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NISNEVICH SHEAFIFICATION OF A HOMOTOPY

INVARIANT PRESHEAF WITH TRANSFERS

A. DRUZHININ

Abstract. The definitions of the category of finite Witt-correspondences and of a
presheaf with Witt-transfers are given. The injectivity on the affine line, the excision
isomorphism on the affine line, and the excision isomorphism for an étale morphism
of curves are proved. The homotopy invariance of the Nisnevich sheafification Fnis of
a homotopy invariant presheave with Witt-transfers F is proved, and the Nisnevich
cohomologies Hi

nis(U,Fnis) are shown to be trivial for any U ⊂ A
1 and i > 0.

§1. Introduction

The triangulated category of motivesDM−(k) over a perfect field k was constructed by
Voevodsky in [4, 6] by the method that we shall call Voevodsky’s method. The category
of Voevodsky’s motives DM−(k) equipped with the functor Smk → SM−(k) is in a
sense a universal object, and a certain class of cohomology theories on algebraic varieties
can be passed through DM−(k). Thus, the higher Chow groups, the étale cohomologies
with coefficients μn, and the motivic cohomologies Hi(−,Z(k)) are well defined on the
category DM−(k).

I. A. Panin posed the following problem: to construct the triangulated category of
Witt-motives DWM(k) over a perfect filed k, char k �= 2, by the Voevodsky method,
using the category of the so-called finite Witt-correspondences as an initial object. This
paper belongs to a series of publications where the category of Witt-motives DWM(k)
will be constructed, see [7]. It is expected that with rational coefficients the category

DWM(k) is equivalent to the minus part ofDA1

(k)Q. Like in the category of Voevodsky’s
motives, many Hom-groups will be actually computable in the category DWM(k).

Moreover, it is expected that the category DWM(k), which will be constructed
ultimately, will be equivalent to the category of Witt-motives constructed in [2] by
Ananievsky, Levine, and Panin. The latter category with rational coefficients is equiva-

lent to the minus part ofDA1

(k)Q. The category in [2] was constructed as some A1-derived
category of the category of Nisnevich sheaves over the Nisnevich sheaf of Witt rings
W (−).

As an initial object, the Voevodsky method employs the preadditive category of corre-
spondences Cork. The objects of Cork are smooth varieties, and the functor Smk → Cork
is identity on objects. This method is based on the fundamental theorem proved by Vo-
evodsky in [5] about homotopy invariant presheaves of Abelian groups on the category
Cork, which are called the homotopy invariant presheaves with transfers. This theorem
states in particular that the Nisnevich sheaf Fnis associated with a homotopy invari-
ant presheaf F with transfers is homotopy invariant, and that Fnis is equipped with
transfers in a canonical way. Our aim in the present paper is to define presheaves with
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Witt-transfers and to prove an analog the first part of Voevodsky’s theorem mentioned
above.

For this, we use the following definition of the category of Witt-correspondences
WCork. The objects of WCork are smooth affine varieties over a perfect field k with
char(k) �= 2. The morphism group WCork(X,Y ) for smooth affine varieties X and Y is
the Witt group of some category with involution related to X and Y . Often, a morphism
from X to Y is determined by a quadratic space (P, qP ), where P is a k[X × Y ]-module
that is finitely generated and projective over k[X] and qP : P → Homk[X](P, k[X]) is a
symmetric k[X×Y ]-linear isomorphism. Like Cork, the category WCork is additive, and
it is equipped with a functor Smk → WCork. A presheaf with Witt-transfers is simply
an additive functor from WCork to the category of Abelian groups. A presheaf with
Witt-transfers F is homotopy invariant if for any smooth affine X we have isomorphism
F (X) � F (X × A

1). The main result of the paper is the following theorem (published
without proof in [9]).

Theorem (main theorem). Suppose F is a homotopy invariant presheaf with Witt-trans-
fers, then the Nisnevich sheafification FNis is also homotopy invariant.

The proof is based on the following properties of presheaves with Witt-transfers proved
in this paper: the injectivity on local schemes (proved in [12] by Chepurkin), injectivity
on affine lines, Zariski excision on affine lines, and étale excision in dimension 1. Namely,
the following statements hold true.

Theorem (injectivity on local schemes; see Chepurkin [12]). Suppose F is a homotopy
invariant presheaf with Witt-transfers, and U is a local scheme that is the localization of
a smooth variety over k at some point. Then the restriction homomorphism F (U) →
F (η), where η ∈ U is a generic point, is injective.

Theorem (injectivity on the affine line). Suppose F is a homotopy invariant presheaf
with Witt-transfers, and U ⊂ V ⊂ A

1
K is a pair of open subschemes on the affine line,

over a filed K = k(S) of fractions of some variety S over k.
Then the restriction homomorphism π∗ : F (V ) → F (U) is injective.

Theorem (excision on the affine line). Suppose F is a homotopy invariant presheaf with
Witt-transfers, and U ⊂ V ⊂ A

1
K is a pair of open subschemes on the affine line, over

a filed K = k(S) of fractions of some variety over k, and z ∈ U is a closed point.
Then the restriction homomorphism

π∗ :
F (V − z)

F (V )
→ F (U − z)

F (U)

is an isomorphism (the factor groups are well defined due to the preceding theorem).

Theorem (étale excision in dimension 1). Suppose F is a homotopy invariant presheaf
with Witt-transfers, π : X ′ → X is an étale morphism of smooth curves over k, and
z ∈ X, z′ ∈ X ′ are closed points such that π induces isomorphism z′ � π(z′) � z. Let
U = Spec k[X]z and U ′ = Spec k[X ′]z′ .

Then the inverse image homomorphism

π∗ :
F (U − z)

F (U)
→ F (U ′ − z′)

F (U ′)

is an isomorphism (the factor groups are well defined due to the Chepurkin theorem).

The last two theorems were published in [8] without proofs.
Proofs of the theorems listed above are based on constructions of some special mor-

phisms in WCork, which are inverse to the regular maps described in the theorems.
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In more detail, to prove injectivity on the affine line, which is the injectivity of the
homomorphism i∗ : F (V ) → F (U) for an open embedding i : U ↪→ V , it suffices to con-
struct a morphism Φ ∈ WCor(V, U) that is the left inverse to the morphism i up to an
A

1-homotopy. To prove the excision isomorphisms it suffices to construct some morphism
in the category of pairs that is inverse to the morphism i up to an A

1-homotopy.
Moreover, the injectivity and excision theorems stated above yield the following fact.

Theorem. Suppose F is a homotopy invariant presheaf with Witt-transfers over K =
k(X) for some smooth variety X over k. Then for any open subscheme U ⊂ A

1
K we

have {
FNis

(
U) = FZar

(
U) = F

(
U),

H1
Nis(U,FNis) = H1

Zar(U,FZar) = 0.

The author thanks I. Panin for formulation of the problem and help with its solution.

§2. The category of Witt-correspondences

Let k be a field, char k �= 2. Denote by SmAffk the category of smooth varieties
over k.

For any pair of affine varieties X and Y , let Proj(X,Y ) denote the full subcategory
in the category of k[X × Y ]-modules spanned by all P that are finitely generated and
projective over k[X]. The functor P �→ D(P ) = Homk[X](P, k[X]) determines a duality
on Proj(X,Y ), where the structure of a k[X×Y ]-module on Homk[X](P, k[X]) is induced
by the structure of k[X × Y ]-module on P . So, for any pair of smooth affine varieties we
get an exact category with duality (Proj(X,Y ), D).

Definition 1 (WCork).

♦ Ob WCork = Ob SmAffk;
♦ WCork(X,Y ) = W (Proj(X,Y ), D) (see [3] for the definition of the Witt group

of an exact category with duality).
A typical example of a morphism from X to Y is determined by a quadratic

space ( k[Y ]Pk[X], qP ), where k[Y ]Pk[X] is a k[Y ×X]-module that is finitely gen-
erated and projective as a k[X]-module and qP : P → Homk[X](P, k[X]) is a
k[Y ×X]-linear isomorphism.

• The composition of

Φ ∈ WCork(X,Y ) and Ψ ∈ WCork(Y, Z)

is defined in terms of the tensor product of quadratic spaces.
• The identity morphism is determined by the diagonal. Precisely, for a smooth
variety X, idX ∈ WCor(X,X) is defined as the class of the quadratic space
( k[X]k[X]k[X], (1)), where

(1)X = ( k[X]k[X]k[X], 1: k[X]) � Homk[X](k[X], k[X])

denotes the quadratic form on k[X]k[X]k[X] given by the canonical isomorphism

k[X] � Homk[X](k[X], k[X]).

There is a useful functor

SmAffk → WCork,

which takes a regular map f : X → Y to the morphism determined by the bi-module

k[Y ]k[X]k[X] and the canonical isomorphism

k[Y ]k[X] � Homk[X]

(
k[Y ]k[X] , (k[X]

)
.



866 A. DRUZHININ

This functor gives the restriction of a presheaf defined on the category WCork to the
category SmAffk, and, in this paper, talking about such a restriction we always mean
this functor.

Example 1. In this example we describe a certain class of morphisms on the category
WCork. Most of morphisms constructed and used in this paper belong to this class.

(1) Let X,S be k-smooth affine schemes, let X ← Y : π be a finite flat morphism of
affine k-schemes, and let l : k[Y ] → k[X] be a k[X]-linear homomorphism such that the
homomorphism

ql : k[Y ] → Homk[X](k[Y ], k[X])

defined by the rule b �→ qb, where qb(b
′) = l(bb′), is an isomorphism. The homomor-

phism q is k[Y ]-linear, because for any ψ ∈ Homk[X](k[Y ], k[X]) by definition we have
(b′ · ψ)(b) = ψ(b′b). Moreover, q determines a symmetric quadratic form due to the
commutativity of k[Y ]. Let f : Y → S be a morphism of k-schemes. Consider the
homomorphism of k-algebras

(idX ×f)∗ : k[X × S] → k[X × Y ].

We view k[Y ] and Homk[X](k[Y ], k[X]) as k[X × S]-modules via the homomorphism
(idX ×f)∗. Then the morphism ql is a k[X×S]-linear symmetric isomorphism. Thus, we
have the class [k[Y ], ql] of the quadratic space (k[Y ], ql) in the Witt group WCor(X,S).
In other words, we get a morphism [k[Y ], ql] in WCor(X,S). We denote this morphism
by (π, l, f) : X → S.

(2) If g : S → S′ is a morphism of k-smooth affine schemes, then g◦(π, l, f) = (π, l, g◦f)
in WCor(X,S′). Suppose j : X ′ → X is a morphism of k-smooth affine schemes; then
(π, l, f) ◦ j = (π′, l′, f ◦ j′) in WCor(X ′, S), where π′ : Y ′ → X ′ is the base change of a
morphism π along j, and j′ : Y ′ → Y is the base change of j along π and l′ = k[X ′]⊗k[X] l.

(3) Let i : S′ ↪→ S be a smooth embedding of k-smooth affine schemes, and let
j : X ′ → X be a morphism of k-smooth affine schemes. As above,

(π, l, f) ◦ j = (π′, l′, f ◦ j′) ∈ WCor(X ′, S).

Suppose that (f ◦ j′)(Y ′) is contained in S′, and let f ′ : Y ′ → S′ be a unique morphism
of schemes such that i ◦ f ′ = f ◦ j′ : Y ′ → S. Then a morphism (π′, l′, f ′) : X ′ → S′ in
WCor(X ′, S′) arises, and

(π, l, f) ◦ j = i ◦ (π′, l′, f ′) ∈ WCor(X ′, S).

Definition 2 (Presheaves and sheaves with Witt-transfers). A presheaf with Witt-
transfers is a presheaf F : WCork → Ab such that

F
(
X1

∐
X2

)
= F (X1)⊕ F (X2)

for any X1 and X2. A sheaf with Witt-transfers is a presheaf with Witt-transfers that is
a sheaf as a functor on SmAffk. A homotopy invariant presheaf with Witt-transfers is a
presheaf with Witt-transfers that is homotopy invariant as a presheaf on SmAffk.

Now we define a certain subcategory in the category of arrows. It will be used in the
proofs for excision isomorphisms.

Definition 3 (The category WCor·↪→·). The objects of the category WCor·↪→·
k are pairs

(X1, X2), where X1 is a smooth variety and X2 is an open subscheme. A morphism
Φ ∈ WCor· ↪→·

k ((X1, X2), (Y1, Y2)) is a pair of morphisms Φi ∈ WCor(Xi, Yi), i = 1, 2,
such that Φ1 ◦ iX = iY ◦ Φ2, where iX : X2 ↪→ X1, iY : Y2 ↪→ Y1 are inclusions.
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Example 2. Let (π, l, f) : X → S be the morphism in WCor(X,S) occurring in item
(1) of Example 1. Let i : S′ ↪→ S be a morphism of k-smooth affine schemes, and let
j : X ′ → X be a morphism of k-smooth affine schemes as in item (3) of Example 1. Let
(π′, l′, f ′) : X ′ → S′ be the morphism in WCor(X ′, S′) occurring in item (3) of Example 1.
Suppose j is an open embedding. Then the pair of morphisms

Φ = (π, l, f) : X → S and Φ′ = (π′, l′, f ′) : X ′ → S′

is a morphism

(Φ,Φ′) : (X,X ′) → (S, S′)

in the category WCor·↪→·.

Definition 4 (The category of pairs WCorpair). The additive category WCorpairk is the
factorcategory of the additive category WCor·↪→·

k relative to the ideal generated by the
identity morphism of objects (X,X) for all varieties X.

Remark 1. More explicitly, the Hom-groups in WCorpairk are defined as

WCorpairk ((X1, X2), (Y1, Y2))

def
= H(WCork(X1, Y2)

iY ◦−,−◦iX−−−−−−−→ WCork(X1, Y1)⊕WCork(X2, Y2)

−◦iX ,iY ◦−−−−−−−−→ WCork(X2, Y1)),

where H denotes the homology group in the middle term of the complex of length 3.
Thus, any morphism Φ: (X1, X2) → (Y1, Y2) in the category of pairs is determined by

a pair Φi ∈ WCor(Xi, Yi), i = 1, 2, such that the left diagram below is commutative.
A pair (Φ1,Φ2) gives rise to the zero morphism whenever there is a morphism Ω ∈

WCork(X1, Y2) such that the right diagram is commutative.

X2
� � iX ��

Φ2

��

X1

Φ1,

��
Y2

� � iY �� Y1

X2
� � iX ��

Φ2

��

X1

Φ2.

��
Ω
��
�

����
�

Y2
� � iY �� Y1

Remark 2. To define a morphism

Φ: (X1, X2) → (Y1, Y2) ∈ WCorpairk ((X1, X2), (Y1, Y2))

it suffices to construct a quadratic space

(P1, qP1
), qP1

: P1 � Homk[X1](P1, k[X1]),

such that the homomorphism

α : P1 ⊗k[X1] k[X2] → k[Y2]⊗k[Y1] P1 ⊗k[X1] k[X2] =: P2

of the form p⊗ f �→ 1⊗ p⊗ f is an isomorphism.
The module P2 has a canonical structure of a module over k[Y2] ⊗ k[X2], which is

finitely generated and projective as a k[X2]-module. Let β = α−1. The symmetric
k[Y1 ×X2]-linear isomorphism

qP1
⊗k[X1] k[X2] : P1 ⊗k[X1] k[X2] → Homk[X2](P1 ⊗k[X1] k[X2], k[X2])

determines a symmetric k[Y2 ×X2]-linear isomorphism

qP2
= β∨ ◦ (qP1

⊗k[X1] k[X2]) ◦ β : P2 → Homk[X2](P2, k[X2]).

Then Φ1 ◦ iX = iY ◦ Φ2, where

Φ1 = (P1, qP1
) : X1 → Y1, Φ2 = (P2, qP2

) : X2 → Y2.
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Therefore, the pair (Φ1,Φ2) is a morphism of pairs (X1, X2) → (Y1, Y2). We define

Φ(P1,qP1
) = (Φ1,Φ2) : (X1, X2) → (Y1, Y2) ∈ WCorpair((X1, X2), (Y1, Y2)).

Observe that not every morphism of the category of pairs WCorpair can be defined in
this way. However, we shall consider and employ only such morphisms.

Remark 3. For a presheaf with Witt-transfers F , we introduce a presheaf F pair on the
category WCorpair such that

F pair(X1, X2) =
F (X2)

i∗X(F (X1))
.

If
(Φ1,Φ2) : (X1, X2) → (Y1, Y2),

then
(Φ1,Φ2)

∗ : F pair(Y1, Y2) → F pair(X1, X2)

is defined as a unique homomorphism induced by the homomorphism

Φ∗
1 : F (Y1) → F (X1).

Now we are going to discuss homotopy invariant presheaves and define the category
WCork.

Definition 5 (The category WCork). The objects of the category WCork are the same
as in WCork, and the morphisms are defined by the rule

WCork(X,Y ) = coker(WCork(A
1 ×X,Y )

(−◦i0)−(−◦i1)−−−−−−−−−→ WCork(X,Y )),

where i0, i1 : X ↪→ A
1×X denote the zero and unit section of the projection A

1×X → X.

Define the category WCorpairk . Its objects are the same as the objects of WCorpairk ,
and the morphisms are defined by the rule

WCorpairk ((X1, X2), (Y1, Y2))

= coker[WCorpairk ((A1 ×X1,A
1 ×X2), (Y1, Y2)))

(−◦i0)−(−◦i1)−−−−−−−−−→ WCorpairk ((X1, X2), (Y1, Y2)]).

Remark 4 (About homotopy invariance). The homotopy invariant presheaves with Witt-
transfers are precisely those on the category WCork (i.e., the presheaves on WCork that
can be passed through the functor WCork → WCork). If a presheaf F with Witt-

transfers is homotopy invariant, then the presheaf F pair on the category WCorpair can

be passed through the category WCorpair.

§3. Injectivity on the affine line

Theorem 1. Suppose F is a homotopy invariant presheaf with Witt-transfers and U ⊂
V ⊂ A

1
K is a pair of Zariski open subschemes of the affine line over a filed K that is

the field of rational functions of a smooth variety S. Let i : U → V denote the injection.
Then the homomorphism

i∗ : F (V ) → F (U)

is an injection.

Lemma 1. Suppose U ⊂ V ⊂ A
1
K is an injection in a subscheme A

1
K , and i denotes

the injection of U into V ; then there is a morphism Φ ∈ WCor(V, U) such that

[i ◦ Φ] = [idV ]

in WCor(V, V ).
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Proof of the theorem. Let a ∈ F (V ) be a section such that i∗(a) = 0. By item 2 of
Remark 4, the presheaf F viewed as a functor form WCor to Ab can be passed through
WCor. Since [i ◦ Φ] = [idV ], we have a = Φ∗(i∗(a) = 0. Thus, the injectivity of i∗ will
be proved if we prove Lemma 1.

Proof of Lemma 1. To simplify the notation, we assume that K = k. (Actually, we can
use base change along the extension of the base filed K/k and the fact that a presheaf
defined on smooth schemes over k can be defined naturally on schemes over K, because
it is the residue filed of a generic point of a smooth scheme.) If suffices to construct
Witt-correspondences

Φ ∈ WCor(V, U) and H ∈ WCor(V × A
1
k, V )

such that H0 = i ◦ Φ and H1 = idV .
Let T = A

1 \ V , D = V \ U . We view V × U as a subset in V × A
1. Let X be a

coordinate on A
1 and Y a coordinate on V .

For some sufficiently large odd integer n there is a polynomial of degree n whose leading
coefficient in X is 1 and such that

f ∈ k[V × A
1] = k[V ][X] : degX(f) = n, f

∣∣
V×T

= (X − Y )n|V×T , f |V ×D = 1.

Let t be a coordinate on the left factor A
1 in the product A

1 × V × A
1. Consider the

polynomial
h = f · (1− t) + (X − Y )n · t ∈ k[A1 × V × A

1].

Then h
∣∣
A1×V×T

= (X − Y )n is invertible. Consider the map

A
1 × V × A

1 ← A
1 × V × A

1 : (prA1×V , h) = Π.

Denote by (A1 × V ×A
1)l the left copy of A1 × V ×A

1 and by (A1 × V ×A
1)r the right

one A
1 × V × A

1. Put A = k[(A1 × V × A
1)l], B = k[(A1 × V × A

1)r]. Let Π
∗ : A → B

be the homomorphism of k-algebras induced by Π. Since h has the leading coefficient 1
with respect to X, it follows that B is a free A-module of rank n. By Proposition 2.1 in
[10], we have isomorphism of B-modules

ωB/k ⊗A ω−1
A/k � HomA(B,A) = .

The B-module ωB/k and the A-module ωA/k are free and have rank one. Choosing
some trivializations of these modules, we get an isomorphism of B-modules Q : B →
HomA(B,A). Consider the morphism of A-modules L = Q(1) : B → A. It is easy to
check that, in the notation of item (1) of Example 1, we have Q = qL. Now the triple
(Π, L, pr3) is a morphism (A1×V ×A

1)l → A
1 in WCor(k). Denote by Yt ⊂ (A1×V ×A

1)r
the scheme preimage of the scheme A

1 × V × 0 along Π. Since h
∣∣
A1×V×T

= (X − Y )n

is invertible, it follows that Yt ⊂ A
1 × V × V and pr3(Yt) ⊂ V . Hence, by items (2) and

(3) of Example 1 there is a morphism

rHt = (πt, lt, gt) : A
1 × V = A

1 × V × 0 → V

in WCor(k), where πt : Yt → A
1×V ×0 is the restriction of Π to Yt, lt = k[A1×V ×0]⊗AL,

prV3 : A1 × V × V → V is the projection to the first factor, and gt = prV3 |Yt
: Yt → V .

Consider the morphism rH0 = rH ◦ j0 : 0× V → V , where j0 : 0× V → A
1 × V is a

closed embedding. Since f |V×D = 1, the scheme preimage Y0 := π−1(0 × V ) is con-

tained in 0 × V × U . By item (3) of Example 1, we have rH ′
0 = i ◦ (π0, l0, g

′
0), where

g′0 : Y0 → U is a unique morphism of schemes such that i ◦ g′0 = g0 : Y0 → V , and where
π0 : Y0 → 0× V is the restriction of πt to Y0 and l0 = k[0× V ]⊗k[A1×V ] lt.

Consider the morphism rH1 = rH ◦ j1 : 1 × V → V , where j1 : 1 × V → A
1 × V is a

closed embedding. By item (3) of Example 1, we have rH1 = (π1, l1, g1), where g1 =
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gt ◦ in1 : Y1 → V , Y1 = π−1(1× V ), in1 : Y1 ↪→ Yt, π1 : Y1 → 1× V is the restriction of πt

to Y1, and l1 = k[1×V ]⊗k[A1×V ] lt. Observe the isomorphism k[Y1] = k[V ×V ]/(X−Y )n

of k[V × V ]-modules.

Sublemma 1. For some λ ∈ K[V ]× we have

rH1 = λ · idV
in WCor(V, V ).

Proof. As was mentioned above, the morphism rH1 is the triple (π1, l1, g1), i.e., it is equal
to the class of the quadratic space (k[Y1], ql1) in WCor(V, V ), where

q11 : k[Y1] → Homk[V ](k[Y1], k[V ])

is the k[V × V ]-linear isomorphism defined by the rule b �→ ψb, where ψb(b
′) = l1(bb

′).
Let n = 2m+ 1. Consider the ideal

J = ((X − Y )m+1) ⊂ K[Y1].

It is clear that J is a sublagrangian subspace in (k[Y1], q). Hence, by Theorem 32 in
[3], the class of (k[Y1], q) in WCor(V, V ) is equal to the class (J⊥/J, qnew) for some
k[V × V ]-linear isomorphism

qnew : J⊥/J → Homk[V ](J
⊥/J, k[V ]).

Since J⊥ coincides with the ideal

I = ((X − Y )m) ⊂ K[Y1],

it follows that J⊥/J is a free module of rank 1 over K[V ]. Since qnew is a k[V ×V ]-linear
isomorphism, qnew is simply the homomorphism of multiplication by an element λ ∈
K[V ]×. �

Now we put

Ht = λ−1 · rHt : A
1 × V → V and Φ = (π0, λ

−1 · l0, g′0) : V → U.

Then in WCor(V, V ) we have H0 = Ht ◦ 〈j0〉 = i ◦ Φ, and H1 = Ht ◦ 〈j1〉 = idV , as
required. �

�

§4. Excision on the affine line

In this section we prove the Zariski excision of A1
K over the filed of functions K =

k(X) of a smooth variety X.

Theorem 2. Suppose F is a homotopy invariant presheaf with Witt-transfers, and let
z ∈ U ⊂ V ⊂ A

1
K be a closed point and a pair of Zariski open subschemes of the affine

line over the filed K that is the filed of rational functions of a smooth variety S. Then
the restriction homomorphism

i∗ :
F (V − z)

F (V )
→ F (U − z)

F (U)
,

where i : U → V denotes injection, is an isomorphism.

Remark 5. The notation of the factor groups in the theorem is consistent due to injec-
tivity on local schemes.
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Proof. Let i : U → V , i′ : U − Z → V − Z be embeddings as in Theorem 2. In terms of
the presheaf F pair on WCorpairk , the claim of the theorem means that

(i, i′)∗ : F pair(V − z, V ) → F pair(U − z, U)

is an isomorphism. Hence, it suffices to prove the following lemma.

Lemma 2. Let 〈i〉 be the class of a pair (i, i′) in WCorpairk ((U,U − z), (V, V − z)). Let

[i] be the class of 〈i〉 in WCorpairk ((U,U − z), (V, V − z)). Then [i] is an isomorphism in

WCork.

Proof of Lemma 2. To simplify the notation, we assume that K = k. First, we construct
morphisms

Φ ∈ WCorpairk ((V, V − z), (U,U − z)),

Θ ∈ WCorpairk ((V × A
1, (V − z)× A

1), (V, V − z))

such that
Θ ◦ 〈j0〉 = 〈i〉 ◦ Φ, Θ ◦ 〈j1〉 = 〈id(V,V −z)〉,

where the js : (V, V − z) ↪→ (V, V − z)×A
1, s = 0, 1, are the embeddings determined by

the points 0 and 1 on A
1. This will imply that

[i ◦ Φ] = [id(V,V −z)] ∈ Work((V, V − z), (V, V − z)),

or, in other words, that [i] is left invertible in Work, proving the first part of the lemma.
Let T = A

1 \ V , D = V \ U . We view V × U as a subset in V × A
1. Let X be a

coordinate on A
1 and Y a coordinate on V . For some sufficiently large odd integer n,

there is a polynomial of degree n whose leading coefficient in X is equal to 1 and such
that

f ∈ K[V × A
1] = K[V ][X] :

f
∣∣
V×T

= (X − Y )n|V×T , f |V×D = 1, f |V×z = (X − Y )n|V×z.

Let t be a coordinate on the left factor A
1 in the product A

1 × V × A
1. Consider the

polinomial
h = f · (1− t) + (X − Y )n · t ∈ K[A1 × V × A

1].

Now, let

rHt = (πt, lt, gt) : A
1 × V = A

1 × V × 0 → V,

rH0 = rH ◦ j0 : 0× V → V

be the morphisms in the category WCork occurring in the proof of Theorem 1, and

let rH0 = i ◦ (π0, l0, g
′
0), where g′0 : Y0 → U is a unique morphism of schemes such that

i ◦ g′0 = g0 : Y0 → V , and where π0 : Y0 → 0 × V is the restriction of πt on Y0, and
l0 = k[0× V ]⊗k[A1×V ] lt.

Let V ′ = V − z. The function

h|A1×(V−Z)×Z = (X − Y )n|A1×V ′×z

is invertible. Therefore, Example 2 shows that the morphism rHt = (πt, lt, gt) gives rise
to a morphism

rH ′
t = (π′

t, l
′
t, g

′
t) : A

1 × V ′ → V ′

such that the pair ( rHt, rH ′
t) is a morphism in the category

WCorpairk ( rHt, rH ′
t) : (A

1 × V,A1 × V ′) → (V, V ′).

Put ( rH0, rH ′
0) := ( rHt, rH ′

t) ◦ 〈j0〉 : (0× V, 0× V ′) → (V, V ′).
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Let U ′ = U − z and h0 = h|t=0. Observe that

h0|(V−Z)×(Z�D)

is invertible. Hence, Example 2 shows that the morphism

rH0.V,U := (π0, l0, g
′
0) : V → U

determines some morphism

rH0.V ′,U ′ := (π′
0, l

′
0, (g

′
0)

′) : V ′ → U ′

such that the pair ( rH0.V,U , rH0.V ′,U ′) is a morphism in the category

WCorpair((0× V, 0× V ′), (U,U ′)).

In the proof of Theorem 1 it was checked that i◦ rH0.V,U = rH0 in WCor k(V, V ). Similarly,

i′ ◦ rH0.V ′,U ′ = rH ′
0 in WCor k(V ′, V ′), where i′ : U ′ ↪→ V ′ is the natural embedding.

Therefore,

〈i〉 ◦ ( rH0.V,U , rH0.V ′,U ′) = (i, i′) ◦ ( rH0.V,U , rH0.V ′,U ′)

= ( rH0, rH ′
0) = ( rHt, rH ′

t) ◦ 〈j0〉 ∈ WCorpairk ((V, V ′), (V, V ′)).

Put rΦ := ( rH0.V,U , rH0.V ′,U ′) and rΘ := ( rHt, rH ′
t). Then

〈i〉 ◦ rΦ = rΘ ◦ 〈j0〉 ∈ WCorpairk ((V, V ′), (V, V ′)).

Consider the morphism

( rH1, rH ′
1) = rΘ ◦ 〈j1〉 : 1× (V, V ′) → (V, V ′).

In the proof of Theorem 1 it was shown that the morphism rH ′
1 is equal to the class of

the quadratic space (k[Y1], ql1) in the Witt group, where

Y1 = Spec k[1× V × V ]/(X − Y )n.

In the proof of Lemma 1 it was shown that the class of the quadratic space (k[Y1], ql1) is
equal to the class of the space (k[Δ], λ), where Δ is the diagonal in 1×V ×V and λ is an

invertible function on V . Thus, rH1 = λ · 〈idV 〉. Also, this implies that the morphism rH ′
1

determined by the space (k[Y ′
1 , q

′
l1
) is equal to λ · 〈idV ′〉. Hence, rΘ ◦ 〈j1〉 = λ · 〈id(V,V ′)〉.

Consequently, putting

Θ = λ−1 · rΘ,Φ = λ−1 · rΦ,

we get Θ ◦ 〈j0〉 = Φ, Θ ◦ 〈j1〉 = id(V,V ′). This completes the proof of the first part of the
lemma.

Now we construct the right inverse to the morphism [i] in WCorpairk . For this, we
construct morphisms

Ψ ∈ WCorpair((V, V ′), (U,U ′)), Ξ ∈ WCorpair(A1 × (U,U ′), (U,U ′))

such that

Ξ ◦ 〈j0〉 = Ψ ◦ 〈i〉, Ξ ◦ 〈j1〉 = 〈id( V, V − z)〉.
This will imply that [Ψ ◦ i] = [idV ] ∈ Work((V, V

′), (V, V ′)). This will be the second part
of the proof of the lemma.

We view V × U and A
1 × U × U as subsets in V × A

1 and A
1 × U × A

1. Let X
be a coordinate on the first factor A

1, Y a coordinate on the factors V and U , and t a
coordinate on the left factor A

1. Let Δ denote the graph of the embedding U ↪→ A
1,

i.e., Δ = Spec K[A1 × U ]
/
(X − Y ). For some sufficiently large n, using interpolation
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theorem, we can find f ∈ K[V × A
1] and g ∈ K[U × A

1] with degrees n and n− 1 in X
(respectively) and with leading term 1 such that

f
∣∣
V×(D	T )

= 1, f
∣∣
V×z

= X − Y,

g
∣∣
U×(D	T )

= ((X − Y )
∣∣
(D	T )×U

)
−1

, g
∣∣
U×z

= 1, g
∣∣
Δ
= 1.

These conditions can be satisfied because (D � T ) ∩ U = ∅ and X − Y is invertible on
(D � T )× U .

Consider the polynomial

f = f · (1− t) + g · (X − Y ) · t ∈ K[X][U ][t] = K[A1 × U × A
1].

To f and h, we apply simultaneously the construction that was applied to h in the first
part of the proof of the lemma. Specifically, we consider regular maps

V × A
1 ← V × A

1 : (prV , f) = Πf ,A1 × U × A
1 ← A

1 × U × A
1 : (prA1×U , h) = Πh,

and let Πf
∗ : Af → Bf and Πh

∗ : Ah → Bh be homomorphisms of k-algebras induced
by the morphisms Πf and Πh. Denote Cf = k[V ] and Ch = k[A1 × U ]. Then Bf =
Cf [X], Af = Cf [T ], Bh = Ch[X], Ah = Ch[T ], and since Πf and Πh are morphisms
of the relative affine lines over V and A

1 × U (respectively), we see that Π∗
f and Π∗

h

are homomorphisms of Cf and Ch-algebras. Since the leading coefficients of f and h in
X are 1, it follows that Bf and Bh are free modules of rank n over Af and Ah, and
Proposition 2.1 in [10] shows that there are isomorphisms

ĂQf : ωBf/Cf
⊗Af

ω−1
Af/Cf

� HomAf
(Bf , Af ),

ĂQh : ωBh/Ch
⊗Ah

ω−1
Ah/Ch

� HomAh
(Bh, Ah) :

k[0× U × A
1]⊗Ah

ĂQh = k[U ]⊗k[V ]
ĂQf

that agree upon base changes along i and j0, because

h
∣∣
0×U×A1 = f

∣∣
U×A1 .

Now, consider the affine lines determined by the coordinates

ωBf/Cf
= (dX) ·Bf , ωAf/Cf

= (dT ) ·Af ,

ωBh/Ch
= (dX) ·Bh, ωAh/Ch

= (dT ) ·Ah;

using trivializations of the canonical classes of these lines, we get homomorphisms

Qf : Bf � HomAf
(Bf , Af ), Qh : Bh � HomAh

(Bh, Ah) :

k[0× U × A
1]⊗Ah

Qh = k[U ]⊗k[V ] Qf ,

which agree upon base changes. Item (1) of Example 1 yields morphisms

(Πf , Lf , pr2) : V × A
1 → A

1(Πh, Lh, pr3) : A
1 × U × A

1 → A
1 :

(Πh, Lh, pr3) ◦ 〈j0 × A
1〉 = (Πf , Lf , pr2) ◦ 〈i× A

1〉,
where pr2 : V × A

1 → A
1 and pr3 : A

1 × U × A
1 → A

1 are the projections to the first
factors A1, and Lf = Qf (1), Lh = Qh(1).

Put Y = Π−1
f (V × 0) and Yt = Π−1

h (A1 ×U × 0) (these are scheme preimages). Then,

since f
∣∣
V×(T	D)

= 1 and h
∣∣
A1×U×(T	D)

= 1, we have

Y ⊂ V × U, Yt =⊂ A
1 × U × U,

and in accordance with items (2) and (3) of Example 1 we get morphisms

rP = (π, l, g) : V → U, rHt = (πt, lt, gt) : A
1 × U = A

1 × U × 0 → U : rHt ◦ j0 = rP ,
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in WCork, where π : Y → V × 0 is the restriction of Π to the scheme Y ,

lt = k[V × 0]⊗A Qf (1) : k[Y ] → k[V ],

prU2 : V ×U → U is the first projection, g = prU2 |Y : Y → U , and πt : Yt → A
1 ×U × 0 is

the restriction of Π to the scheme Yt,

lt = k[A1 × U × 0]⊗A Qh(1) : k[Yt] → k[A1 × U ],

prU3 : A1 × U × U → U is the projection to the first factor, and gt = prU3 |Yt
: Yt → U .

Since f
∣∣
V ′×z

and h
∣∣
A1×U ′×z

are invertible, Example 2 shows that the polynomials rP

and rH can be completed to the pairs

rΨ = ( rP, rP ′) ∈ WCorpair((V, V ′), (U,U ′)),

rΞ = ( rHt, rH ′
t) = (πt, lt, gt) ∈ WCorpair(A1 × (U,U ′), (U,U ′)) : rΞ ◦ 〈j0〉 = rΨ ◦ 〈i〉.

(1)

Consider the morphism Ξ ◦ j1 = ( rH1, rH ′
1). By the definition of rHt, we see that

rH1 = (π1, l1, g1), where

π1 : Y1 → U,

Y1 = Π−1
t (1× U × 0) = Spec k[U × A

1]/(g · (X − Y )),

l1 = k[1× U ]⊗k[A1×U ],

g1 : Y1 → U.

Since g
∣∣
Δ

= 1, we have Y1 = Δ � R, where R = Spec k[U × A
1]/(g). Hence, rH1

splits in the sum of morphisms determined by the restrictions of the morphisms π1, l1,
and g1 to the components Δ and R. Since g

∣∣
U×z

= 1 and R ⊂ U × U ′, it follows

that rH1 = λ · idU + rG, where rG ∈ WCor(U,U ′). Therefore, rH ′
1 = λ · idU ′ + rG′, where

rG′ ∈ WCor(U ′, U ′). Thus,

(2) ( rH1, rH ′
1) = λ · id(U,U ′) .

To finish the proof, we put

Ψ = 〈λ−1〉 ◦ rΨ, Ξ = 〈λ−1〉 ◦ rΞ,

where 〈λ−1〉 = 〈(k[Δ], λ−1)〉 ∈ WCor(U,U). (Note that the above compositions with the
morphism 〈λ−1〉 ∈ WCor((U,U − z), (U,U − z)) lead to multiplication of the quadratic
spaces by λ viewed as a function on the second factors in A

1 ×V ×U and U ×U .) Then
(1) and (2) show that Ψ ◦ 〈i〉 = Ξ ◦ 〈j0〉, Ξ ◦ 〈j1〉 = id(U,U ′). �

�

§5. Étale excision in dimension 1

In this section we prove étale excision for smooth curves over the filed of functions of
some smooth variety K = k(X).

Theorem 3. Suppose F is a homotopy invariant presheaf with Witt-transfers and
π : X ′ → X is an étale morphism of smooth varieties of dimension one over a field K that
is the field of rational functions of a smooth variety over k. Suppose z ∈ X and z′ ∈ X ′

are closed points such that π induces an isomorphism π : z′ � z, and U = Spec(OX,z),
U ′ = Spec(OX′,z′) are local schemes at the points z and z′. Then the homomorphism of
inverse image along π induces an isomorphism

π∗ :
F (U − z)

F (U)

∼→ F (U ′ − z′)

F (U ′)
.
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Remark 6. The notation of the factor groups in the theorem is consistent due to the
injectivity on the local schemes.

Proof. Like in the preceding section, it suffices to prove the corresponding property in the
category WCorpair. In this case we formulate this property as the existence of certain
morphisms that are week versions of the left and right morphisms to the morphism
π : WCorpair((U ′, U ′ − z′), (U,U − z)).

Lemma 3. Let

〈i〉 ∈ WCorpairK ((U,U − z), (X,X − z)),

〈i′〉 ∈ WCorpairK ((U ′, U ′ − z′), (X ′, X ′ − z′)),

and
〈π〉 ∈ WCorpairK ((X ′, X ′ − z′), (X,X − z))

be the classes determined by the morphisms i : U ↪→ X, i′ : U ′ ↪→ X ′, and π. Suppose

that [i]〉 ∈ WCorpairK ((U,U−z), (X,X−z)), [i′]〉 ∈ WCorpairK ((U ′, U ′−z′), (X ′, X ′−z′)),

and [π] ∈ WCorpairK ((X ′, X ′ − z′), (X,X − z)). Then

a) there exists Φ ∈ WCorpairK ((U,U − z), (X ′, X ′ − z′)) such that [π ◦ Φ] = [i] in the

category WCorpairK ((U,U − z), (X,X − z));

b) there exists Ψ ∈ WCorpairK ((U,U − z), (X ′, X ′ − z′)) such that [Ψ ◦ π] = [i′] in the

category WCorpairK ((U ′, U ′ − z′), (X ′, X ′ − z′)).

Proof of the theorem. We show that item a) in Lemma 3 implies the injectivity of π∗. Let
a ∈ F ′(U − z, U), and let π∗(a) = 0. Since F ′(U − z, U) = lim−→z′∈V ′⊂X′ F ′(V − z, V ),

shrinking X and X ′ shows that a = j∗(aX), aX ∈ F ′(X − z,X), where j : U → X, and
moreover, the canonical classes of X and X ′ are trivial. Then by Lemma 3a) applied to
the new X and X ′, we have j∗(aX) = Φ∗(π∗(aX)) = 0. Consequently, the kernel of π∗ is
equal to 0.

Now we show that item b) in Lemma 3 implies the surjectivity of π∗. Suppose that
a∈F ′(U ′ − z, U ′). ShrinkingX andX ′, we see that a= i′∗(a′X) with a′X ∈F ′(X ′−z,X ′).
Then, by Lemma 3b) applied to X and X ′, we have i′∗(a′X) = π∗(Φ∗(a′X)). Thus, π∗ is
surjective.

Proof of Lemma 3a). To simplify the notation, we assume that K = k. By the definition

of the category WCorpair, to prove item a) it suffices to construct morphisms

Φ ∈ WCorpairk ((U,U − z), (X ′, X ′ − z′)),

Θ ∈ WCorpairk ((U × A
1, (U − z)× A

1), (X,X − z))

such that
Θ ◦ 〈j0〉 = 〈π〉 ◦ Φ, Θ ◦ 〈j1〉 = 〈i〉,

where j0, j1 ∈ WCorpair((U,U−z), (U×A
1, (U−z)×A

1)) are the unit and zero sections,

and π and i are viewed as morphisms in WCorpairk , actually,

π ∈ WCorpair((X ′, X ′ − z′), (X,X − z)) and i ∈ WCorpair((U,U − z), (X,X − z)).

In the proof of the injectivity of the excision homomorphism on the affine line, we
constructed Witt-correspondences by using regular functions on A

1
k; now we construct

the required Witt-correspondences by using sections of linear bundles on relative curves
sXU = sX × U and X ′

U = X ′ × U , where sX and X ′ are smooth projective curves with
open dense immersions j : X ↪→ sX, j′ : X ′ ↪→ X ′.

We introduce the following notations-definitions.
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Definition 6 (The symbols I(s), Z(s), and S(D)). Let s ∈ Γ(X,L ) be a regular section
of the invertible sheaf on X. We denote by I ⊂ O(X) the ideal determined by s (I is

equal to the image of the homomorphism L −1 s
↪→ O(X) = (O(X)

s
↪→ L ) ⊗ L −1). Let

Z(s) = Z(I) ⊂ X be the closed subscheme determined by the ideal I.
Finally, for any divisor D in X, we denote by S(D) the closed subscheme in X deter-

mined by the sheaf of ideals in I ⊂ O(X), I(U) = {f ∈ bO(U) : div f ≥ D}.
Let sπ : X ′ → sX be a morphism of smooth projective curves such that sπ ◦ j′ = j ◦ π,

where j : X ↪→ sX, j′ : X ′ ↪→ X ′ are the open immersions defined above. Since j′ is
dense, sπ is quasifinite. Then π is finite, because it is projective, and it is quasi-finite
because j′ is dense. Let r be a rational function on sX such that r(z) = 0, r

∣∣
ĎX\X = 1,

and r
∣∣

ĎX′\X′ = 1 (it can be defined as a regular function on an affine neighborhood of

z∪ ( sX \X)∪sπ( sX ′ \X ′)). A nonconstant rational function gives rise to a finite morphism
to the projective line and an ample invertible sheaf that is the inverse image of O(1).
Denote D = r−1(1), D′ = r ◦ π. Then, by definition, O(D) and O(D′) are ample, and
sX − D ⊂ X, sX ′ − D′ ⊂ X ′. Since the claim of the lemma for the curves sX − D and
sX ′ −D′ implies the same claim for X and X ′, and since ω( sX −D) and ω( sX ′ −D′) are
trivial, without loss of generality we may assume that sX−D = X and sX ′−D′ = X ′. Let
μ : ω(X) � O(X) denote any trivialization of the canonical class of X, and let Δ ⊂ X×U
be the graph of the embedding i : U ↪→ X.

Put deg sπ = l. Let d ∈ Γ( sX,L (lD)) be such that div d = lD, and denote by the
same symbol the inverse images in Γ( sX × U ×A

1,L (nlD× U ×A
1) that trivializes the

linear bundle on X × U × A
1.

Sublemma 2. For some sufficiently large n, there are sections

s′ ∈ Γ(X ′ × U),L (nD′ × U)), s0 ∈ Γ( sX × U,L (nlD × U)),

s1 ∈ Γ( sX × U,L (nlD × U)), s ∈ Γ( sX × U × A
1,L (nlD × U × A

1)) :

Z(s′) ∩ (U × sπ−1(z′)) = z′, Z(s′) ∩ (D′ × U) = ∅,

Z(s0) ∩ (U × z) = z , Z(s0) ∩ (D × U) = ∅,

Z(s1) ∩ (U × z) = z , Z(s1) ∩ (D × U) = ∅,

Z(s) ∩ (A1 × U × z) = A
1 × z , Z(s) ∩ (D × U × A

1) = ∅,

(3)

s
∣∣

ĎX×U×0
= s0, s

∣∣
ĎX×U×1

= s1, s1
∣∣
(z∪D)×U

= s0
∣∣
(z∪D)×U

,

πU : Z(s′) � Z(s), s1
∣∣
Δ
= 0,

(4)

where z denotes the diagonal in z × z, z′ is the graph of the map π : z′ → z, which in
fact is isomorphic to the diagonal, because π gives an isomorphism of z and z′.

Before we describe the construction of the sections in the sublemma above, we show
how to construct the morphisms Φ and Θ using this sections.

We construct the required quadratic spaces with the help of the same construction as
in Lemmas 1 and 2 applied now to the regular function h = s

dn ∈ k[X × U ].
Consider the regular map

Π = (prA1×U , h) = (prA1×U ,
s

dn
) : A1 × U ×X → A

1 × U × A
1

and denote by BA the algebra corresponding to the map Π, so that B = K[A1], A =
K[A1 × U × A

1]. We denote by μA1×U : ωA1×U (A
1 × U × X) � O(A1 × U × X) the

inverse image of μ along the projection A
1×U ×X → X, and by dT the trivialization of

the canonical class ωA1×U (A
1 × U × A

1) determined by the coordinate T on the second
factor A1.
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To continue our construction and apply Proposition 2.1 from [10] to the map Π, we
need to show that B is finitely generated and projective over A. Note that Π is obtained
by the base change from the projective morphism

sΠ = (idU×A1 , [s : dl]) : A1 × U × sX → A
1 × U × P

1,

along the map A
1 × U × A

1 → A
1 × U × P

1. The morphism sΠ is a morphism from
the relative projective curve A

1 × U × sX to the relative projective line A
1 × U × P

1

determined by a pair of noncollinear sections of a line bundle, because s is invertible on
DA1×U . Hence, by the following sublemma, the morphism sΠ is finite, surjective, and
flat. Therefore, Π is also finite, surjective, and flat. Thus, since any finitely generated
flat module is projective, B is a projective K[A1 × U × A

1]-module.

Sublemma 3. Let a morphism F : XT → P
1
T of a relative projective curve XT to the

relative projective line P
1
T over an essential smooth scheme T be determined by linearly

independent sections s, d of some linear bundle XT . Then the morphism F is finite,
surjective, and flat.

Proof. The preimage F−1(t) ⊂ XT of a point t ∈ P
1
T is isomorphic to Z(s·t1−d·t2) ⊂ sXt,

where t1, t2 are noncollinear sections of O(1) on P
1
T . Since s is not collinear to d, it follows

that s · t1 − d · t2 �≡ 0, and so Z(s · t1 − d · t2) is a nonempty proper closed subset of Xt.
Hence, dimF−1(t) = 0 for any point t. Thus, F is surjective and quasifinite.

Now, since a quasifinite projective morphism is finite, we see that F is finite. Now
observe that XT and P

1
T are essentially smooth and dimXT = dimP

1
T . Hence, F is flat

(see [1, Corollary V.3.9. and Theorem II.4.7]). �

Now we apply [10, Proposition 2.1] to the morphism Π, obtaining an isomorphism
qω : ωΠ � HomA(B,A). Using trivializations of the canonical classes of X and A

1, we
define a B-linear isomorphism

qB = (Π∗(dT )−1 ⊗ μ) ◦ qω : B � HomA(B,A).

By item (1) of Example 1, qB gives rise to a morphism

Υ = (Π, lB, prX) ∈ WCor(A1 × U × A
1, X),

where lB = qB(1) : HomA(B,A).
Denote

Yt = Z(s) ⊂ A
1 × U × sX, Y1 = Z(s1) ⊂ U × sX,

Y0 = Z(s0 ⊂ U × sX, Ylift = Z(s′) ⊂ U ×X ′.

Now (3) implies that Yt , Y0, and Ylift are closed subsets in A
1 × U ×X, U ×X, and

U ′ ×X, and relations (4) yield the commutative diagram

Y1

(1)

� � ��
� �

γ1

��

Yt

(3)

� �

γt

��

Y0

(5)

� �

γ0

��

� ��� Ylift� �

γlift

��
XU

(2)

� � idX ×j1��

prU

��

XA1×U

(4)pr
A1×U

��

XU
� �

idX ×j0��

prU

��

X ′
U

πU��

prU

��
U � � j1 �� A1 × U U��

j0�� U,

where γt, γ0, γ1, and γlift are the corresponding closed embeddings. The morphism
πU : U × X ′ → U × X induces isomorphism of Ylift and Y0; we denote this morphism
by πY and the inverse morphism by lift : Y0 → Ylift. Let p∗ (∗ = t, 0, 1, lift) denote the
projections of Y∗ to A

1 ×U (∗ = t) or U (∗ = 0, 1, lift), and let q∗ (∗ = t, 0, 1, lift) be the
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projections to X (∗ = t, 0, 1) or X ′ (∗ = lift), respectively. Finally, we denote by Y ′
t , Y

′
0 ,

Y ′
1 , and Y ′

lift the fibered products of Yt, Y0, Y1, and Ylift with the scheme U − z over U .
Sine h = s

dn , we have Yt = Π−1(A1 × U × 0). Using item (2) of Example 1, we get

Υ ◦ 〈ρ〉 = (pt, lt, gt) =: rHt ∈ WCork(A
1 × U,X),

where ρ : A1 × U × 0 ↪→ A
1 × U × A

1), and lt : k[Yt] → k[A1 × U ] is a k[A1 × U ]-linear
homomorphism that is the base change of lB. The first row in (3)) implies that Y ′

t ⊂
g−1
t (X − z). Hence, by Example 2, there is a morphism in the category of pairs

rΘ = ( rHt, rH ′
t) ∈ WCorpair((A1 × U,A1 × (U − z)), (X,X − z)).

By item (2) of Example 1, the morphism

rΘ ◦ 〈j0〉 = ( rH0, rH0)

is given by the pair of triples(
p0, l0 : k[Y0] → k[U ], g0

)
, (p′0, l

′
0, g

′
0).

Since lift : Y0 � Ylift, we can define linear homomorphisms llift = l0 ◦ (lift∗) and l′lift =

l′0 ◦ (lift∗
′
) (where lift′ = lift×U (U − z)). So we get a morphism of pairs

rΦ := ( rP, rP ′) := ((plift, llift, glift), (p
′
lift, l

′
lift, g

′
lift))

∈ WCorpair((U,U − z), (X ′, X ′ − z′)) : rΦ = rΘ ◦ 〈j0〉.
Now consider the morphism

rΘ ◦ j1=( rH1, rH ′
1)=((p1, l1, g1), (p

′
1, l

′
1, g

′
1))∈WCorpair((U,U − z), (X,X − z)).

We show that Y1 = Δ�R for some closed subscheme

R ⊂ (X − z)× U.

Since s1
∣∣
Δ
= 0, we get

s1 = δ · r, δ ∈ Γ(U × sX,L (Δ)), Z(δ) = Δ, r ∈ Γ(U × sX,R).

Since Z(s1
∣∣
z×U

= z = Z(δ
∣∣
z×U

), we see that r
∣∣
z×U

is invertible. Hence, r is zero at z.

Since z is a unique closed point of Δ, it follows tht r
∣∣
Δ

is invertible. Thus,

Y1 = Z(s1) = Z(δ)� Z(r) = Δ�R.

Then any k[Y1]-linear quadratic k[U ]-form on k[Y1] splits into a sum of forms with
supports Δ and R. Consequently,

rH1 =
(
p1

∣∣
Δ
, l1

∣∣
Δ
, g1

∣∣
Δ

)
+

(
p1

∣∣
R
, l1

∣∣
R
, g1

∣∣
R

)
.

Since R ⊂ (X − z)× U , item (3) of Example 1 shows that there is a morphism

G ∈ WCor(U,X − z) :
(
p1

∣∣
R
, l1

∣∣
R
, g1

∣∣
R

)
= 〈X − z ↪→ X〉 ◦G.

Since Δ � U , and the homomorphism l1
∣∣
Δ
: k[Δ] → k[U ] is determined by an invertible

function λ ∈ k[U ]∗, it follows that
(
p1

∣∣
Δ
, l1

∣∣
Δ
, g1

∣∣
Δ

)
= λ · 〈i〉 ∈ WCor(U,X).

Thus, rH1 = λ · 〈i〉+G. Now, by Example 2, rH1 determines a morphism rH ′
1, whence

( rH1, rH ′
1) = λ · 〈i〉+ (G,G′).

On the other hand, since G∈WCor(U,X− z), the definition of WCorpair shows that the

morphism (G,G′) is equal to zero. Therefore, ( rH1, rH ′
1 = λ · 〈i〉 Finally, putting

Φ = λ−1 · rΦ,Θ = λ−1 · rΘ,

we get the required morphisms in WCorpair.
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So, all that we need to complete the proof of item a) is to construct the sections s′,
s0, s1, and s. Using the following lemma, which is a consequence of the Serre theorem
(see [11, Theorem 5.2, Chapter 3]), we construct the required sections consecutively on
some closed subsets.

Sublemma 4. Suppose X is a projective scheme over a Noetherian ring, Z is a closed
subscheme, F is a coherent sheaf, and L is a very ample invertible sheaf on X. Then
for some k, the restriction Γ(F ⊗L ⊗n) → Γ((F ⊗L ⊗n)

∣∣
Z
) is surjective for all n > k.

Let W denote the local scheme of z in z × U , and let W ′ be the local scheme of z in

U×z′, δ′ the local parameter in K[W ′], and N ′ = SpecK[W ′]/I(δ′)
2
a closed subscheme

in W ′.
First, we construct the section s′ on X ′

z. For this, we prove the following statement.

Sublemma 5. Suppose π : X ′ → X is a finite morphism of curves over an infinite field,
z is a closed point in X ′, Y is a closed subscheme of X ′, Y �� z, and L is a very
ample locally free sheaf of rank 1 on X ′. Then there exists n0 such that for all n > n0,
there is a global section s of L ⊗n with the property that s is zero at z, s is invertible
on Y , and the restriction of π to Z(s) is a closed embedding. (In detail, we mean the
restriction of π to the closed subscheme in X ′ determined by the sheave of ideals I ⊂ OX′ ,
I(U) = {f ∈ O(U)| div f ≥ div s).

Proof. The morphism πs : Z(s) → X is a closed embedding if and only if the homomor-
phism εsπ : O(X)) → π∗(O(div s)) induced by πs is surjective. Denote by Γ the affine
space formed by the global sections of L ⊗n that are zero at z. By Sublemma 4, Γ is not
empty whenever n is sufficiently large.

First, we show that there is an open subscheme U ⊂ Γ such that εsπ is surjective
provided s ∈ U . Consider the map

μ = πΓ : X
′ × Γ → X × Γ

and the universal section

sΓ ∈ Γ
(
pr∗X′(L ⊗n)

)
,

where pr : X ′×Γ → X ′ is the projection along Γ. Let Zin ⊂ X ′×Γ be the support of the
cokernel εμ : O(X × Γ) → μ∗ (O(div sΓ)), and let Z ⊂ Γ be the union of the subspaces
Γy ⊂ Γ, Γy = {s ∈ Γ|s(y) = 0}, y ∈ Y . Then εsπ is surjective if and only if s is a rational
point in Γ such that s �∈ Z, and s �∈ prΓ(Zin), where prΓ is the projection along X ′.

Since Γ is an affine space, Γ − (prΓ(Zi) ∪ Zn) has a rational point whenever Γ �=
prΓ(Zi) ∪ Zn, (as schemes over the ground field).

Since Y �� z, Sublemma 4 shows that for all sufficiently large n there is a section s ∈ Γ
such that s(z) = 0, and s is invertible on Y . Hence Γ �= Z. Thus, since Γ is irreducible,
it suffices to prove that Γ �= prΓ(Zin).

A base change argument allows us to assume that k = F is algebraically closed. If
π : Z(s) → X is not an embedding, then div s ≥ p1 + p2 for some p1, p2 ∈ X ′ with
π(p1) = π(p2) (p1 and p2 may coincide). We compute the codimension of Zin in Γ.
Observe that for all n and any pair of points p1, p2 ∈ X ′, the restriction homomorphism

rp1,p2,n : Γ(L
⊗n) → Γ(L ⊗n)

∣∣
S(p1+p2+z)

) = F 2

is surjective. Indeed, for any fixed n the surjectivity of rp1,p2,n is an open condition for
a pair (p1, p2); on the other hand, for any pair p1, p2 for all sufficiently large n rp1,p2,n is
surjective by Sublemma 4. Hence, the codimension of the subspace in Γ0 spanned by the
sections div s ≥ p1 + p2 is equal to the codimension of the subspace of regular functions{

f ∈ F [S(p1 + p2 + z)] : div f ≥ p1 + p2, div f ≥ z
}
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in the space of functions that vanish at z. So, this codimension is 2 when p1, p2 �= z, and
it is 1 otherwise.

For any p ∈ X there is a finite set of pairs p1, p2 ∈ X with π(p1) = π(p2) = p. Since
for p �= π(z) and for any such pair, the condition div s ≥ p1 + p2 determines a subspace
in Γ of codimension 2, we have dim(Z ∩ (p × Γ)) ≤ dimΓ − 2. If p = π(z), then these
conditions have codimension at least 1, whence dim(Z ∩ (π(z)× Γ)) ≤ dimΓ− 1. Thus,
dimZ ≤ dimΓ− 1, so that Γ �= prΓ(Zin). �

Proof of Sublemma 2. Applying Sublemma 5 to πz : sX ′ → sX and the sheaf L (z ×D′),
for all integers n larger than some sk, we find a section ss ∈ L(n · z×D′) on ĎX ′

z such that
the restriction of sπz to Z(ss) is a closed embedding, ss is zero at z′, and ss is invertible
on z × (sπ−1(z) − z′) ∪ U ×D′. Since the inverse image functor takes ample bundles to
ample ones, Sublemma 4 applied to (U ×X ′,O(U ×X ′),L (U ×D′)) and (U ×X,O(U ×
X),L (U ×D)) says that for all n larger than some k, the restriction homomorphisms

Γ(U ×X ′,L (nU ×D′′)) → Γ
(
L (nU ×D′′)

∣∣
U×z′∪U×D′∪z×ĎX′

)
,

Γ(U ×X,L (nlU ×D)) → Γ
(
L (nlU ×D)

∣∣
U×z∪U×D∪Δ

)
are surjective. Choose any n larger than sk and k, and choose a section ss satisfying the
conditions above.

Now we can find s′ ∈ Γ( sX ′ × U,L (nU × D′) such that s′
∣∣
z×X′ = ss, s′ is invertible

on U ×D′, and s′
∣∣
N ′ = δ (here we use some trivialization of L (nU ×D′)

∣∣′
N
). It follows

that

(5) Z(s′) ∩ (U × sπ−1(z′)) = z′, Z(div s′) ∩ (U ×D′) = 0.

Indeed, we check the first identity. The closed points of the semilocal scheme U×sπ−1(z′)
are sπ−1(z)× z. The section s′ is invertible on (U × sπ−1(z′))− z′ because ss is invertible
on s′

∣∣
N ′ = δ′. Hence, U × Z(s′) ∩ sπ−1(z′) is contained in a neighborhood of z′. At the

same time, Z(s′) ∩ W ′ = z′ because Z(s′) ∩ N ′ = z′. The second identity in (5) is a
reformulation of the fact that s′ is invertible on U ×D′.

Let s0 be a global section of L (nlDU ) such that Z(s0) = sπU∗(Z(s′)). Then (5) implies

(6) Z(s0) ∩ (U × z′) = z, Z(s0) ∩ (U ×D) = 0.

Now we choose a section s1 of L (U × nlD) such that

s1
∣∣
Δ
= 0, s1

∣∣
U×(z∪D)

= s0
∣∣
U×(z∪D)

(these conditions agree on the intersection because Δ∩ (U × z) = z and s0 is zero at z).
Let s = s0 · (1− t) + s1 · t be a section of L (nlD × U). Then by (6) we get

Z(s) ∩ (A1 × U × z) = A
1 × z, Z(s) ∩ (A1 × U ×D) = 0,

because s
∣∣
A1×U×(z∪D)

= s0
∣∣
U×(z∪D)

. �

This proves item a) in Lemma 3. �

Proof of Lemma 3b). To prove the claim it suffices to find morphisms

Φ ∈ WCorpairk ((U,U − z), (X ′, X ′ − z′)),

Ξ ∈ WCorpairk ((U ′ × A
1, (U ′ − z′)× A

1), (X ′, X ′ − z′)),

such that

Ξ ◦ 〈j0〉 = Φ ◦ 〈π〉 ∈ WCorpairk ((U ′, U ′ − z′), (X ′, X ′ − z′)),

[Ξ ◦ 〈j1〉] = [〈i′〉] ∈ WCorpairk ((U ′, U ′ − z′), (X ′, X ′ − z′)),
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where j0, j1 ∈ WCorpair((U ′, U ′ − z′), (U ′ × A
1, (U ′ − z′) × A

1)) are the zero and unit
sections, π and i′ are viewed as morphisms in the category WCor′,

π ∈ WCorpair((U ′, U ′ − z′), (U,U − z)), and i′ ∈ WCorpair((U ′, U ′ − z′), (X ′, X ′ − z′)).

Like in the proof of statement a), we construct quadratic spaces via some sections of
line bundles

L (nD′
U ) on sX ′

U ,

L (nD′
U ′×A1) on sX ′

U ′×A1

and

L (nD′
U ′) on sX ′

U ′

for some sufficiently large n.
Let z′′ denote the diagonal in z′ × z′, let W ′′ be the local scheme of z′ × U ′ at

z′′, and let N ′′ = SpecK[W ′′]/I(δ′′)2. Choose any trivialization of the canonical class
μ′ : ω(X ′) � O(X ′).

By Sublemma 4, for all n larger than some k, there is a global section s′ of L (nD′
U ) on

U × ĎX ′ such that s′ is invertible on U ×D, s′ is invertible on z′ × U − z′, and s′
∣∣
N ′ = δ′

(here we use some trivialization of L (nD′
U ) on N ′). Let s0 = (π× id

ĎX′)∗(s′) be a section
of L (nD′

U ′) that is the inverse image of s′ along π×id
ĎX′ . Then s0 is invertible on U ′×D′

and on z′ × U ′ − z′′, and s0
∣∣
N ′′ = δ′′, where δ′′ is the inverse image of δ along idπ×ĎX′ .

Now we choose a section s1 of the sheaf L (nU ′ ×D′) on U ′ × sX ′ such that

s1
∣∣
U ′×(z′∪D′)

= s0
∣∣
U ′×(z′∪D′)

, s1
∣∣
Δ′ = 0;

the conditions agree because s0 is zero on

Δ′ ∩ (U × (z′ ∪D′)) = z′′.

Let s = s0 · (1 − t) + s1 · t be a section of L (nA1 × U ′ ×D′) on A
1 × U ′ × sX ′; then s

is invertible on A
1 × U ′ ×D′ and A

1 × (U ′ − z′)× z′, and s
∣∣
A1×W ′ = δ′ (here we use a

trivialization L (lnDA1×U ′)
∣∣
A1×W ′ = O(A1×W ′)), s

∣∣
0×U ′×W ′× = s0, s

∣∣
1×U ′×W ′× = s1).

Thus, we have proved the following

Sublemma 6. There are sections

s′ ∈ Γ(X ′
U ,L (nD′)), s0, s1 ∈ Γ(X ′

U ′ ,L (nD′)), s ∈ Γ(X ′
U ′×A1 ,L (nD′))

Z(s′
∣∣
U×z′) = z′, Z(s′

∣∣
U×D′) = ∅,

Z(s
∣∣
A1×U ′×z′) = A

1 × z′′, Z(s
∣∣
A1×U×D′) = ∅,

(7)

s0 = (π × idX)∗(s′), s
∣∣
0×U ′×X′ = s0, s

∣∣
1×U ′×X′ = s1, s1

∣∣
Δ′ = 0.(8)

Also, we choose a section d′ ∈ Γ( sX,O(D′) with Z(d′) = D′.
Now we apply the same construction as in a) to three functions simultaneously:

h =
s

d′n
∈ k[A1 × U ′ ×X ′], h0 =

s0
d′n

∈ k[U ′ ×X ′], f =
s′

d′n
∈ k[U ×X ′.

So, we consider morphisms of relative affine curves

Π = (prA1×U ′ , h) : A
1 × U ′ ×X ′ → A

1 × U ′ × A
1,

Π0 = (prU ′ , h0) : U ′ ×X ′ → U ′ × A
1,

Π′ = (prU , f) : U ×X ′ → U × A
1,

(A1 × j0)
∗(Π) = π̇∗(Π′)
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(here π̇ denotes morphisms of bases of the relative curves π̇ : U ′ → U , the last identity
follows form (8)). Like in item a), Π, Π0, and Π′ can be represented as base changes
of some morphisms of relative projective curves, and Sublemma 3 shows that Π, Π0,
and Π′ are surjective, finite, flat morphisms of smooth curves. Let BA, B0A0

, and
B′

A′ denote the algebras corresponding to the morphisms Π, Π0, and Π′. Then we
apply [10, Proposition 2.1] to Π, Π0, and Π′, obtaining isomorphisms qω, qω0 , and qω ′.
Now we consider the trivializations μΠ = μ′ ⊗ Π∗(dT )−1, μΠ0 = μ′ ⊗ Π∗

0(dT )
−1, and

μΠ′
= μ′ ⊗Π′∗(dT )−1, and define symmetric isomorphisms

qB : BB � HomA(BB, A), qB0
: B0B0

� HomA0
(B0B0

, A0),

qB′ : B′
B′ � HomA′(B′

B′ , A′) : j∗0 (qB) = qB0
= sπU (qB′),

as compositions of qω, qω0 , and qω ′ with μΠ, μΠ0 , and μΠ′
. By items (1) and (2) of

Example 1, this gives us morphisms

Υ = (Π, L, prX′) ∈ WCor(A1 × U ′ × A
1, X ′), rHt = Υ ◦ ρ ∈ WCor(A1 × U,X ′),

Υ0 = (Π0, L0, prX′) ∈ WCor(U ′ × A
1, X ′), rH0 = Υ0 ◦ ρ0 ∈ WCor(U ′, X ′),

Υ′ = (Π′, L′, prX′) ∈ WCor(U × A
1, X ′), rP = Υ′ ◦ ρ′ ∈ WCor(U,X ′) :

Υ ◦ (A1 × j0) = Υ0, Υ0 = Υ′ ◦ π̇ rHt ◦ j0 = rH0, rP ◦ π = rH0,

where

ρ : A1 ××U ′0 ↪→ A
1 × U ′ × A

1, ρ0 : U
′ × 0 ↪→ U ′ × A

1, and ρ′ : 0× U ↪→ U × A
1

are the zero section embeddings with respect to the first factor.
Moreover, we get morphisms of pairs

rΞ = ( rHt, rH ′
t) ∈ WCorpair(A1 × (U ′, U ′ − z′), (X ′, X ′ − z′)),

rΦ = ( rP, rP ′) ∈ WCorpair((U,U − z), (X ′, X ′ − z′)).

Indeed, by item (2) of Example 1, Ht and P are determined by triples rHt = (pt, lt, gt) and
rP = (p′, l′, g′), where pt : Yt → A

1×U ′, gt : Yt → X ′ , Yt = Π−1(A1×U ′×0) = h−1(0) ⊂
X ′ × A

1 × U ′, and p′ : Y ′ → U , g′ : Y ′ → X ′ , Y ′ = Π′−1
(0× U) = f−1(0) ⊂ U ×X ′.

By definition, we have h = s · d′−n
, whence Yt = Z(h) = Z(s). However, by (7),

Z(s
∣∣
A1×U ′×z′) = A

1 × z′′,

so that Yt ×U ′ (U ′ − z′) ⊂ g−1
t (X ′ − z′). Then, by Example 2, there is a morphism

rH ′
t ∈ WCor(U ′ − z′, X ′ − z′)

such that (X ′ − z′ ↪→ X ′) ◦ rH ′
t = rHt ◦ (A1 × (U ′ − z′) ↪→ A

1 ×U ′). In other words, there

is a morphism of pairs ( rHt, rH ′
t) ∈ WCorpair(A1 × (U ′, U ′ − z′), (X ′, X ′ − z′)). Similarly,

since Y ′ = Z(f) = Z(s′) and s′
∣∣
z′×(U−z)

is invertible, we get p′
−1

(Y ′) ⊂ g′
−1

(X − z),

and the construction in Example 2 yields a morphism of pairs ( rP , rP ′).

Thus, we get morphisms rΞ and rΦ such that

rΞ ◦ j0 = rΦ ◦ π.
Consider the morphism rΞ ◦ 〈j1〉. It is determined by the pair of triples ( rH1, rH ′

1) with
rH1 = (p1, l1, g1), rH ′

1 = (p1
′, l1

′, g1
′), p1 : Y1 → U ′, g1 : Y1 → X ′, Y1 = p−1

t (U ′ × 1) ⊂
U ′ × X ′ (again, see Examples 1 and 2). Since s1

∣∣
Δ′ = 0 and s1

∣∣
N ′′ = δ′′, and since

s1 is invertible on (z′ × U) − z′′, and δ′′ is a local parameter on W ′′, it follows that
Z(s1) ∩ (z′ × U ′) = z′′ = Δ ∩ (U ′ × z′×). K[Y1] = K[Δ′] × K[R′] for some R′ ⊂
U ′ × (X ′ − z), and rH1 = (p1

∣∣
Δ′ , l1

∣∣
Δ′ , g1

∣∣
Δ′) + (p1

∣∣
R′ , l1

∣∣
R′ , g1

∣∣
R′). The restriction of
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the linear homomorphism l1 : k[Y1] → k[U ′] to k[Δ′] is defined by an invertible function
λ ∈ K[U ′]∗, On the other hand, the triple (p1

∣∣
R′ , l1

∣∣
R′ , g1

∣∣
R′) gives rise to the zero

morphism in the category of pairs. Hence,

( rH1, rH ′
1) = λ · 〈i′〉.

Choose an invertible function λ′ ∈ K[U ]∗ such that λ′(z) = λ(z)−1 and put

Ξ = λ′ · Ξ′,Φ = λ′ · Φ′.

The following Sublemma 7 implies that

λ′ · λ · [i′] = [i′] in WCor((U ′, U ′ − z′), (X ′, X ′ − z′)),

thus giving us the required identity [Ξ ◦ 〈j1〉] = [i].

Sublemma 7. Suppose X is a smooth scheme, U is a local scheme at a point z in X,
and i is the embedding U ↪→ X. Let the morphism ε ∈ WCor((U,U − z), (X,X − z)) be
determined by a K[X×U ]-module K[Δ], where Δ is the graph of i, and q is the quadratic
form determined by the function e ∈ K[U ]× such that e(z) = 1; then

[ε] = [i] ∈ WCor((U,U − z), (X,X − z)).

Proof. Let a Zariski neighborhood V of z in X be such that there is a morphism εV ∈
WCor((V, V − z), (X,X − z)) satisfying εV ◦ iV = ε, where iV denotes the embedding
U ↪→ V .

Consider the covering p : V ′ = Spec K[V ][b]/(b2 = e) → V . The morphism p is étale
over z because e(z) = 1; hence, it is an étale covering of U . Let z′ be the preimage of z
such that b(z′) = 1. Shrinking V and V ′, we see that p is étale and p−1(z) = z′.

Denote by iV the embedding V ↪→ X and denote by the same symbol the corre-
sponding element in WCor((V, V − z), (X,X − z)). Since p−1(z) = z′, p gives rise to a
morphism in WCor((V ′, V ′ − z′), (V, V − z)).

Consider the morphisms iV ′ = iV ◦ p, εV ′ = εV ◦ p ∈ WCor((V ′, V ′ − z′), (X,X − z)).
The morphism iV ′ is determined by the module K[Δ′] and the unit function (where Δ′

the graph of the embedding p ◦ iV : V ′ → X). The morphism ε ◦ p is determined by
the same module K[Δ′] and by the function p∗(e). Since p∗(e) = b2 ∈ K[V ′], i.e., p∗(e)
is a square, it follows that the quadratic form determined by e gives rise to the same
morphism in ε ◦ p = i′V ∈ WCor((V ′, V ′ − z′), (X,X − z)) as the unit form.

(V ′, V ′ − z′)
iV ′

�����
����

����
����

εV ′
�����

����
����

����
p

��

(U,U − z)� �

iV ����
���

���
���

Ψ

�������������

ε
��

i �� (X,X − z)

(V, V − z)
� 	

iV

		��������������� εV

		���������������
.

Now we note that item a) in Lemma 3 applied to the morphism p : V ′ → V implies that
there exists

Ψ ∈ WCor((U,U− z), (V ′, V ′− z′)) with [Ψ ◦ p]=[iV ] ∈ WCor((U,U − z), (V, V − z)).

Hence,

[iV ◦ ε] = [Ψ] ◦ [p ◦ ε] = [Ψ] ◦ [p ◦ iV ] = [i]. �

�

�
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§6. Homotopy invariance of the associated sheaf

Theorem 4. For a homotopy invariant presheaf F with Witt-transfers, the associated
Zariski sheaf FZar is homotopy invariant.

Proof. The theorem follows form the next lemma by a standard argument.

Lemma 4. Let F be a homotopy invariant sheaf with Witt-transfers. Then the canonical
embedding F (U) → FZar(U) is surjective for any Zariski open subset U ⊂ AK , where
K is the filed of functions of a smooth variety over k.

Let X be a k-smooth irreducible variety, and let K be its field of functions. It suffices
to prove that the homomorphism FZar(AX) → FZar(X) induced by the embedding
i0,X : X → AX is injective.

Consider the commutative square

FZar(AX) �
� J∗

��

i∗0,X

��

FZar(Ak(X))

i∗0,k(X)

��
FZar(X) �

� j∗ �� FZar(k(X)).

By the injectivity theorem for homotopy invariant presheaves with Witt-transfers,
for any irreducible variety Y the homomorphism FZar(Y ) → FZar(k(Y )) is injective.
Hence, J∗ is a monomorphism. By Lemma 4, the homomorphism F (AX) → FZar(AX)
is an epimorphism. At the same time, it is a monomorphism, because the presheaf F is
homotopy invariant. Hence, F (AX) → FZar(AX) is an isomorphism. Since F (k(X)) =
FZar(k(X)), it follows that i∗0,k(X) is an isomorphism. Now the injectivity of J∗ implies

that of i∗0,X . Since at the same time i∗0,X is an epimorphism, it is an isomorphism. Thus,
it suffices to prove the lemma.

Proof of Lemma 4. Let s ∈ FZar(U). Let c : U → U be a Zariski covering such that there
is sU with c∗(s) = ε(sU), where ε is the natural homomorphism F → FZar. Denote by
V any open subset U in U, and for any point z ∈ U \ V we denote by Uz any subset in
sU containing z.

Choose a point z ∈ U \ V . Let V1 be the smallest open subset in AK containing V
and z. Consider the element sV ∈ F (V ) that is the restriction of sU to V , and consider

its image rz ∈ F(V )
F(V1)

. By Theorem 2,

F (V )

F (V1)
� lim

z∈W⊂AK

F (W − z)

F (W )
.

The restriction of sU to Vz gives us an element sz ∈ F (Vz) compatible with sV on
Vz − z; hence, rz = 0, and there exists sV1

∈ F (V1) such that sV1
coincides with sV

under the restriction to V . Then we add points of U \ V inductively, finding an element
sU ∈ F (U) such that the germs of sU and sV coincide at the generic point. By injectivity
for presheaves with Witt-transfers, the germs of sU and sV coincide at all points. �

�

Theorem 5. Let F be a homotopy invariant presheave with Witt-transfers, and let
K = k(X) for a smooth variety X over k.

Then {
FNis

∣∣
A1

K
� F

∣∣
A1

K
,

h1(FNis)
∣∣
A1

K
� 0.
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Proof. The first statement is equivalent to saying that F (U) → FZar(U) is an iso-
morphism for any U ⊂ A

1
K . Indeed, since F (U) → F (W ) is injective for any pair

of open subschemes W ⊂ U ⊂ A
1
K , we see that the restriction to the generic point

F (U) → F (η) is injective for any open U ⊂ A
1, and finally, F (U) → FZar(U) is

injective for any open U .
The second relation is equivalent to saying thatH1

Nis(U) = 0 for any U ⊂ A
1
K , because

all higher cohomologies are trivial because of dimension.
Consider the sequence

(9) 0 → F (U)
i−→ F (η)

d1

−→
∑

z∈MaxSp (U)

F (Uz − z)

F (Uz)
→ 0,

where z runs over all closed points of U, and Uz denotes a local neighborhood of z. This
is a short exact sequence. Indeed, the arrow i is injective by Theorem 1 on the injectivity
on A

1. The exactness at the middle term follows form the injectivity of the excision
homomorphisms. The surjectivity of the second arrow follows from the surjectivity of
the excision homomorphism.

This sequence is a sequence of sections of the presheet F
∣∣
A1

K
and sections of the

following flasque resolvent of it in the Nisnevich topology:

F → η∗(F (η)
d−→

∑
z∈MaxSp (A1)

z∗(
F (Uh

z − z)

F (Uh
z )

),

where η is the generic point, η∗ is the inverse image homomorphism along η → A
1, z

in the second term runs over all closed points on A
1, and z∗ is the inverse image along

z → A
1. The injectivity of a homotopy invariant presheaf with Witt-transfers on local

schemes and the excision isomorphism imply that this is an exact sequence of sheaves.
Thus, it is a resolvent of length 1, whence H0

Nis(U) = ker(d(U)), H1
Nis(U) = coker(d(U)),

and the higher cohomologies are trivial. Now the exactness of the sequence (9) implies
that H0

Nis(U) = F (U) (this proves again that F is a sheaf) and H1
Nis(U) = 0. �

Proof of the main theorem. The proof is similar to the proof of Theorem 4 if we apply
the first statement of Proposition 5 instead of Lemma 4. �
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