the uniqueness theorem (see [7, Chapter II, §1, Theorem 2.1.2]) we obtain the desired
identity.

Let a ∈ R. We put Π(a) = {z ∈ C : Re z < a}.

Theorem 3.1. Let a ∈ R, and let W be a closed nontrivial invariant subspace of H(Π(a))
with almost real spectrum Λ = {λk, nk}∞k=1. Then for any compact convex set K ⊂ Π(a)
and any β ∈ (0, 1), there is a strictly monotone increasing sequence of positive numbers
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{tl}∞l=1 such that tl+1 ≤ (1 + β)tl, l ≥ 1, tl → ∞ as l → ∞, and each function g ∈ W is
represented by the following series:

(3.2) g(z) =

∞∑
l=1

( ∑
tl−1<|λk|<tl

nk−1∑
n=0

dk,nz
n exp(λkz)

)
, z ∈ K,

where t0 = 0 (if for some l there are no points λk such that tl−1 < |λk| < tl, then the
corresponding term of the series is missing). Furthermore, there exists a compact convex
set K ′ ⊂ Π(a) and C > 0 (not depending on g ∈ W ) such that

(3.3)
∞∑
l=1

max
z∈K

∣∣∣∣∣
∑

tl−1<|λk|<tl

nk−1∑
n=0

dk,nz
n exp(λkz)

∣∣∣∣∣ ≤ C max
z∈K′

|g(z)|.

Proof. Since W is a closed nontrivial subspace, there is a functional μ ∈ H∗(Π(a))
that annihilates W . Its Laplace transform F (λ) = μ(exp(λz)) is an entire function of
exponential type. It is not difficult to show that Λ is a part of the multiple zero set
of F . As a consequence (see [6, Chapter I, §5, Lemma 4]), Λ has finite upper density.
By Theorem 8.1 in [2], an invariant subspace in an unbounded convex domain admits
spectral synthesis. Therefore, W coincides with the subspace W (Λ,Π(a)).

Let K ⊂ Π(a) and β ∈ (0, 1) be fixed. Since K is a compact set in Π(a), we have
τ = a − HK(1) > 0. Let α ∈ (a − τ, a) and ε ∈ (0, (α − a + τ )/12) ∩ (0, a − α). We
choose δ ∈ (0, β/5) such that maxz∈K δ|z − α| < ε. Suppose that f is the function and
{tl}∞l=1 the sequence whose existence was established in the proof of Theorem 2.2. Note
that all points λk ∈ C \ B(0, t1) lie in the angle B(0, tl), while by (2.2) and the choice
of ε, the conjugate diagram of the function f(λ) exp(αλ) lies in the half-plane Π(a). Now,
making use of residues, we have

1

2πi

∫
Γl

ωf (λ, α, g)

f(λ)
exp(λz) dλ =

∑
tl−1<|λk|<tl

1

2πi

∫
Sk

ωf (λ, α, g)

f(λ)
exp(λz) dλ

+
∑

tl−1<|λ′
j |<tl

1

2πi

∫
S′
j

ωf (λ, α, g)

f(λ)
exp(λz) dλ, l ≥ 1,

where Γl is the boundary of the intersection of the annulus B(0, tl+1) \ B(0, tl) with
the angle B(0, tl), and the λ′

j are the zeros of f different from λk. In accordance with
Property 2 of the function ωf (λ, α, g), we obtain

(3.4)
1

2πi

∫
Γl

ωf (λ, α, g)

f(λ)
exp(λz) dλ =

∑
tl−1<|λk|<tl

nk−1∑
n=0

dk,nz
n exp(λkz),

where dk,n = μk,n(g), μk,n ∈ Ξ(Λ,Π(a)), k ≥ 1, n = 0, . . . , nk − 1. Moreover, by
Property 1 and inequality (2.1), we have (Ω is the boundary of a convex neighborhood
of the conjugate diagram of the function f(λ) exp(αλ))∣∣∣∣ 1

2πi

∫
Γl

ωf (λ, α, g)

f(λ)
exp(λz) dλ

∣∣∣∣ ≤ tl+1A(ε)max
z∈Ω

|g(z)| exp
(
max
λ∈Γl

(
3ε|λ|+Re((z − α)λ)

))
.

Let λ = x+ iy. Recalling the choice of ε and δ, we obtain

max
z∈K

max
λ∈Γl

(3ε|λ|+Re((z − α)λ)) ≤ max
z∈K

max
λ∈Γl

(3εtl+1 + xRe(z − α)− y Im(z − α))

≤ max
z∈K

(3εtl+1 + 2−1(a− τ − α)tl + δtl+1|z − α|)

≤ 4εtl+1 − 6εtl+1(1 + δ)−1 ≤ −εtl+1.
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Since Λ has finite upper density, the series
∑

tl
exp(−εtl) converges (summation is over

all indices l for which there are points λk in the annulus tl < |λ| < tl+1). Thus, by
(3.4), we obtain (3.3). Referring to Property 3 of the system Ξ(Λ, D), we complete the
proof. �

Let Λ = {λk, nk}. We introduce the following Banach spaces of numerical sequences:

Bm(Λ) = {d = {dk,n} : ‖d‖m = sup
k,n

|dk,n|mn exp((a− 1/m)|λk|) < ∞}, m ≥ 1.

Denote by B(Λ, a) the projective limit of Bm(Λ), and by L(Λ, a) the operator acting from
B(Λ, a) to W (Λ,Π(a)) by the following rule. To a sequence d ∈ B(Λ, a), we assign the
sum of the series (1.1), provided that series converges uniformly on compact sets of the

half-plane Π(a). Let Km = B(0,m) ∩ Π(a− 1/m) �= ∅ if m ≥ m0.

Lemma 3.2. Let a ∈ R, and let Λ = {λk, nk}∞k=1 be an almost real sequence with finite
upper density.

1) The operator L(Λ, a) is defined everywhere on the space B(Λ, a) and represents a
linear, continuous, and injective operator . Moreover, for any m ≥ m0 there exists p and
C > 0 (not depending on d = {dk,n} ∈ B(Λ, a)) such that

(3.5)

∞,nk−1∑
k=1,n=0

max
z∈Km

|dk,nzn exp(λkz)| ≤ C‖d‖p, d ∈ B(Λ, a).

2) If the operator L(Λ, a) is surjective, then it is an isomorphism of the linear topo-
logical spaces (Λ, a) and W (Λ,Π(a)). Furthermore, for any m ≥ m0 there exists p and
C > 0 (not depending on g ∈ W (Λ,Π(a))) such that

(3.6)

∞,nk−1∑
k=1,n=0

max
z∈Km

|dk,nzn exp(λkz)| ≤ C max
z∈Kp

|g(z)|, g = L(Λ, a)({dk,n}).

Proof. 1) Since Λ has finite upper density, there exists (see [17, Chapter I, §1, The-
orem 1.1.5]) an entire function f of exponential type with zeros at the points λk of
multiplicities at least nk. Let K(α) be a shifted conjugate diagram of f lying in the
half-plane Π(a). Then the function f(λ) exp(αλ) has a conjugate diagram K(α) ⊂ Π(a).

As was mentioned above, in this case the representation (1.1) by a series uniformly
convergent on the compact sets of the domain Π(a) is unique. Consequently, the operator
L(Λ, a) is injective.

Let d = {dk,n} ∈ B(Λ, a). We fix an index m ≥ m0. Since Λ is an almost real
sequence, we have

max
z∈Km

| exp(λkz)| ≤ exp(Reλk(a− 1/m) + | Imλk| | Im z|)
≤ exp(Reλk((a− 1/m) +m| Imλk|/Reλk))

≤ exp(Reλk(a− 1/(m+ 1)))

≤ exp((a− 1/(m+ 2))|λk|), k ≥ k(m).

Thus, since d ∈ Bm+3(Λ), we get

∞,nk−1∑
k=k(m),n=0

max
z∈Km

|dk,nzn exp(λkz)| ≤
∞,nk−1∑
k=1,n=0

|dk,n|(m+ 2)n exp

((
a− 1

m+ 2

)
|λk|

)

≤ ‖d‖m+3

∞,nk−1∑
k=1,n=0

(
m+ 2

m+ 3

)n

exp

((
1

m+ 3
− 1

m+ 2

)
|λk|

)
≤ C ′‖d‖m+3.
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In the last inequality, we took into account the fact that the upper density of Λ is finite.
Moreover, we have

k(m)−1,nk−1∑
k=1,n=0

max
z∈Km

|dk,nzn exp(λkz)|

≤ ‖d‖m+3

k(m)−1,nk−1∑
k=1,n=0

(
m

m+ 3

)n

exp

(
|λk|m− a+

1

m+ 3

)
.

This implies (3.5), from which it follows that L(Λ, a) is a linear operator defined on the
entire space B(Λ, a).

2) Let L(Λ, a) be a surjective operator. Using item 1) and the Banach theorem on
an inverse operator for Féchet spaces (which is the case for B(Λ, a) and W (Λ,Π(a))), we
see that L(Λ, a) is an isomorphism of linear topological spaces. Now (3.6) follows from
(3.5). The lemma is proved. �
Theorem 3.3. Let a ∈ R, and let W be a closed nontrivial invariant subspace of H(Π(a))
with almost real spectrum Λ = {λk, nk}∞k=1. Suppose that SΛ = 0. Then each function
g ∈ W is expanded in the series

(3.7) g(z) =

∞,nk−1∑
k=1,n=0

dk,nz
n exp(λkz), z ∈ Π(a).

Moreover, for any m ≥ m0 there exists p and C > 0 (not depending on g ∈ W ) such that

(3.8)

∞,nk−1∑
k=1,n=0

max
z∈Km

|dk,nzn exp(λkz)| ≤ C max
z∈Kp

|g(z)|.

Proof. Applying Theorem 2.4 and arguments from the proof of Theorem 3.1, for any
compact set K ⊂ Π(a) we find a convex compact set K ′′ ⊂⊂ Π(a) and C > 0 (not
depending on g ∈ W ) such that

(3.9)
∞∑
k=1

max
z∈K

∣∣∣∣∣
nk−1∑
n=0

dk,nz
n exp(λkz)

∣∣∣∣∣ ≤ C max
z∈K′′

|g(z)|,

where dk,n = μk,n(g), μk,n ∈ Ξ(Λ,Π(a)), k ≥ 1, n = 0, . . . , nk − 1.
Let us show that d = {dk,n} ∈ B(Λ, a). First, we prove that

(3.10) lim sup
k→∞

max
τ |λk|<n<nk

|dk,n| exp(s|λk|) = 0

for each τ > 0 and s ≥ 1. Suppose that this is not true. Then one can find b, τ > 0,
s ≥ 1, and sequences of indices {k(l)} and {n(l)} such that k(l) → ∞ as l → ∞,
τ |λk(l)| < n(l) < nk(l), and

(3.11) |dk(l),n(l)| ≥ b exp(−s|λk(l)|), l ≥ 1.

Let
nk−1∑
n=0

dk,nz
n = dk,nk−1

nk−1∏
j=1

(z − μk
j ).

The coefficient dk(l),n(l) is the sum of products of zeros μ
k(l)
j and dk(l),nk(l)−1. Here, the

number of all terms is at most 2nk(l) . By (3.11), we may assume that, under a suitable
enumeration of zeros,

(3.12)

∣∣∣∣∣dk(l),nk(l)−1

nk(l)−1−n(l)∏
j=1

μjk(l)

∣∣∣∣∣ ≥ 2−nk(l)b exp(−s|λk(l)|), l ≥ 1.
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Let H > 0. We choose an index m such that the length of the vertical part Im of the
boundary of the compact set Km (symmetric about the real axis) is strictly greater than
4eH and does not exceed 4eH + 2. Using an appropriate enumeration of zeros, we may
assume that for some 0 ≤ p(l) ≤ nk(l) − 1− n(l), the following inequalities hold true (if
p(l) = nk(l)− 1−n(l), then the second group of inequalities is missing, while for p(l) = 0
the first group is missing; so in these cases the situation simplifies):

|μk(l)
j | > 2 max

z∈Im
|z| = 2Am, j = 1, . . . , p(l),

|μk(l)
j | ≤ 2Am, j = p(l) + 1, . . . , nk(l) − 1− n(l).

Then (3.12) implies the estimates∣∣∣∣∣dk(l),nk(l)−1

p(l)∏
j=1

μ
k(l)
j

∣∣∣∣∣ ≥ (2Am)−nk(l)+1+n(l)+p(l)2−nk(l)b exp(−s|λk(l)|), l ≥ 1,

∣∣∣∣∣
p(l)∏
j=1

(
z

μ
k(l)
j

− 1

)∣∣∣∣∣ ≥ 2−p(l), z ∈ Im, l ≥ 1.

(3.13)

By Cartan’s theorem on lower estimates for a polynomial (see [15, Chapter I, §4, Theo-
rem 4.1]), we have ∣∣∣∣∣

nk(l)−1∏
j=p(l)+1

(z − μ
k(l)
j )

∣∣∣∣∣ ≥ Hnk(l)−1−p(l), l ≥ 1,

outside of a collection of exceptional disks with the sum of radii 2eH. In view of our
choice of m,

max
z∈Im

∣∣∣∣∣
nk(l)−1∏
j=p(l)+1

(z − μ
k(l)
j )

∣∣∣∣∣ ≥ Hnk(l)−1−p(l), l ≥ 1.

Since Λ is almost real, we have | exp(λk(l)z)| ≥ exp(−(|a| + 1)|λk(l)|), z ∈ Im, l ≥ l(m).
Using (3.13), we see that

max
z∈Im

∣∣∣∣∣
nk(l)−1∑
n=0

dk(l),n(l)z
n exp(λk(l)z)

∣∣∣∣∣ ≥ bT (m, l) exp(−(|a|+ 1 + s)|λk(l)|), l ≥ l(m),

where

T (m, l) ≥ 2−2nk(l)(2eH + 2 + |a|)−nk(l)+1+n(l)+p(l)Hnk(l)−1−p(l)

≥ 2−2nk(l)Hn(l)(2e+ (2 + |a|)/H)−nk(l)+1+n(l)+p(l)

≥ Hn(l)(8e+ 4(2 + |a|)/H)−nk(l) .

Since n(l) > τ |λk(l)| and for some σ > 0, thanks to the finiteness of sn(Λ) (see Theorem
3.1), we have nk ≤ σ|λk|, k ≥ 1, it follows that for sufficiently large H > 0 the last
estimates contradict (3.9). Therefore, (3.10) is true.

Let τ > 0. We put rnk(τ ) = min{nk, [τ |λk|]}, where [τ |λk|] is the integral part of τ |λk|.
By (3.9), (3.10), and the inequality nk ≤ σ|λk|, for any m ≥ m0 we can find Cm(τ ) > 0
such that

(3.14) max
z∈Km

∣∣∣∣∣
rnk(τ)−1∑

n=0

dk,nz
n exp(λkz)

∣∣∣∣∣ ≤ Cm(τ ), k ≥ 1.

Suppose that d = {dk,n} /∈ B(Λ, a). Then for some s ≥ 1 we can find sequences of
indices {k(l)} and {n(l)} such that k(l) → ∞ as l → ∞, and

(3.15) |dk(l),n(l)|sn(l) exp
(
(a− 1/s)|λk(l)|

)
= r(l) → ∞, l → ∞.
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Passing to subsequences, we may assume that n(l)/|λk(l)| → β as l → ∞. The condition
β > 0 contradicts (3.10) because nk ≤ σ|λk|, k ≥ 1. Hence, β = 0. For each τ > 0 we
have n(l) ≤ rnk(τ )− 1, l ≥ l(τ ), and by (3.15) we get

(3.16) |dk(l),n(l)| ≥ r(l) exp
(
(−a+ 1/(s+ 1))|λk(l)|

)
, l ≥ rl.

We choose an index m ≥ max{m0, s+ 4} such that the length of the vertical part Im of
the boundary of the compact set Km is strictly greater than 4e. Let

rIm = Im ∩ {z : | Im z| ≤ 2e+ 1}

and write
rnk(τ)−1∑

n=0

dk,nz
n = dk,rnk(τ)−1

rnk(τ)−1∏
j=1

(z − rμk
j ).

As above, we may assume that

|rμk(l)
j | > 2 max

z∈rIm

|z| = 2 rAm, j = 1, . . . , p(l),

|rμk(l)
j | ≤ 2 rAm, j = p(l) + 1, . . . , nk(l) − 1− n(l).

By the Cartan theorem,

max
z∈rIm

∣∣∣∣∣
rnk(l)(τ)−1∏
j=p(l)+1

(z − rμ
k(l)
j )

∣∣∣∣∣ ≥ 1, l ≥ 1.

Moreover, since Λ is almost real, we have

| exp(λkz)| = expRe(λkz) = exp(Reλk(a− 1/m)− Imλk Im z)

≥ exp(Reλk((a− 1/m)− (2e+ 1) Imλk/Reλk))

≥ exp(Reλk(a− 1/(m− 1)))

≥ exp((a− 1/(m− 2))|λk|), z ∈ rIm, k ≥ rk.

As above, recalling (3.16), we see that

max
z∈rIm

∣∣∣∣∣
rnk(l)(τ)−1∑

n=0

dk(l),n(l)z
n exp(λk(l)z)

∣∣∣∣∣ ≥ rT (m, l)r(l) exp

((
− 1

m− 2
+

1

s+ 1

)
|λk(l)|

)
,

where l ≥ l(τ ), k(l) ≥ rk, and

rT (m, l) ≥ 2−2rnk(l)(τ)(2e+ 2 + |a|)−rnk(l)(τ)+1+n(l)+p(l) ≥ (8e+ 8 + 4|a|)−rnk(l)(τ).

Since rnk(τ ) ≤ τ |λk|, choosing τ > 0 to be arbitrarily small and taking our choice of m
into account, we obtain

max
z∈Km

∣∣∣∣∣
rnk(l)(τ)−1∑

n=0

dk(l),n(l)z
n exp(λk(l)z)

∣∣∣∣∣ ≥ r(l) → ∞, l → ∞.

This contradicts (3.14). Hence, d = {dk,n} ∈ B(Λ, a).
As in the proof of Theorem 3.1, the subspace W coincides with W (Λ,Π(a)). Since

d ∈ B(Λ, a), Property 3 of the system Ξ(Λ, D) and statement 1) of Lemma 3.2 imply
that formula (3.7) is true. As it has been proved, L(Λ, a) is a surjective operator. Con-
sequently, in accordance with statement 2) of Lemma 3.2, we obtain (3.8). The theorem
is proved. �
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Now we show that the condition SΛ = 0 in Theorem 3.3 is necessary. For this, we
shall prove an analog of Theorem 3.1 in the paper [14]. In our situation, we cannot use
this theorem itself, because it contains a restriction on the multiplicities of the points
λk : nk/|λk| → 0.

Lemma 3.4. Let D be a convex domain such that HD(1) = a < +∞, and let W be
a closed nontrivial invariant subspace of H(D) with almost real spectrum Λ = {λk, nk}.
Suppose that every function g ∈ W can be expanded in a series of the form (1.1) uniformly
convergent on all compact subsets of D. Then SΛ = 0.

Proof. By the same argument as at the beginning of the proof of Theorem 3.1, there exists
an entire function of exponential type f that has zeros at the points λk of multiplicities
at least nk and whose conjugate diagram lies in D. Thus, on the space H∗(D) there
exists a system of functionals Ξ(Λ, D) biorthogonal to E(Λ).

Suppose that SΛ �= 0. Then SΛ ≤ −2β < 0. By the definition of SΛ, there is a sequence
of positive numbers {δp} and a subsequence {λk(p)} such that δp → 0 as p → ∞, and

(3.17) ln |qk(p)Λ (λk(p), δp)|/|λk(p)| ≤ −β.

We may assume that

(3.18) |λk(p+1)| ≥ 2|λk(p)|, δp < 1/4, p ≥ 1.

Consider the functions

gp(z) =
1

2πi

∫
S(λk(p),5δp|λk(p)|)

exp(λz) dλ

(λ− λk(p))q
k(p)
Λ (λ, δp)

, p ≥ 1.

We estimate |gp| from above. We have

|qk(p)Λ (λ, δp)| =
∏

λk∈B(λk(p),δp|λk(p)|),
k 
=k(p)

∣∣∣∣λ− λk

3δ|λk|

∣∣∣∣
nk

≥
(

4δp|λk(p)|
3δp(1 + δp)|λk(p)|

)m(p)

≥ 1,

λ ∈ S(λk(p), 5δp|λk(p)|),
where m(p) is the number of points λk, k �= k(p), with multiplicities taken into account,
belonging to B(λk(p), δp|λk(p)|). Let K be an arbitrary compact subset of D. Then
Re z ≤ HD(1)− 2τ = a− 2τ , z ∈ K, for some τ > 0. Since Λ is almost real and δp → 0,
we obtain

|gp(z)| =
∣∣∣∣∣ 1

2πi

∫
S(λk(p),5δp|λk(p)|)

exp(λz) dλ

(λ− λk(p))q
k(p)
Λ (λ, δp)

∣∣∣∣∣
≤ 5δp|λk(p)| sup

λ∈S(λk(p),5δp|λk(p)|)

∣∣∣∣ expλz

(λ− λk(p))

∣∣∣∣
≤ exp(Re(λk(p)z) + 5δp|λk(p)| |z|)
≤ exp(Reλk(p)(Re z + (| Im z| | Imλk(p)|+ 5δp|λk(p)|)/(Reλk(p)))

≤ exp(Reλk(p)(a− τ )), z ∈ K, p ≥ p(K).

(3.19)

Consider the function

(3.20) g(z) =

∞∑
p=1

cpgp(z),

where cp = exp(−aReλk(p)), p ≥ 1. By (3.19),

∞∑
p=p(K)

|cpgp(z)| ≤
∞∑

p=p(K)

exp(−τ Reλk(p)) < ∞, z ∈ K.
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Hence, g ∈ W . Let us show that g admits no expansion in a series of the form (1.1)
uniformly convergent on the compact subsets of D. By the definition of gp, we have

gp(z) = rdk(p),0 exp(λk(p)z) +
∑

λk∈B(λk(p),δp|λk(p)|)
k 
=k(p)

nk−1∑
n=0

rdk,nz
n exp(λkz),

where rdk(p),0 = (q
k(p)
Λ (λk(p), δp))

−1. By (3.18), the disks B(λk(p), δp|λk(p)|), p ≥ 1, are
mutually disjoint. In particular, λk(p) ∈ B(λk(j), δp|λk(j)|), if j �= p. It follows that
rdk(p),0cp = μk(p),0(g), μk(p),0 ∈ Ξ(Λ, D). Suppose that g expands in the series (1.1),

converging uniformly on the compact subsets of D. Then dk(p),0 = μk(p),0(g) = rdk(p),0cp.
On the other hand, by (3.17), for all z ∈ D with Re z ≥ a− β/2 (such points z exist by
the definition of HD), we have

|dk(p),0 exp(λk(p)z)| = |rdk(p),0cp exp(λk(p)z)|
≥ exp(β|λk(p)| − Reλk(p)(β/2− | Im z| | Imλk(p)|/Reλk(p))) ≥ 1, p ≥ p(z)

(in the last inequality we have used the fact that Λ is almost real). This contradicts the
convergence of the series (1.1) at the point z ∈ D. Hence, g cannot be expanded in a
series like (1.1) uniformly convergent on the compact sets in D. This contradicts the
assumptions of the lemma. Therefore, SΛ = 0, and the lemma is proved. �

Now we are able to formulate and prove the fundamental principle criterion.

Theorem 3.5. Let a ∈ R, and let W be a closed nontrivial invariant subspace of H(Π(a))
with almost real spectrum Λ = {λk, nk}∞k=1. The following statements are equivalent.

1) Every function g ∈ W expands in a series of the form (1.1) uniformly convergent
on all compact subsets of Π(a).

2) SΛ = 0.
3) The operator L(Λ, a) : B(Λ, a) → W (Λ,Π(a)) is an isomorphism of linear topological

spaces.

Proof. The implication 1) ⇒ 2) was proved in Lemma 3.4. By Theorem 3.3, 1) follows
from 2). If 1) is true, the operator L(Λ, a) is a surjection because W is closed. According
to item 2) of Lemma 3.2, statement 3) is valid. Since W = W (Λ,Π(a)) (see Theorem
3.1), the implication 3) ⇒ 1) follows from the definition of L(Λ, a). The theorem is
proved. �

Therefore, the case of invariant subspaces with almost real spectrum on a half-plane
with almost vertical boundary (with the half-plane to the left of the boundary) is analyzed
completely. In what follows, we consider some other cases of unbounded domains. Let
D be an unbounded convex domain. We set

J (D) = {λ ∈ C : HD(λ) = +∞}.
Since HD is a convex positive homogeneous function, the set C \ J (D) is a convex

cone. Thus, only the following four cases are possible: C \ J (D) is a point, a ray, a
line, or an angle of size at most π. If D = C, then J (D) = C \ 0. In the case where
D is a half-plane {z ∈ C : Re(zeiϕ) < a}, the set J (D) is the plane cut along the ray
{λ = teiϕ : t ≥ 0}. However, if D is a strip {z ∈ C : Re(zeiϕ) < a, Re(zei(ϕ+π)) < b},
then J (D) consists of two half-planes with the common boundary line {λ = teiϕ : t ∈ R}.
In the other cases the domain D contains no lines. Nevertheless, D always contains some
ray {z = z0 + teiϕ, t ≥ 0}. Moreover, the set J (D) represents an angle of opening
less than 2π and contains an open angle of opening π, i.e., the half-plane {λ = teiψ :
−ϕ− π/2 < ψ < −ϕ+ π/2, t > 0}.
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Since almost real sequences are dealt with, the direction of their accumulation λ = 1 =
(1, 0) is exceptional. Depending on the domain D, one of the following four possibilities
is realized.

1. HD is bounded in a neighborhood of the point λ = 1, i.e., 1 ∈ int(C \ J (D)) (int
denotes the interior part of a set). For a bounded domain, this situation is the only
possible.

2. HD is unbounded in the neighborhood of the point λ = 1, i.e., 1 ∈ intJ (D). This
is the only possibility for D = C.

3. 1 ∈ ∂J (D) and HD(1) = +∞. This case is realized, for example, when D is a
domain bounded by a parabola.

4. 1 ∈ ∂J (D) and HD(1) < +∞. In this case either the boundary ∂D contains a
vertical ray, or a vertical line is an asymptote for ∂D. The domain is located to the left
of the corresponding ray or line.

The case treated in this paper corresponds to the fourth possibility. Let us show
that, in fact, the fourth possibility reduces to that case. For this, we use a result on
simultaneous analytic continuation of functions on invariant subspaces. Various criteria
of such continuation were obtained in [18] and [19]. In [18], the one-dimensional case was
investigated, while the multidimensional case was treated in [19].

Nevertheless, the most appropriate result for our situation is that from the paper [19]
(Theorem 4.1). It gives the most general and simple (by their matter but, possibly,
not by the form) sufficient conditions for analytic continuation. They are related to the
principal invariant subspaces. As was mentioned in [19], in the one-dimensional case each
invariant subspace is principal. Therefore, this result is applicable in our case.

We formulate a weaker version of [19, Theorem 4.1] only related to invariant subspaces
with almost real spectrum.

Let D be a convex domain. Denote by K(D) a sequence {Km} of compact convex
subsets of D that strictly exhausts the domain D, i.e., Km ⊂ intKm+1, m ≥ 1, and
D =

⋃
m≥1 Km. We put Γ+(δ) = {tλ : λ ∈ B(1, δ), t > 0} and

FΛ(λ) =

∞∏
k=1

[
exp

(
nk

λ

λk

)(
1− λ

λk

)nk
]
.

Let sn(Λ) < +∞. This is the case if, for example, Λ is the spectrum of a closed nontrivial
invariant subspace W ⊂ H(D) (see the beginning of the proof of Theorem 3.1). Then
the function FΛ has growth of order one and possibly an infinite type (see [6, Chapter I,
§4, the Borel theorem]). Following the terminology of [19], we note that the existence
of the function FΛ means that W is a principal invariant subspace. Therefore, the next
statement is true ([19, Theorem 4.1]).

Lemma 3.6. Let D be a convex domain, let a = HD(1), and let W be a closed nontrivial
invariant subspace of H(D) with almost real spectrum Λ = {λk, nk}∞k=1. Assume that
W admits spectral synthesis and that for any δ ∈ (0, 1/3) and m ≥ 1 there exists a
subharmonic function ψ(λ) on C, an index p, and R,R′ > 0 such that

1) λk ∈ U = Γ+(δ) ∪B(0, R′), k ≥ 1;
2) ψ(λ) + ln |FΛ(λ)| ≥ HKm

(λ), λ ∈ (U +B(0, 1)) \ U , Km ∈ K(D);
3) ψ(λ) + ln |FΛ(λ)| ≤ HKp

(λ), λ ∈ B(0, R), Kp ∈ K(D).
Then every function on W admits analytic continuation to the domain Π(a) (if a =

+∞, then Π(a) = C), and is approximated on this domain (uniformly on the compact
sets) by linear combinations of elements of the system E(Λ).

Remark. We explain how Lemma 3.6 is obtained from Theorem 4.1 in [19]. Following
the notation of [19], note that in our case for any neighborhood V (the point λ = 1 is
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necessarily in V ) one can find a disk B(1, 3δ) lying in V . One can take B(1, 2δ)∩S(0, 1)
to be the compact set X from that theorem. Then, under the assumptions of Lemma
3.6, all conditions of Theorem 4.1 are satisfied.

The next statement reduces possibility 4 to the situation considered above.

Lemma 3.7. Let D be an unbounded convex domain such that 1 ∈ ∂J (D), let HD(1) =
a, and let W be a closed nontrivial invariant subspace of H(D) with almost real spectrum
Λ = {λk, nk}∞k=1. Then W = W (Λ,Π(a)).

Proof. First, note that, since the domain D is unbounded, the subspace W admits spec-
tral synthesis (see [2, Theorem 8.1]). Next, we shall show that all other assumptions of
Lemma 3.6 are fulfilled.

Fix δ ∈ (0, 1/3) and m ≥ 1. Since K(D) is a strict exhaustion of the domain D, we
can find ε > 0 such that

(3.21) HKm
(λ) + ε|λ| ≤ HKm+1

(λ) ≤ HKm+2
(λ)− 2ε|λ|, λ ∈ C.

By assumption 1 ∈ ∂J (D). Consequently, the set J (D) contains either the upper or the
lower half-plane. Suppose that the first case is realized (in the second case the proof is
similar).

By Theorem 2.2, for given ε > 0 and δ ∈ (0, 1/3), there exist numbers γ ∈ (0, 1) and
{ti} and an entire function f such that inequalities (2.1) and (2.2) are valid. Moreover,
the function f has zeros at the points λk of multiplicities at least nk. This implies that
the function

rψ(λ) = π Imλ/γ +HKm+1
(λ) + ln |f(λ)| − ln |FΛ(λ)|

is subharmonic on C. By (2.1) and (3.21), we have

rψ(λ) + ln |FΛ(λ)| ≥ HKm+1
(λ)− ε|λ| ≥ HKm

(λ), λ ∈ Γ+(2δ) \ (Γ+(δ) ∪B(0, t1)).

Since Λ is almost real, we can find R′ > t1 such that condition 1) of Lemma 3.6 is
satisfied, and the set ((U +B(0, 1)) \ U) \B(0, R′ + 1) lies in Γ+(2δ) \ Γ+(δ). Hence,

(3.22) rψ(λ) + ln |FΛ(λ)| ≥ HKm
(λ), λ ∈ ((U +B(0, 1)) \ U) \B(0, R′ + 1).

Denote by b1, . . . , bn all zeros of the function f(λ) (with multiplicities) that belong to
the disk B(0, R′ + τ ) and differ from λk, k ≥ 1. Here, τ ∈ (1, 2) is chosen so that there
are no zeros of f(λ) on the circle S(0, R′ + τ ). We put

h(λ) =

n∏
j=1

(R′ + τ )(λ− bj)

(R′ + τ )2 − bjλ
.

Then the function rψ(λ) − ln |h(λ)| is subharmonic in the disk B(0, R′ + τ ) and lower
bounded in the annulus B(0, R + 1) \ B(0, R′). By the choice of the number R′, the
function FΛ(λ) has no zeros in the set B(0, R′ + 1) \ (B(0, R′) ∪ Γ+(δ)). It follows that
ln |FΛ(λ)| is also lower bounded on this set. Therefore, for some β ∈ R

(3.23) rψ(λ)− ln |h(λ)|+ ln |FΛ(λ)| ≥ β, λ ∈ ((U +B(0, 1)) \ U) ∩B(0, R′ + 1).

Since |h(λ)| = 1, λ ∈ S(0, R′+2), we have rψ(λ) = rψ(λ)− ln |h(λ)|, λ ∈ S(0, R′+2). It

follows that for any C > 0, the function defined by ψ(λ) = rψ(λ) + C if λ /∈ B(0, R′ + τ )

and by ψ(λ) = max{ rψ(λ), rψ(λ) − ln |h(λ)|} + C if λ ∈ B(0, R′ + τ ), is subharmonic in
the plane. We choose C > 0 such that

β + C ≥ max
λ∈B(0,R′+1)

HKm
(λ).

In accordance with to (3.22) and (3.23), this gives us condition 2) of Lemma 3.6.
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It remains to prove condition 3). By (2.2), there exists R ≥ R′ + τ such that

(3.24) ln |f(λ)| ≤ π| Imλ|/γ + 2ε|λ|, λ /∈ B(0, R)

(see [6, Chapter I, §18, Theorem 28]). Using the definition of ψ(λ) and (3.21), we have

ψ(λ) + ln |FΛ(λ)| = rψ(λ) + C + ln |FΛ(λ)|
= π Imλ/γ +HKm+1

(λ) + ln |f(λ)|+ C

≤ π Imλ/γ +HKm+1
(λ) + π| Imλ|/γ + 2ε|λ|+ C

≤ HKm+2+I(λ) + C, λ /∈ B(0, R),

(3.25)

where I is the segment with endpoints 0 and −2πi/γ. Let us show that Km+2 + I is a
compact set in the domain D. Since this is the case for Km+2, we have

HKm+2+I(λ) ≤ HKm+1
(λ) < HD(λ), Imλ ≤ 0, λ �= 0.

Keeping in mind that J (D) contains the upper half-plane, we see that

HKm+2+I(λ) < HD(λ), Imλ > 0.

Thus, HKm+2+I(λ) < HD(λ), λ �= 0, i.e., HKm+2+I is a compact subset ofD. Since K(D)
is an exhaustion of the domain D, we can find an index p for which HKm+2+I ⊂ Kp−1.
Then HKm+2+I(λ) ≤ HKp−1

(λ), λ ∈ C. Increasing R > 0 if necessary, we may assume
(as in (3.21)) that HKp−1

(λ) + C ≤ HKp
(λ), λ /∈ B(0, R). Then by (3.25), we obtain

condition 3) of Lemma 3.6.
Now we can apply this lemma. In accordance with it each function in W admits

analytic continuation to the domain Π(a) (for a = +∞, Π(a) = C) and is approximated
in that domain by linear combinations of elements of the system E(Λ). In other words,
W ⊂ W (Λ,Π(a)). The converse imbedding is obvious. Lemma 3.7 is proved. �

Lemma 3.7 allows us to obtain a fundamental principle criterion in the case corre-
sponding to Possibility 4 (i.e., 1 ∈ ∂J (D) and HD(1) = a < +∞).

Theorem 3.8. Let D be an unbounded convex domain such that 1 ∈ ∂J (D), let HD(1) =
a < +∞, and let W be a closed nontrivial invariant subspace of H(D) with almost real
spectrum Λ = {λk, nk}∞k=1.

1) If SΛ = 0, then each function g ∈ W expands in a series of the form (1.1) uni-
formly convergent on the compact subsets of Π(a), and the operator L(Λ, a) : B(Λ, a) →
W (Λ,Π(a)) is an isomorphism of linear topological spaces.

2) If each function g ∈ W admits representation by the series (1.1) uniformly conver-
gent on the compact subsets of D, then SΛ = 0.

Proof. By Lemma 3.7, we have W = W (Λ,Π(a)). Theorem 3.5 shows that statement 1)
is true. In view of Lemma 3.4, statement 2) is also valid. �

Let us consider the situations corresponding to Possibilities 2 and 3. The case where
1 ∈ intJ (D) has been analyzed completely. In particular, in this case the fundamental
principle criterion was obtained in Theorem 5.1 of the paper [4]. Moreover, in Propo-
sition 2 of the paper [20] it was proved that in this case all functions in W are entire.
Specifically, a criterion for a function belonging to an arbitrary closed nontrivial invariant
subspace that admits spectral synthesis to be entire was obtained in [20, Proposition 2]
provided that J (D) = intJ (D). Lemma 3.7 (which is true for a = +∞) allows us to
eliminate this condition for invariant subspaces with almost real spectrum. Using Lemma
3.7 and Proposition 1 in [20], we obtain the following result.
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Theorem 3.9. Let D be a convex domain, and let W be a closed nontrivial invariant
subspace of H(D) with almost real spectrum Λ = {λk, nk}∞k=1. Each function in W is
entire if and only if 1 ∈ J (D).

Therefore, the situations corresponding to Possibilities 2 and 3 reduce to the “entire”
case (D = C). Using Theorem 3.9 and [4, Theorem 5.1], we obtain the following result.

Theorem 3.10. Let D be an unbounded convex domain such that 1 ∈ J (D), and let
W be a closed nontrivial invariant subspace of H(D) with almost real spectrum Λ =
{λk, nk}∞k=1.

1) If SΛ > −∞, then each function g ∈ W expands in a series of the form (1.1)
uniformly convergent on all compact subsets of C, and the operator L(Λ, a) : B(Λ, a) →
W (Λ,C) is an isomorphism of linear topological spaces.

2) If each function g ∈ W is expands in a series of the form (1.1) uniformly convergent
on all compact subsets of C, then SΛ > −∞.

§4. Representation of functions in an invariant subspace

on a convex domain

In this section we study the situation corresponding to Possibility 1 of the preceding
section (1 ∈ int(C \ J (D))).

One of the main results of the paper [5] (see Theorem 1 therein) states that the con-
dition m(Λ) = lim supk→∞ nk/|λk| = 0 is necessary for the validity of the fundamental
principle in the subspaceW ⊂ H(D) in the case whereD is a bounded domain. Our near-
est goal is to generalize the result related to the case of invariant subspaces with almost
real spectrum to the case of arbitrary convex domains provided that 1 ∈ int(C \ J (D)).

First, we introduce some notation. Let t > 0, and let Dt be a domain obtained from
D by applying a homothetic transformation with coefficient t centered at the origin,
i.e., Dt = {z′ = tz : z ∈ D}. We put Λ(t) = {t−1λk, nk}. Obviously, for any t > 0,
m(Λ) = 0 implies m(Λ(t)) = 0 and vice versa. In [5, Lemma 1] it was proved that
each function in W (Λ, D) expands in a series of the form (1.1) uniformly convergent on
the compact subsets of D if and only if each function in W (Λ(t), Dt) admits a similar
expansion uniformly convergent on the compact subsets of Dt.

Theorem 4.1. Let D be a convex domain such that 1 ∈ int(C \ J (D)), and let W be a
closed nontrivial invariant subspace of H(D) with almost real spectrum Λ = {λk, nk}∞k=1.
Suppose that each function g ∈ W expands in a series of the form (1.1) uniformly con-
vergent on the compact subsets of D. Then m(Λ) = 0.

Proof. First, note that, as in Theorem 3.1 and Lemma 3.4, the sequence Λ has finite
upper density, and there exists a system of functionals Ξ(Λ, D) ⊂ H∗(D) biorthorgonal
to E(Λ).

Since 1 ∈ int(C \ J (D)), we can find ϕ ∈ (0, π/2) such that the function HD is
bounded in a neighborhood of the arc γ = {eiα : α ∈ [−ϕ, ϕ]}. Putting Γ = {teiψ :
ψ ∈ (π/2 + ϕ, 3π/2− ϕ), t > 0}, we show that the set D′ = D \ Γ is bounded. Suppose
the contrary. Then there exist points tle

iψ(l) ∈ D′, l ≥ 1, such that tl → +∞ and
ψ(l) → ψ(0) ∈ [−ϕ − π/2, π/2 + ϕ] as l → ∞. Choose an arbitrary point eiψ on the
half-circle S = {eiα : α ∈ (−ψ(0) − π/2,−ψ(0) + π/2)}. There is a number b > 0 and
index l(0) such that Re(eiψeiψ(l)) ≥ b, l ≥ l(0). Hence,

HD(eiψ) ≥ Re(eiψtle
iψ(l)) ≥ tlb → +∞, l → ∞,

i.e., we have S ⊂ J (D). This contradicts our choice of the arc γ, because S intersects
any neighborhood of the arc. Therefore, D′ is bounded.
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Suppose that HD(1) ≤ 0. By [5, Lemma 1], applying a homothetic transformation if
necessary, we may assume that the set D′ lies inside the disk B(0, 1/2) and

(4.1) HD(1) > − sinϕ/21.

Suppose that m(Λ) �= 0. Then we can find τ > 0 and a sequence of indices {k(j)}
such that nk(j) ≥ τ |λk(j)|, j ≥ 1. Let ν0 = min{(ln 21 − ln sinϕ)−1 sinϕ/20, τ/4}. We
may assume that

(4.2) nk(j) ≥ τ |λk(j)| ≥ 4ν0|λk(j)| ≥ 4ν(j) ≥ 4ν|λk(j)|,

where ν(j), j ≥ 1, are natural numbers and ν > 0. We set D′′ = D \ Π(− sinϕ/2).
By construction (due to the inequality HD(1) ≤ 0), the set D′′ lies in the half-disk
B(0, 1/2) ∩ (C \Π(0)), while its complement D \D′′ is contained in the truncated angle
Γ ∩ Π(− sinϕ/2). Consider the series

(4.3)

∞∑
j=1

cj exp(δ|λk(j)|)(zp(z))ν(j) exp(λk(j)z),

where p(z) = (z2 + 1)(z + 1) and

cj = exp
(
− sup

z∈D′′

(
ν(j) ln |z|+Re(λk(j)z)

) )
, j ≥ 1.

The series (4.3) resembles the series (11) in the paper [5]. Therefore, repeating word-
for-word arguments at step 3) in the proof of Theorem 1 in that paper, we obtain the
following. There exists δ0 > 0 such that for any δ ∈ (0, δ0) the series (4.3) is uniformly

convergent on the set D′′. There exists a set rD ⊂ D′′ (depending only on δ) and a
sequence of indices j(p), p ≥ 1, such that

(4.4)
∣∣cj(p) exp (δ|λk(j(p))|

)
(z′)ν(j(p)) exp

(
λk(j(p))z

′)∣∣ ≥ 1, p ≥ 1, z′ ∈ rD.

Now we show that the series (4.3) converges uniformly on the set Γ ∩ Π(− sinϕ/2) ∩
B(0, R). First, we estimate the coefficients cj . By (4.1), we can find a point rz ∈ D′′ such
that Re rz ≥ − sinϕ/21. Since Λ is an almost real sequence, we have

Re(λk(j)rz) = |λk(j)|
(
Re rz

Reλk(j)

|λk(j)|
−

| Im rz| | Imλk(j)|
|λk(j)|

)
≥ −|λk(j)| sinϕ/20, j ≥ j0.

Using (4.2), the definition of ν0, and the inequality |rz| < 1/2, we get

ν(j) ln |rz| ≥ ν0|λk(j)| ln |Re rz| ≥
sinϕ|λk(j)|

20(ln 21− ln sinϕ)
ln | sinϕ/21| ≥ −|λk(j)|

sinϕ

20
.

Thus, cj ≤ exp(sinϕ|λk(j)|/10), j ≥ j0. Let δ ∈ (0, sinϕ/10). Then

(4.5) cj exp(δ|λk(j)|) ≤ exp(sinϕ|λk(j)|/5), j ≥ j0.

Suppose z ∈ Γ ∩ Π(− sinϕ/2) ∩B(0, R). As above, we obtain

Re(λk(j)z) ≤ |λk(j)|(Re z + sinϕ/20), j ≥ j1 ≥ j0.
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By the definition of the angle Γ, we have |z| ≤ |Re z|/ sinϕ. Taking into account (4.2),
(4.5), and the fact that z ∈ Π(− sinϕ/2), we obtain

cj exp(δ|λk(j)|)|zp(z)|ν(j)| exp(λk(j)z)|
≤ exp

(
|λk(j)|(sinϕ/4 + Re z)

)
|zp(z)|ν(j)

≤ exp

(
|λk(j)|

(
sinϕ

4
− |Re z|+ ln |zp(z)|ν0

))

≤ exp

(
|λk(j)|

(
sinϕ

4
− |Re z|+ 4ν0 ln(1 + |z|)

))

≤ exp

(
|λk(j)|

(
sinϕ

4
− |Re z|+ sinϕ|z|

5

))

≤ exp

(
|λk(j)|

(
sinϕ

4
− 4

5
|Re z|

))
≤ exp(−3|λk(j)| sinϕ/30), j ≥ j1.

Since Λ has finite upper density, the last inequality means the uniform convergence of
the series (4.3) on the set Γ ∩Π(− sinϕ/2) ∩B(0, R).

Therefore, the series (4.3) converges uniformly on the compact sets of the domain D.
Consequently, its sum g(z) belongs to the subspace W , because it is closed and nk(j) ≥
4ν(j) by (4.2). By assumptions, the function g expands in a series like (1.1) uniformly
converging on the compact subsets of D. Let μk(j),ν(j) ∈ Ξ(Λ, D). Then we have

|μk(j),ν(j)(g)| = |dk(j),ν(j)| = cj exp(δ|λkj
|), j ≥ 1.

The last statement together with (4.4) contradicts the convergence of the series (1.1) at

the points z′ ∈ rD ⊂ D. Hence, our assumption is false, i.e., m(Λ) = 0 if HD(1) ≤ 0.
Suppose now that HD(1) > 0. As above, D′ = D \ Γ is bounded. We put

T = {z : Re z = HD(1)} ∩ ∂D = {z : Re z = HD(1)} ∩ ∂D′.

The set T is nonempty and bounded (it is a singleton or a segment). This implies that we
can apply, if necessary, a homothetic transformation centered at the origin and assume
that the disk B(1, 1) contains ?, and, moreover, the set D′′ = D \ Π(− sinϕ) lies in the
disk B(0, 1), while its complement D \D′′ belongs to the truncated angle Γ∩Π(− sinϕ).
Since the set T is compact, it is contained in B(1, 1) together with some its neighborhood.
Hence, one can find ε > 0 such that the set

T (ε) = {z : Re z ≥ HD(1)− ε} ∩D

is compactly included in B(1, 1). In other words, for some r0 in the interval (e−1, 1), the
set T (ε) is contained in the disk B(1, r0). Suppose that m(Λ) �= 0. Then we can find
τ > 0 and a sequence of indices {k(j)} such that nk(j) ≥ τ |λk(j)|, j ≥ 1. We may assume
that

γ|λk(j)| = min

{
ε

4
,
τ

2
,
sinϕ

4

}
|λk(j)| ≤ n(j)

≤ min

{
ε|λk(j)|

2
, nk(j),

|λk(j)| sinϕ
2

}
, j ≥ 1,

(4.6)

where the n(j) are natural numbers. Since Λ is an almost real sequence, and r0 < 1, for
any R > 0 and some j(R) we have

(4.7) Re(λk(j)z) ≤ |λk(j)|(Re z − γ ln r0/2), z ∈ B(0, R), j ≥ j(R).
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We put cj = exp(−(HD(1) + γ ln r0/4)|λk(j)|), j ≥ 1, and consider the series

(4.8)

∞∑
j=1

cj(z − 1)n(j) exp(λk(j)z).

We shall show that this series converges uniformly on the compact subsets of the do-
main D.

By (4.6) and (4.7), taking into account the imbedding T (ε) ⊂ B(1, r0) and the defini-
tion of HD, we obtain∣∣cj(z − 1)n(j) exp(λk(j)z)

∣∣
≤ exp

(
n(j) ln r0 − (HD(1)− Re z + 3γ ln r0/4)|λk(j)|

)
≤ exp

(
γ|λk(j)| ln r0 − 3γ|λk(j)| ln r0/4

)
= exp

(
γ|λk(j)| ln r0/4

)
, z ∈ T (ε), j ≥ j(1).

(4.9)

Since D′′ ⊂ B(0, 1) and r0 > e−1, by (4.6), (4.7) and the definition of T (ε) we get∣∣cj(z − 1)n(j) exp(λk(j)z)
∣∣

≤ exp
(
n(j) ln 2− (HD(1)− Re z + 3γ ln r0/4)|λk(j)|

)
≤ exp

(
− ε|λk(j)|/2 + 3γ|λk(j)|/4

)
≤ exp

(
− 5ε|λk(j)|/16

)
, z ∈ D′′ \ T (ε), j ≥ j(1).

(4.10)

Since D \D′′ ⊂ Γ ∩ Π(− sinϕ), the inequality HD(1) > 0 shows that∣∣cj(z − 1)n(j) exp(λk(j)z)
∣∣

≤ exp
(
n(j) ln(1 + |z|)− (HD(1)− Re z + 3γ ln r0/4)|λk(j)|

)
≤ exp

(
2−1|λk(j)| sinϕ ln(1 + |z|) + (Re z + 3 sinϕ/16)|λk(j)|

)
≤ exp

(
(|z| sinϕ/2 + Re z + 3 sinϕ/16)|λk(j)|

)
≤ exp

(
(|Re z|/2 + Re z + 3 sinϕ/16)|λk(j)|

)
≤ exp

(
(−5 sinϕ/16)|λk(j)|

)
, z ∈ (D \D′′) ∩B(0, R), j ≥ j(R).

As above, from (4.9) and (4.10) it follows that the series (4.8) uniformly converges on
the compact subsets of the domain D and its sum g belongs to the subspace W .

By assumption, the function g expands in a series of the form (1.1) uniformly conver-
gent on the compact subsets of D. Let μk(j),0 ∈ Ξ(Λ, D). Then

|μk(j),0(g)| = |dk(j),0| = cj , j ≥ 1.

Since r0 < 1, the definition of the support function shows that we can find a point z′ ∈ D
such that Re z′ ≥ HD(1) + γ ln r0/8. Like in (4.7), we obtain

Re(λk(j)z
′) ≥ |λk(j)|(Re z′ + γ ln r0/8), j ≥ j0.

Hence, recalling the definition of cj , we have

|dk(j),0| | exp(λk(j)z
′)| ≥ 1, j ≥ j0.

This contradicts the convergence of the series (1.1) at the point z′ ∈ D. Therefore, our
assumption is not true, i.e., m(Λ) = 0 if HD(1) > 0. The theorem is proved. �

Theorem 4.1 allows us to obtain necessary conditions for the validity of the funda-
mental principle for invariant subspaces with arbitrary spectrum. These results were
not obtained in the paper [4] and can be regarded as an improvement of its main result
(Theorem 5.1).
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First, we introduce some notation. Let D(ϕ) be the domain obtained from the domain
D by rotation by the angle ϕ, i.e., D(ϕ) = {z′ = eiϕz : z ∈ D}. We put Λϕ =
{e−iϕλk, nk}. Thenm(Λ) = m(Λϕ). Using the same argument as in the proof of Lemma 1
in [5], we can prove the following result. Each function of class W (Λ, D) expands in a
series of the form (1.1) uniformly convergent on the compact subsets of D if and only
if each function of class W (Λϕ, D(ϕ)) expands in a series of the form (1.1) uniformly
convergent on the compact subsets of D(ϕ).

Theorem 4.2. Let D be a convex domain, and let W be a closed nontrivial invariant
subspace of H(D) with spectrum Λ = {λk, nk}∞k=1. Suppose that each function g ∈
W expands in a series of the form (1.1) uniformly convergent on the compact subsets
of D. If the subsequence {λk(j)/|λk(j)|} converges to a point ξ ∈ int(C \ J (D)), then
limj→∞ nk(j)/|λk(j)| = 0.

Proof. Suppose that {λk(j)/|λk(j)|} converges to a point ξ ∈ int(C\J (D)). Consider the

subsequence rΛ = {λk(j), nk(j)}∞j=1). We need to show that m(rΛ) = 0. By the hypothesis,

since W is a closed subspace, each function g ∈ ĂW = W (rΛ, D) ⊂ W expands in a
series of the form (1.1) uniformly convergent on the compact subsets of D. Since W is
nontrivial, there exists a system of functionals Ξ(Λ, D) ⊂ H∗(D) biorthogonal to E(Λ).
Then dk,n = μk,n(g), μk,n ∈ Ξ(Λ, D). Since g ∈ W (rΛ, D) is approximated only by

elements of the system E(rΛ), we have dk,n = 0 for all k �= k(j), j ≥ 1. Hence,

g(z) =

∞,nk(j)−1∑
j=1,n=0

dk(j),nz
n exp(λk(j)z), z ∈ D, g ∈ ĂW,

and the series converges uniformly on the compact subsets of D. Using a rotation if
necessary, we may assume that ξ = 1. Then

λk(j)

|λk(j)|
=

Reλk(j)

|Reλk(j)|
1 + i(Imλk(j)/Reλk(j))√
1 + (Imλk(j)/Reλk(j))2

→ 1, j → 1.

Consequently, passing to subsequences, we may assume that the following is true:

Reλk(j) > 0, j ≥ 1, and Imλk(j)/Reλk(j) → 0 as j → ∞.

Therefore, ĂW is a closed nontrivial invariant subspace of H(D) with almost real spec-

trum rΛ. By Theorem 4.1, we have m(rΛ) = 0. The theorem is proved. �
Remark. Theorem 4.2 contains Theorem 1 in the paper [5] as a particular case. Indeed,
if D is a bounded domain, we have m(Λ) = 0 by Theorem 4.2.

Now we are able to prove a result that establishes the fundamental principle for arbi-
trary invariant subspaces and improves the result of [4, Theorem 5.1]. To formulate this
result, we need additional definitions and notation.

Let D be a convex domain, and let Λ = {λk, nk}∞k=1. In the paper [4], before Proposi-
tion 2.3, an analogm(Λ) of the quantitymD(Λ) was introduced, which takes the geometry
of the domain D into account. The definition of mD(Λ) immediately implies the follow-
ing. We have mD(Λ) = 0 if and only if limj→∞ nk(j)/|λk(j)| = 0 for any subsequence
{λk(j)/|λk(j)|} that converges to a point of the set C \ J (D). A similar statement is
also true for the quantity SΛ(D) (an analog of SΛ, which involves the geometry of the
domain D), introduced in [4] before Theorem 3.6. It vanishes if and only if S

rΛ = 0 for

any subsequence rΛ = {λk(j)} such that {λk(j)/|λk(j)|} converges to a point in C \ J (D).
Let K(D) = {Km}. We introduce the following Banach spaces of numerical sequences:

Bm(Λ, D) =
{
d = {dk,n} : ‖d‖m = sup

k,n
|dk,n| exp(HKm

(λk)) < ∞
}
, m ≥ 1.
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Denote by B(Λ, D) the projective limit of Bm(Λ, D) and by L(Λ, D) the operator acting
from B(Λ, D) to W (Λ, D) by the following rule: a sequence d ∈ B(Λ, D) is taken to the
sum of the series (1.1), provided that it converges uniformly on the compact subsets of
the domain D.

We say that the system E(Λ) is a Köthe basis in the subspace W ⊂ H(D) if each
function g ∈ W is represented by a series of the form (1.1) in the domain D, and for any
m ≥ 1 there exists p ≥ 1 and C > 0 (independent of g) such that

∞,nk−1∑
k=1,n=0

max
z∈Km

|dk,nzn exp(λkz)| ≤ C max
z∈Kp

|g(z)|.

Let IΛ(D) denote the set of all entire functions f of exponential type that have zeros
at the points λk of multiplicities at least nk and whose conjugate diagrams lie in D (i.e.,
hf (λ) < HD(λ), λ �= 0).

If Γ is an open angle with vertex at the origin, then Λ(Γ) denotes the set of all points
λk belonging to the angle Γ.

Theorem 4.3. Let D be a convex domain, and let W be a closed nontrivial invariant
subspace of H(D) with the spectrum Λ = {λk, nk}∞k=1 that admits spectral synthesis. Sup-

pose that m(rΛ) = 0 for any subsequence rΛ = {λk(j)} such that {λk(j)/|λk(j)|} converges
to a point ξ ∈ ∂J (D) \ J (D). Then the following statements are are equivalent.

1) Every function g ∈ W is represented by a series of the form (1.1) at any point
z ∈ D, and for any subsequence {λk(j)/|λk(j)|} that converges to a point in int(C\J (D))
we have

lim
j→∞

nk(j)/|λk(j)| = 0.

2) Every function g ∈ W is represented by a series of the form (1.1) that uniformly
converges on the compact subsets of the domain D.

3) The system E(Λ) is a Köthe basis in W .
4) The operator L(Λ, D) : B(Λ, D) → W = W (Λ, D) is an isomorphism of linear

topological spaces.
5) SΛ > −∞, SΛ(D)=0, and for every m≥1 and every compact set F ⊂S(0, 1) \ J (D)

there exists ϕ ∈ IΛ(D) such that for any δ > 0 we can find an open angle Γ and T > 0
such that F ⊂ Γ and

(Λ(Γ) \B(0, T )) ⊂ Rδ, R = {z : ln |ϕ(z)| ≥ HKm
(z)}.

Remark. 1. If C \ (J (D) ∪ {0}) is an open set (in particular, if D is bounded) the

condition m(rΛ) = 0 in Theorem 4.3 can be omitted (it is satisfied automatically). In this

case, there is no subsequences rΛ as in the theorem. Therefore, we obtain a criterion for
the validity of the fundamental principle without any additional restrictions.

2. In the general case, the condition m(rΛ) = 0 cannot be lifted, otherwise the impli-
cation 2) ⇒ 5) becomes wrong. Indeed, by Theorem 3.5, in the case of an almost real
spectrum andD = Π(a), statement 2) is equivalent to the fact that SΛ = 0, i.e., 2) is valid

even when m(Λ) = max
rΛ m(rΛ) �= 0. On the other hand, by the remark to Theorem 3.6

in [4], statement 5) implies the identity mD(Λ) = 0 (in this case, mD(Λ) = m(Λ)). Note
that, by Theorems 2.2 and 2.4, the function ϕ ∈ IΛ(D), similar to that in 5), always
exists. However, in contrast to 5), it depends on δ > 0 (even with SΛ = 0). Neverthe-
less, combined with the identity SΛ = 0, this guaranties the validity of the fundamental
principle for invariant subspace with almost real spectrum on the half-plane.

Proof. Suppose statement 1) is true. By the hypothesis of the theorem (m(rΛ) = 0),
this provides the relation mD(Λ) = 0. Theorem 5.1 in the paper [4] shows that the
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implications 1) ⇒ 3) and 1) ⇒ 5) are true. The implications 3) ⇒ 2) and 4) ⇒ 2) are
obvious. By Theorem 4.2, the implication 2) ⇒ 1) is also true. As was mentioned in
Remark 2, statement 5) implies that mD(Λ) = 0. Hence, by Theorem 5.1 in [4], the
implication 5) ⇒ 1) is true. It remains to prove that 2) ⇒ 4). We have already seen that
if 2) is true, then 1) is also true. Hence, by Proposition 2.5 in [4], the operator L(Λ, D)
is a surjection. Then we obtain 4) as in Lemma 3.2. Theorem 4.3 is proved. �

At the end of the paper, we return to the (promised at the beginning of this section)
case of invariant subspaces with almost real spectrum provided that 1 ∈ int(C \ J (D)).
In this case, statement 5) of Theorem 4.3 can be replaced by simple geometric conditions
on the sequence Λ and the domain D.

Let Λ = {λk, nk}∞k=1 be an almost real sequence with finite upper density and m(Λ) =
0. Then in accordance with the theorems of Abel and Cauchy–Hadamard (see [21,
Theorems 3.1 and 4.1]), every series (1.1) converges either on the plane or on the half-
plane Π(a). Moreover, the abscissa of convergence is calculated by the formula

a = lim inf
k→∞

min
0≤n<nk

ln |1/dk,n|
|λk|

.

Using this fact, it is not difficult to obtain analogs of Lemma 1 (for m(Λ) = 0) and
Lemma 4 from the paper [13]. Using those analogs and Theorems 2.5, 4.1, 4.3, and
repeating almost word-for-word the proof of Theorem 4 in [13], we obtain the following
result.

Theorem 4.4. Let D be a convex domain, let 1 ∈ int(C \ J (D)), and let W be a closed
nontrivial invariant subspace of H(D) with almost real spectrum Λ = {λk, nk}∞k=1 that
admits spectral synthesis. The following statements are equivalent.

1) Each function W is represented by a series of the form (1.1) on the half-plane
Π(HD(1)).

2) SΛ = 0, n0(Λ) < +∞, and the intersection of the support line {z ∈ C : Re z =
HD(1)} with the boundary of the domain D contains a segment of length 2πn0(Λ).
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