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ON THE SIDON INEQUALITY

FOR TRIGONOMETRIC POLYNOMIALS

A. O. RADOMSKII

To Boris Sergeevich Kashin on his 65th birthday

Abstract. A lower estimate is established for the uniform norm of a special type
trigonometric polynomial in terms of the sum of the L1-norms of its summands in the
case where the sequence of frequencies splits into finitely many lacunary sequences.
The result refines theorems known for lacunary sequences and generalizes a result of
Kashin and Temlyakov, which in its turn generalizes the classical Sidon inequality.

§1. Introduction

For f ∈ Lp(0, 2π), put

‖f‖p =

(∫ 2π

0

|f(x)|p dx
)1/p

for 1 ≤ p < ∞,

‖f‖∞ = ess sup
[0,2π]

|f(x)| for p = ∞,

cn(f) =
1

2π

∫ 2π

0

f(x)e−inx dx, n ∈ Z,

ak(f) =
1

π

∫ 2π

0

f(x) cos kx dx,

bk(f) =
1

π

∫ 2π

0

f(x) sin kx dx, k = 0, 1, 2, . . . .

Given 2π-periodic functions f(x) and g(x), we define 〈f, g〉 by the formula

〈f, g〉 =
∫ 2π

0

f(x)g(x) dx,

and denote by f ∗ g the convolution

(f ∗ g)(x) = 1

2π

∫ 2π

0

f(x− t)g(t) dt.

If x is a real number, then [x] denotes its integral part, and 	x
 is the smallest integer
n such that n ≥ x. Given a finite set A, we denote its cardinality by |A|. For a nonzero
trigonometric polynomial T (x), its exact order will be denoted by deg(T ). For a real
number r ≥ 0, let T(r) denote the space of all real trigonometric polynomials of the form

t(x) = A+

[r]∑
k=1

ak cos kx+ bk sin kx
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(by definition, the sum
∑0

k=1 is put to be zero).
Let λ > 1 be a real number. We denote by Λ(λ) the class of sequences N = {nk}∞k=1

of natural numbers such that nk+1/nk ≥ λ, k = 1, 2, . . . . Let Λ stand for the class of all
lacunary sequences N , i.e.,

Λ =
⋃
λ>1

Λ(λ).

Finally, we introduce the class Λσ of all monotone increasing sequences N of natural
numbers that admit splitting into finitely many lacunary sequences. Observe that if
N ∈ Λσ, then N is a monotone increasing sequence of natural numbers, and it can be
split into finitely many sequences N (j) ∈ Λ(μ), where μ > 1 is any number prescribed
beforehand.

The following theorem was proved by S. Sidon in 1927.

Theorem A (Sidon [1]). Suppose that {nk}∞k=1 is a sequence of natural numbers satis-
fying

nk+1

nk
≥ λ > 1, k = 1, 2, . . .

If a trigonometric series
∞∑
k=1

αk cosnkx+ βk sinnkx

is the Fourier series of a bounded function f(x), then

∞∑
k=1

|αk|+ |βk| < ∞.

Sidon’s method of proof was based on application of the Riesz products, which became
an important tool in the theory of trigonometric and general orthogonal series. For the
first time, these products arose in F. Riesz’s paper [2]. Also in [1], Sidon observed that
Theorem A remains valid in the case where f(x) is only bounded from one side, i.e., if
f(x) ≤ M or f(x) ≥ −M . In fact, the proof of Theorem A in [1] implies the following
estimate, which will be called the Sidon inequality:

∞∑
k=1

|αk|+ |βk| ≤ C(λ)‖f‖∞,

where C(λ) > 0 is a constant depending only on λ. In particular, the next result is true.

Theorem B. Suppose that {nk}∞k=1 is a sequence of natural numbers satisfying

nk+1/nk ≥ λ > 1, k = 1, 2, . . . .

Then for each real trigonometric polynomial

f(x) =

m∑
k=1

αk cosnkx+ βk sinnkx, m = 1, 2, . . . ,

we have

(1.1) ‖f‖∞ ≥ c(λ)
m∑

k=1

(|αk|+ |βk|),

with a constant c(λ) > 0 depending only on λ.
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A direction of refinement of Theorem A was related to relaxing its assumptions con-
cerning lacunarity. In [3], Sidon himself carried his theorem over to the case where
N = {nk}∞k=1 can be split into finitely many lacunary sequences, i.e., N ∈ Λσ. The
further development in this issue was done in the papers [4–7] and others.

In 1998, Kashin and Temlyakov [8,9] started the study of another direction of refining
the Sidon theorem. In connection with estimates for the entropy numbers of some classes
of functions of low smoothness, they explored the question about the possible generaliza-
tions of the Sidon inequality (1.1) where αk cosnkx is replaced with pk(x) cosnkx, pk(x)
being a trigonometric polynomial.

Theorem C (Kashin and Temlyakov [8, 9]). For any trigonometric polynomial of the
form

f(x) =

2l∑
k=l+1

pk(x) cos 4
kx,

where pk ∈ T(2l), k = l + 1, . . . , 2l, l = 1, 2, . . . , we have

‖f‖∞ ≥ c

2l∑
k=l+1

‖pk‖1

with an absolute constant c > 0.

The further investigation of these issues was continued by present author in [10–12].
The best result is as follows.

Theorem D (Radomskii [12, Theorem 1.1]). Suppose that {nk}∞k=1 is a sequence of
natural numbers satisfying nk+1/nk ≥ λ > 1, k = 1, 2, . . . . Then for any trigonometric
polynomial

f(x) =
m∑
k=l

pk(x) cosnkx,

where pk ∈ T(γnl), γ = min
(
1
6 ,

λ−1
3

)
, k = l, . . . ,m, m > l, l = 1, 2, . . . , we have

(1.2) ‖f‖∞ ≥ c(λ)

m∑
k=l

‖pk‖1,

with a constant c(λ) > 0 depending only on λ.

We note that Theorem D not only generalizes Theorem C, carrying the result over to
the case of an arbitrary lacunary sequence, but also relaxes the conditions on the degrees
of the pk(x). The Sidon type inequalities (1.2) are closely related to the properties of
the space of quasicontinuous functions and to the QC-norm, which was introduced by
Kashin and Temlyakov in [8, 9] as follows: for f ∈ L1(0, 2π) with the Fourier series
f ∼

∑∞
j=0 δj(f, x), where

δ0(f) =
1

2π

∫ 2π

0

f(x) dx,

δj(f, x) =

2j−1∑
n=2j−1

an(f) cosnx+ bn(f) sinnx, j = 1, 2, . . . ,

we put

‖f‖QC ≡
∫ 1

0

∥∥∥∥
∞∑
j=0

rj(t)δj(f, · )
∥∥∥∥
∞

dt,
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where {rj(t)}∞j=0 is the Rademacher system, see [13, Chapter 2]). In particular, in [9]

the following theorem (Theorem 2.1) was proved: for any real function f ∈ L1(0, 2π) we
have the inequality

(1.3) ‖f‖QC ≥ 1

48π

∞∑
j=0

‖δj(f)‖1.

The relationship between C- and QC-norms is also of interest. K. I. Oskolkov showed
(see [9]) that

sup
t∈T(2m)

‖t‖∞
‖t‖QC

≥ c1
√
m, c1 > 0.

On the other hand, from (1.3) and a result of P. G. Grigor′ev (see [14]) it follows that

sup
t∈T(2m)

‖t‖QC

‖t‖∞
≥ c2

√
m, c2 > 0.

In [15], the present author obtained a nontrivial lower estimate for the quantity

sup
t∈L

‖t‖QC/‖t‖∞

for a subspace L ⊂ T(2m−1) satisfying certain dimensional restrictions. Another impor-
tant question is about the sharpness of the conditions in Theorem D. In this direction,
the following fact was obtained (see [16], [12, Theorem 2.2], and also [11], where a result
of similar nature was established for the sequence nk = 2k).

Theorem E (Grigor’ev, Radomskii). Let {nk}∞k=1 be a sequence of natural numbers such
that nk+1/nk ≥ λ > 1, k = 1, 2, . . . , and let {g(k)}∞k=1 be a monotone nondecreasing
sequence of real numbers with 1 ≤ g(k) ≤ nk, k = 1, 2, . . . . Then there exist real
trigonometric polynomials pk(x), k = 1, 2, . . . , such that

deg(pk) ≤
nk

g(k)
, ‖pk‖1 ≥ 2π

5
, ‖pk‖∞ ≤ 12, k = 1, 2, . . . ,

and ∥∥∥∥
m∑

k=1

pk(x) cosnkx

∥∥∥∥
∞

≤ α(λ) + β
√
m+ 24 logλ g(m), m = 1, 2, . . . ,

where β > 0 is an absolute constant and α(λ) > 0 depends only on λ.

In particular, Theorem E shows that in Theorem D with m = 2l the condition
pk ∈ T(γnl) cannot be replaced with the condition pk ∈ T(nk/λ

rk), where {rk}∞k=1

is a monotone nondecreasing sequence of positive real numbers such that rk/k → 0 as
k → ∞ (in particular, it does not suffice to assume that pk ∈ T(cnk) with c ∈ (0, 1)).

In this paper we carry the result of Theorem D to sequences of class Λσ and relax the
conditions imposed on the degrees of the trigonometric polynomials pk(x) (Theorem 1).
This refinement is achieved via application of a new method of proof, based on a re-
finement of the Riesz products and an estimate for the number of solutions of certain
Diophantine equations. Partly, we have used some ideas from S. B. Stechkin’s paper [4].
It should also be noted that we prove our results for more general sums f that involve
the terms qk(x) sinnkx, besides pk(x) cosnkx.

Theorem 1. Let ε ∈ (0, 1) and B ≥ 1 be real numbers, and let N = {nk}∞k=1 be
a monotone increasing sequence of natural numbers such that N can be split into d
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sequences N (j) ∈ Λ(	7
√
B
), j = 1, . . . , d. Then for each trigonometric polynomial of

the form

f(x) =

m∑
k=l

pk(x) cosnkx+ qk(x) sinnkx,

where pk, qk ∈ T(rk), k = l, . . . ,m,

rl = min

(
nl+1 − nl

2(1 + ε)
,

nl

1 + ε

)
,

rk = min

(
nk − nk−1

2(1 + ε)
,
nk+1 − nk

2(1 + ε)
, Bnl

)
, k = l + 1, . . . ,m− 1,

rm = min

(
nm − nm−1

2(1 + ε)
, Bnl

)
,

m > l, l = 1, 2, . . . , we have the inequality

‖f‖∞ ≥ c

d2 · ln2(1 + 1/ε)

m∑
k=l

‖pk‖1 + ‖qk‖1,

where c > 0 is an absolute constant.

§2. Proof of Theorem 1

We start with a lemma, which refines a construction used by Kashin and Temlyakov
in [9].

Lemma 1. Suppose ε ∈ (0, 1), n ∈ N, and p(x) is a real trigonometric polynomial of the
form

p(x) = A+

n∑
k=1

ak cos kx+ bk sin kx, |an|+ |bn| > 0.

Then there exists a nonzero real trigonometric polynomial g(x) such that
i) deg(g) < (1 + ε)n;
ii) ‖g‖∞ ≤ 30 ln(1 + 1/ε) =: c0(ε);

iii)
∫ 2π

0
p(x)g(x) dx = ‖p‖1.

Proof of Lemma 1. Let s > n be a natural number. Consider the function

Vn,s(x) =
1

s− n

s−1∑
j=n

j∑
ν=−j

eiνx

(the de la Valleé-Poussin kernel). Then Vn,s(x) is a real trigonometric polynomial with
deg(Vn,s) = s−1 and ck(Vn,s) = 1 for |k| ≤ n. It can be shown (see, e.g., [17, Chapter 1])
that

‖Vn,s‖1 ≤ 86 ln

(
1 +

s

s− n

)
.

We put
V (x) = Vn,s(x), s = 	(1 + ε)n
.

Then V (x) is a real trigonometric polynomial with deg(V ) = 	(1 + ε)n
 − 1, ck(V ) = 1
for |k| ≤ n, and

‖V ‖1 ≤ 86 ln

(
1 +

	(1 + ε)n

	(1 + ε)n
 − n

)
.

Since
	(1 + ε)n


	(1 + ε)n
 − n
≤ (1 + ε)n+ 1

(1 + ε)n− n
≤ (1 + ε)n+ n

εn
= 1 +

2

ε
,
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we have

‖V ‖1 ≤ 86 ln 2 + 86 ln
(
1 +

1

ε

)
≤ 172 ln

(
1 +

1

ε

)
.

Put

g(x) = sgn(p) ∗ V =
1

2π

∫ 2π

0

sgn(p(x− t))V (t) dt.

Then g(x) is a real continuous 2π-periodic function (see, e.g., [18, vol. I]). Since ck(g) =
ck(sgn(p)) · ck(V ), it follows that ck(g) = 0 for |k| > deg(V ), whence

ak(g) =
1

π

∫ 2π

0

g(x) cos kx dx = ck(g) + c−k(g) = 0,

bk(g) =
1

π

∫ 2π

0

g(x) sin kx dx = i(ck(g)− c−k(g)) = 0, k > deg(V ).

Therefore,

(2.1) g(x) =
a0(g)

2
+

�(1+ε)n�−1∑
k=1

ak(g) cos kx+ bk(g) sin kx, x ∈ R.

For any x we have

|g(x)| ≤ 1

2π

∫ 2π

0

|V (t)| dt < 30 ln
(
1 +

1

ε

)
.

Applying the Parseval identity and using the properties of convolution, we see that

〈p, g〉 = 2π

n∑
k=−n

ck(p)c−k(g) = 2π

n∑
k=−n

ck(p)c−k(sgn(p))c−k(V )

= 2π
n∑

k=−n

ck(p)c−k(sgn(p)) = 〈p, sgn(p)〉 = ‖p‖1.

Observe that g(x) is a nonzero trigonometric polynomial. Indeed, suppose g(x) ≡ 0;
then 0 = 〈p, g〉 = ‖p‖1, so that p(x) = 0 a.e. on [0, 2π]. Since p(x) is continuous,

we have p(x) = 0 for all x ∈ [0, 2π]. Consequently, 2πA =
∫ 2π

0
p(x) dx = 0, πak =∫ 2π

0
p(x) cos kx dx = 0, and πbk =

∫ 2π

0
p(x) sinkx dx = 0, k = 1, . . . , n. Since |an|+ |bn| >

0 by assumption, we arrive at a contradiction. Finally, (2.1) implies that deg(g) ≤
	(1 + ε)n
 − 1 < (1 + ε)n. Lemma 1 is proved. �

We continue the proof of Theorem 1. Suppose that the trigonometric polynomial f(x)
has the form

f(x) =
m∑
k=l

pk(x) cosnkx+ qk(x) sinnkx,

where pk, qk ∈ T(rk), k = l, . . . ,m,

rl = min

(
nl+1 − nl

2(1 + ε)
,

nl

1 + ε

)
,

rk = min

(
nk − nk−1

2(1 + ε)
,
nk+1 − nk

2(1 + ε)
, Bnl

)
, k = l + 1, . . . ,m− 1,

rm = min

(
nm − nm−1

2(1 + ε)
, Bnl

)
(m > l).

It it easy to show that rk ≤ nk/(1 + ε), k = l, . . . ,m, and

(2.2) (1 + ε)(rs + rk) ≤ nk − ns, l ≤ s < k ≤ m.
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Let k ∈ {l, . . . ,m}. If pk(x) ≡ b, b ∈ R, then we put

gk(x) =

{
1 if b ≥ 0,

−1 if b < 0.

Then gk(x) is a nonzero real trigonometric polynomial with deg(gk) = 0 < (1+ ε)rk and
we have

‖gk‖∞ = 1 < 30 ln 2 ≤ 30 ln
(
1 +

1

ε

)
,

〈pk, gk〉 = 2π|b| = ‖pk‖1. If pk(x) is a nonconstant trigonometric polynomial, then
for the role of gk(x) we take the trigonometric polynomial constructed in Lemma 1 and
corresponding to pk(x) and ε. Then gk(x) will be a nonzero real trigonometric polynomial
with deg(gk) < (1 + ε) deg(pk) ≤ (1 + ε)rk,

‖gk‖∞ ≤ 30 ln
(
1 +

1

ε

)
= c0(ε)

and 〈pk, gk〉 = ‖pk‖1. The trigonometric polynomial rgk(x) for qk(x) is constructed
similarly. Put τk(x) = gk(x)/c0(ε) and rτk(x) = rgk(x)/c0(ε). Then τk(x) and rτk(x)
are nonzero trigonometric polynomials such that max(deg(τk), deg(rτk)) < (1 + ε)rk,
max(‖τk‖∞, ‖rτk‖∞) ≤ 1, and

(2.3) 〈pk, τk〉 =
‖pk‖1
c0(ε)

, 〈qk, rτk〉 =
‖qk‖1
c0(ε)

, k = l, . . . ,m.

We set

(2.4) α =
1

864c0(ε)d
.

The sequence N = {nk}∞k=1 is split into d sequences N (j) ∈ Λ(	7
√
B
), j = 1, . . . , d,

i.e., for any j ∈ {1, . . . , d} the sequence N (j) is equal to {nk}k∈Ej
(in the order given

within Ej), where Ej is a set of integers i1 < i2 < · · · < is < . . . , nis+1
/nis ≥ 	7

√
B
,

s = 1, 2, . . . , and

N =

d∐
j=1

Ej .

Let Φ = {j ∈ {1, . . . , d}: the set {l ≤ k ≤ m : k ∈ Ej} is nonempty}. For j ∈ Φ, we
define the Riesz product

(2.5) J (j)(x) =
1

α

∏
l≤k≤m : k∈Ej

(1+α τk(x) cosnkx+α rτk(x) sinnkx) =
1

α
+ω1(x)+ω2(x),

where

ω1(x) =
∑

l≤k≤m : k∈Ej

τk(x) cosnkx+ rτk(x) sinnkx,

ω2(x) = J (j)(x)− 1

α
− ω1(x).

Consider the case where |{l ≤ k ≤ m : k ∈ Ej}| ≥ 2. Clearly, J (j)(x) ≥ 0 for any x.

We estimate 〈f, J (j)〉 from below. Since either pk(x) ≡ 0, or deg(pk) < nk (and similarly
for qk(x)), we have 〈f, 1/α〉 = 0. Let s ∈ {l, . . . ,m} be such that s ∈ Ej , and let
k ∈ {l, . . . ,m}. Suppose k �= s. We shall show that∫ 2π

0

pk(x) cosnkx(τs(x) cosnsx+ rτs(x) sinnsx) dx

=

∫ 2π

0

pk(x)τs(x) cosnkx cosnsx dx+

∫ 2π

0

pk(x)rτs(x) cosnkx sinnsx dx = 0.

(2.6)
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We assume that k > s (the case where k < s is treated similarly). If pk(x) ≡ 0, then (2.6)
is obvious. Let pk(x) ≡ b, b �= 0. Since deg(τs), deg(rτs) < (1 + ε)rs < (1 + ε)(rs + rk) ≤
nk − ns (see (2.2)), it follows that (2.6) is true. Now, let pk(x) be nonconstant. Since
deg(pkτs), deg(pkrτs) < rk+(1+ε)rs < (1+ε)(rs+rk) ≤ nk−ns (see (2.2)), we conclude
that (2.6) is proved. Similar arguments show that

(2.7)

∫ 2π

0

qk(x) sinnkx(τs(x) cosnsx+ rτs(x) sinnsx) dx = 0.

Suppose that k = s. We prove that

(2.8) I =

∫ 2π

0

ps(x) cosnsx(τs(x) cosnsx+ rτs(x) sinnsx) dx =
‖ps‖1
2c0(ε)

.

If ps(x) ≡ 0, then (2.8) is obvious. Let ps(x) ≡ b, b �= 0. Then τs(x) = 1/c0(ε) if b > 0,
and τs(x) = −1/c0(ε) if b < 0. Thus,

I =
π|b|
c0(ε)

+
b

2

∫ 2π

0

rτs(x) sin 2nsx dx =
‖ps‖1
2c0(ε)

+
b

2
I0.

Since deg(rτs) < (1 + ε)rs ≤ ns < 2ns, we see that I0 = 0 and (2.8) is fulfilled. Now, let
ps(x) be nonconstnat. Then (see (2.3))

I =
1

2

∫ 2π

0

ps(x)τs(x) dx+
1

2

∫ 2π

0

ps(x)τs(x) cos 2nsx dx

+
1

2

∫ 2π

0

ps(x)rτs(x) sin 2nsx dx =
‖ps‖1
2c0(ε)

+
1

2
I1 +

1

2
I2.

Since deg(psτs), deg(psrτs) < rs + (1 + ε)rs ≤ (2 + ε)ns/(1 + ε) < 2ns, it follows that
I1 = 0 and I2 = 0, so that (2.8) is proved. Similarly,

(2.9)

∫ 2π

0

qs(x) sinnsx(τs(x) cosnsx+ rτs(x) sinnsx) dx =
‖qs‖1
2c0(ε)

.

Relations (2.6)–(2.9) imply∫ 2π

0

f(x)(τs(x) cosnsx+ rτs(x) sinnsx) dx =
1

2c0(ε)
(‖ps‖1 + ‖qs‖1).

Consequently,

(2.10) 〈f, ω1〉 =
1

2c0(ε)

∑
l≤k≤m: k∈Ej

‖pk‖1 + ‖qk‖1.

We shall prove that

(2.11) |〈f, ω2〉| ≤ 144α

m∑
k=l

‖pk‖1 + ‖qk‖1.

Let k ∈ {l, . . . ,m}. It will be shown that

(2.12) |〈pk(x) cosnkx, ω2〉| ≤ 144α‖pk‖1.
If pk(x) ≡ 0, then (2.12) is true. In what follows we assume that pk �= 0. Let z1 < z2 <
· · · < zL be all elements of the sequence N (j) that lie in the segment [nl, nm]. We have

(2.13) ω2(x) =
1

α

L∑
s=2

αs
∑

l≤k1<···<ks≤m: kν∈Ej

∑(1)
ak1

(x) · · · · · aks
(x),

where the sum
∑(1) is over all aki

(x) equal to τki
(x) cosnki

x or to rτki
(x) sinnki

x (in

total, in the sum
∑(1) we have 2s summands). Let ψn(x) denote the function τn(x)
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or rτn(x), and let ϕ(n |x) stand for the function cosnx or sinnx, assuming that for
different n the function ϕ(n |x) may differ, i.e., they may be either sine or cosine with
the corresponding frequencies. Let s ∈ {2, . . . , L}, and let k1, . . . , ks be natural numbers
such that l ≤ k1 < · · · < ks ≤ m and kν ∈ Ej , ν = 1, . . . , s. We have

ak1
(x) · · · · · aks

(x) = ψk1
(x) · · · · · ψks

(x) · ϕ(nk1
|x) · · · · · ϕ(nks

|x)
(here, if ϕ(nki

|x) = cosnki
x, then ψki

(x) = τki
(x), and if ϕ(nki

|x) = sinnki
x, then

ψki
(x) = rτki

(x)). Using the well-known trigonometric formulas, we get the identity

ak1
(x) · · · · · aks

(x) = ψk1
(x) · · · · · ψks

(x)
∑(2)

± 1

2s−1
ϕ(nks

± nks−1
± · · · ± nk1

|x),

where the sum
∑(2)

is over all collections of signs ± in the linear expression nks
±

nks−1
±· · ·±nk1

(in total, in
∑(2) we have 2s−1 summands). Each term ϕ(nks

±nks−1
±

· · · ± nk1
|x) is supplied with a uniquely determined sign + or −. Observe that, since

N (j) ∈ Λ(	7
√
B
), we have nks

± nks−1
± · · · ± nk1

> 0 for any collection of signs.
Let i be an integer. We denote by M(i |nk1

, . . . , nks
) the set of all collections of signs

(ε1, . . . , εs−1), εν ∈ {−1, 1}, 1 ≤ ν ≤ s− 1, such that

nks
+ εs−1nks−1

+ · · ·+ ε1nk1
= i.

Let P (i |nk1
, . . . , nks

) = |M(i|nk1
, . . . , nks

)| be the number of elements in the set

M(i |nk1
, . . . , nks

).

It is easily seen that P (i |nk1
, . . . , nks

) is equal to 0 or 1.
We have

〈pk(x) cosnkx, ak1
(x) · · · · · aks

(x)〉

=
∑(2) 1

2s−1

∫ 2π

0

pk(x) cosnkxψk1
(x) . . . ψks

(x) · (±ϕ(nks
± nks−1

± · · · ± nk1
|x)) dx.

Since

deg(pkψk1
· · · · · ψks

) < rk + (1 + ε)(rk1
+ · · ·+ rks

) ≤ Bnl + s(1 + ε)Bnl ≤ 3	B
snl,

it follows that

〈pk(x) cosnkx, ak1
(x) · · · · · aks

(x)〉

=
∑(3) 1

2s−1

∫ 2π

0

pk(x) cosnkxψk1
(x) . . . ψks

(x) · (±ϕ(nks
± nks−1

± · · · ± nk1
|x)) dx,

where the sum
∑(3) is only taken over all distinct collections of signs ± such that

nk − 3	B
snl ≤ nks
± nks−1

± · · · ± nk1
≤ nk + 3	B
snl.

Let Π denote the set of such collections of signs. Clearly, we have

Π =
⊔

nk−3�B�snl≤i≤nk+3�B�snl

M(i |nk1
, . . . , nks

).

Consequently,

|Π| =
∑

nk−3�B�snl≤i≤nk+3�B�snl

P (i|nk1
, . . . , nks

).

Since∣∣∣∣
∫ 2π

0

pk(x) cosnkxψk1
(x) · · · · · ψks

(x) · (±ϕ(nks
± nks−1

± · · · ± nk1
|x)) dx

∣∣∣∣ ≤ ‖pk‖1,



652 A. O. RADOMSKII

we obtain the inequality∣∣〈pk(x) cosnkx, ak1
(x) · · · · · aks

(x)〉
∣∣ ≤ 1

2s−1
‖pk‖1 ·

∑
nk−3�B�snl≤i≤nk+3�B�snl

P (i|nk1
, . . . , nks

).

This implies (see (2.13)) that∣∣〈pk(x) cosnkx, ω2〉
∣∣

≤ 1

α

L∑
s=2

αs
∑

l≤k1<···<ks≤m: kν∈Ej

2s · 1

2s−1
‖pk‖1

∑
nk−3�B�snl≤i≤nk+3�B�snl

P (i|nk1
, . . . , nks

)

= 2 ‖pk‖1
L∑

s=2

αs−1
∑

l≤k1<···<ks≤m: kν∈Ej

∑
nk−3�B�snl≤i≤nk+3�B�snl

P (i|nk1
, . . . , nks

).

(2.14)

Let s ∈ {2, . . . , L}. Put

S =
∑

l≤k1<···<ks≤m: kν∈Ej

∑
nk−3�B�snl≤i≤nk+3�B�snl

P (i|nk1
, . . . , nks

).

We want to show that

(2.15) S ≤ 5s + 1.

If S is 0, 1, or 2, then (2.15) is obvious. In what follows we assume that S ≥ 3. Let
Ω be the set of all distinct vectors of the form (η1, . . . , ηt, 0, . . . , 0) ∈ R

L such that
ην ∈ {−2,−1, 0, 1, 2}, ν = 1, . . . , t, ηt �= 0, 1 ≤ t ≤ L, and

t∑
ν=1

ηνzν = i, 0 ≤ i ≤ 6	B
snl.

We claim that for any v ∈ Ω we have t ≤ s. Suppose the contrary. Then there exists a
vector (η1, . . . , ηt, 0, . . . , 0) ∈ Ω such that ην ∈ {−2,−1, 0, 1, 2}, ν = 1, . . . , t, ηt �= 0, and
t ≥ s+ 1. Let ηt ∈ {1, 2}. Since

|ηt−1zt−1 + · · ·+ η1z1| ≤ 2(z1 + · · ·+ zt−1) <
1

2
zt,

we have

ηtzt + · · ·+ η1z1 ≥ zt + ηt−1zt−1 + · · ·+ η1z1 >
1

2
zt

≥ 1

2
zs+1 ≥ 1

2

(
	7
√
B


)s
z1 ≥ 1

2

(
	7
√
B


)s
nl > 6	B
snl.

If ηt ∈ {−1,−2}, then

ηtzt + · · ·+ η1z1 ≤ −zt + ηt−1zt−1 + · · ·+ η1z1 < −1

2
zt < 0.

We arrive at a contradiction. Consequently, indeed, for any v ∈ Ω we have t ≤ s.
Let G denote the set of all vectors of the form (η1, . . . , ηs, 0, . . . , 0) ∈ R

L such that
ην ∈ {−2,−1, 0, 1, 2}, 1 ≤ ν ≤ s. Clearly,

(2.16) |Ω| ≤ |G| = 5s.

We enumerate (in some order) all collections u1, . . . , uR of natural numbers (k1, . . . , ks)
such that l ≤ k1 < · · · < ks ≤ m and kν ∈ Ej , ν = 1, . . . , s. We describe an algorithm of
writing out certain L-dimensional vectors with coordinates 0, 1 and −1. We start with
i = nk − 3	B
snl and t = 1. Let i ∈ {nk − 3	B
snl, . . . , nk + 3	B
snl}, t ∈ {1, . . . , R},
ut = (k1, . . . , ks). If the set M(i|nk1

, . . . , nks
) is empty, then we replace t with t+ 1. If

M(i|nk1
, . . . , nks

) is not empty, then this set containes a single element (ε1, . . . , εs−1).
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Let nkν
= ziν , ν = 1, . . . , s. Obviously, 1 ≤ i1 < · · · < is ≤ L. Consider the vector

v = (b1, . . . , bL), where

bis = 1, biν = εν , ν = 1, . . . , s− 1,

and the other coordinates are equal to 0. After that we replace t with t + 1. If t = R,
uR = (k∗1 , . . . , k

∗
s ), then:

1) if M(i|nk∗
1
, . . . , nk∗

s
) is empty, then we replace i with i+ 1 and put t = 1;

2) if M(i|nk∗
1
, . . . , nk∗

s
) is not empty, we write out the vector dictated by the above

rule, replace i with i+ 1 and put t = 1.
Finally, if i = nk + 3	B
snl, t = R, uR = (k∗1 , . . . , k

∗
s ), then:

1) if M(i|nk∗
1
, . . . , nk∗

s
) is empty, we finish the algorithm;

2) if M(i|nk∗
1
, . . . , nk∗

s
) is not empty, we write out the vector in accordance with the

above rule and finish the algorithm.
In the course of our algorithm, for each i ∈ {nk−3	B
snl, . . . , nk+3	B
snl} and each

collection of natural numbers (k1, . . . , ks) such that l ≤ k1 < · · · < ks ≤ m and kν ∈ Ej ,
ν = 1, . . . , s, we construct P (i|nk1

, . . . , nks
) vectors. Consequently, in total we have S

L-dimensional vectors. Each of these vectors has exactly s nonzero coordinates equal to
±1, and the last nonzero coordinate is equal to 1. We enumerate these vectors in the order
of obtaining them in the course of the algorithm. Suppose a vector vδ = (b1, . . . , bL),
δ ∈ {1, . . . , S} was obtained for i and (k1, . . . , ks). Then, by the construction itself of the
vectors in questions (see, in particular, the definition of the set M(i|nk1

, . . . , nks
)) we

have
∑L

ν=1 bνzν = i. Observe also that, in accordance with our construction, if a vector
vδ = (b1, . . . , bL) was obtained starting with i and (k1, . . . , ks), and vγ = (c1, . . . , cL)

stemmed from ri and (rk1, . . . ,rks), where δ, γ ∈ {1, . . . , S}, δ < γ, then
∑L

ν=1 bνzν = i,∑L
ν=1 cνzν = ri, and

(2.17) nk − 3	B
snl ≤ i ≤ ri ≤ nk + 3	B
snl.

We show that all the resulting vectors are distinct. Suppose the contrary. Then there
exist equal vectors vδ and vγ , where δ, γ ∈ {1, . . . , S}, δ < γ. Suppose vδ was obtained

from i and (k1, . . . , ks) and vγ from ri and (rk1, . . . ,rks) (i,ri ∈ {nk − 3	B
snl, . . . , nk +

3	B
snl}, the collections of natural numbers (k1, . . . , ks) and (rk1, . . . ,rks) are such that

l ≤ k1 < · · · < ks ≤ m, and l ≤ rk1 < · · · < rks ≤ m, kν ,rkν ∈ Ej , ν = 1, . . . , s, and

M(i|nk1
, . . . , nks

) �= ∅, M(i|n
rk1
, . . . , n

rks
) �= ∅). We show that i = ri and kν = rkν ,

ν = 1, . . . , s. Let vδ = (b1, . . . , bL) = vγ . Then
∑L

ν=1 bνzν = i and
∑L

ν=1 bνzν = ri.

Hence, i = ri. By using induction, it is not hard to prove the following claim: for a
natural number t, if b1 < b2 < · · · < bt and c1 < c2 < · · · < ct are sequences of real
numbers with (b1, . . . , bt) �= (c1, . . . , ct), then there exists 1 ≤ ν ≤ t such that bν �= cβ ,

β = 1, . . . , t. If we assume that (k1, . . . , ks) �= (rk1, . . . ,rks), then we can find 1 ≤ ν ≤ s

such that kν �= rkt, t = 1, . . . , s. Let nkν
= ziν . Since the sequence {nk}∞k=1 is monotone

increasing, our construction of vectors shows that the iνth coordinate of vδ is 1 or −1,
while the iνth coordinate of vγ is 0, which contradicts the fact that vδ = vγ . Thus,

i = ri and (k1, . . . , ks) = (rk1, . . . ,rks). The vector vδ was constructed starting with i and
(k1, . . . , ks). After that, in the course of the algorithm, we passed to other collections
(k′1, . . . , k

′
s) and, then, to other, larger, i′. Therefore, the vector vγ could not stem from

i and (k1, . . . , ks), a contradiction. Consequently, all the resulting vectors are distinct.
Now we prove inequality (2.15). We subtract the first vector from the jth one (2 ≤

j ≤ S), keeping the first vector unchanged. As a result, we get S vectors, and those with
numbers 2 ≤ j ≤ S will have the form

(2.18) (η1, . . . , ηt, 0, . . . , 0) ∈ R
L,
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where ην ∈ {−2,−1, 0, 1, 2}, 1 ≤ ν ≤ t, ηt �= 0, 1 ≤ t ≤ L, and
∑t

ν=1 ηνzν = i,
0 ≤ i ≤ 6	B
snl. We explain why ηt �= 0. Indeed, should the zero vector occur, we
would get two equal vectors after adding the first vector to it, so that two equal vectors
would occur among S initial vectors, which is impossible, as we saw above. We have∑t

ν=1 ηνzν = i, 0 ≤ i ≤ 6	B
snl, by (2.17). All S−1 vectors (2.18) are distinct. Indeed,
should two of them be equal, then, after adding the first vector to them, we would get
two equal vectors among the initial ones, which is impossible. Recalling (2.16), we see
that

S − 1 ≤ 5s,

which proves (2.15). Since s ≥ 2, finally we get S < 6s. Plugging this estimate in (2.14),
we obtain the inequality

∣∣〈pk(x) cosnkx, ω2(x)〉
∣∣ ≤ 12 ‖pk‖1

L∑
s=2

(6α)s−1 < 12 ‖pk‖1
6α

1− 6α
≤ 144α ‖pk‖1,

and (2.12) is proved (we have also used the fact that α < 1/12, see (2.4)). Similar
arguments show that∣∣〈qk(x) sinnkx, ω2(x)〉

∣∣ ≤ 144α ‖qk‖1, l ≤ k ≤ m,

and

(2.19) |〈ω2, 1〉| ≤ 2π · 144α ≤ 2π

α
.

Consequently,

|〈f, ω2〉| ≤ 144α

m∑
k=l

‖pk‖1 + ‖qk‖1

which proves (2.11). Using (2.10), we get

〈f, J (j)〉 ≥ 1

2c0(ε)

( ∑
l≤k≤m: k∈Ej

‖pk‖1 + ‖qk‖1
)
− 144α

m∑
k=l

‖pk‖1 + ‖qk‖1.

It is easily seen that 〈ω1, 1〉 = 0. Since the function J (j) is nonnegative, we can use (2.19)
to show (see also (2.5)) that

‖J (j)‖1 = 〈J (j), 1〉 = 2π

α
+ 〈ω2, 1〉 ≤

4π

α
.

Consequently,

〈f, J (j)〉 ≤ ‖f‖∞ · ‖J (j)‖1 ≤ 4π

α
‖f‖∞.

As a result, we have

(2.20)
4π

α
‖f‖∞ ≥ 1

2c0(ε)

( ∑
l≤k≤m:k∈Ej

‖pk‖1 + ‖qk‖1
)
− 144α

m∑
k=l

‖pk‖1 + ‖qk‖1.

If j ∈ Φ is such that |{l ≤ k ≤ m : k ∈ Ej}| = 1, then J (j)(x) = (1/α) + ω1(x), and
then

1

2c0(ε)

∑
l≤k≤m: k∈Ej

‖pk‖1 + ‖qk‖1 = 〈f, J (j)〉 ≤ ‖f‖∞‖J (j)‖1 =
2π

α
‖f‖∞.

Therefore, in this case inequality (2.20) is also fulfilled. We see that (2.20) is true for
any j ∈ Φ. Summing these inequalities over all j ∈ Φ and using the fact that |Φ| ≤ d,
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see also (2.4), we get the estimate

4πd

α
‖f‖∞ ≥ 1

2c0(ε)

( m∑
k=l

‖pk‖1 + ‖qk‖1
)
− 144αd

m∑
k=l

‖pk‖1 + ‖qk‖1

=
1

3c0(ε)

m∑
k=l

‖pk‖1 + ‖qk‖1.

Recalling the explicit form of c0(ε), finally we obtain

‖f‖∞ ≥ c

d2 · ln2(1 + 1/ε)

m∑
k=l

‖pk‖1 + ‖qk‖1,

where c > 0 is an absolute constant and Theorem 1 is proved.
In [19], an inequality similar to the generalized Sidon inequality was obtained for

discrete orthonormal system of a special form, a particular case of which coincides with
the Walsh system.

The author thanks B. S. Kashin, S. V. Konyagin, and N. N. Kholshchevnikova for
fruitful discussions and attention to this work.
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