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HOMOTOPY THEORY OF NORMED SETS I.

BASIC CONSTRUCTIONS

N. V. DUROV

Abstract. We would like to present an extension of the theory of R≥0-graded (or

“R≥0-normed”) sets and monads over them as defined in recent paper by Frederic
Paugam.

The theory of graded sets is extended in three directions. First of all, it is shown
that R≥0 can be replaced with more or less arbitrary (partially) ordered commutative
monoid Δ, yielding a symmetric monoidal category NΔ of Δ-normed sets. However,
this category fails to be closed under some important categorical constructions. This
problem is dealt with by embedding NΔ into a larger category SetsΔ of Δ-graded
sets.

Next, it is shown show that most constructions make sense with Δ replaced by a
small symmetric monoidal category I. In particular, we have a symmetric monoidal
category SetsI of I-graded sets.

These foundations are used for two further developments: a homotopy theory for
normed and graded sets, essentially consisting of a well-behaved combinatorial model
structure on simplicial I-graded sets and a theory of Δ-graded monads. This material
will be exposed elsewhere.

§1. Normed sets

1.0. We start with the definition of Δ-normed sets, which corresponds to the definition
of [Pa] when Δ = R≥0.

Definition 1.1. Let Δ be a partially ordered set (in most cases, Δ will be a partially or-
dered commutative monoid, e.g. Δ = R≥0). A Δ-normed set is a pair X = (X, | · |X),
where X is a set, and | · |X : X → Δ is an arbitrary map of sets, called a (Δ-valued)
norm on X.

If x is an element of X, we say that |x|X := | · |X(x) ∈ Δ is the norm of x.
A morphism f of the Δ-normed set (X, | · |X) to (Y, | · |Y ) is a norm-shrinking

map f : X → Y , i.e., a map of sets such that |f(x)|Y ≤ |x|X for all x ∈ X. This
condition can also be written as | · |Y ◦ f ≤ | · |X .

The category of all Δ-normed sets with norm-shrinking maps as morphisms will be
denoted by NΔ.

1.1. Other variants of maps between normed sets. In his work [Pa], apart from the
norm-shrinking maps, Paugam considered two other classes of maps between Δ-normed
sets (for Δ = R≥0): the norm-preserving maps, having the property that | · |Y ◦ f =
| · |X , which thus determine the slice category Sets/Δ, and the Lipschitz maps, having
that property that for some C = Cf ∈ Δ, inequality |f(x)|Y ≤ C · |x|X holds for all
x ∈ X (here Δ has to be an ordered monoid, which is true for Δ = R≥0 considered in
loc.cit.).

2010 Mathematics Subject Classification. Primary 06D72.
Key words and phrases. Normed sets, normed groups, norms, normed algebraic structures, graded

algebraic structures, filtered algebraic structures, fuzzy sets, linear logic, presheaf categories, finitary
monads, generalized rings, metric spaces, model categories, homotopy categories, higher categories.

c©2018 American Mathematical Society
887

https://www.ams.org/spmj/
https://doi.org/10.1090/spmj/1520


888 N. V. DUROV

We think that norm-preserving maps are “uninteresting” in the sense that they lead to

the well-known slice category Sets/Δ, equivalent to the category product Sets|Δ|, where
|Δ| is the underlying set of Δ.

As to the Lipschitz maps from X to Y , they are quite important; however, we are
going to interpret them as elements of the underlying set of the inner Hom X � Y =
Hom(X,Y ) from X to Y with respect to a natural monoidal structure on NΔ. We
think this is a more natural way of dealing with Lipschitz maps than treating them as
morphisms of a category.

1.2. Limits of Δ-normed sets.

Proposition 1. Let Δ be a poset. Then:

a) If the binary sup’s (∨) exist in Δ, then the binary direct products X × Y exist
in NΔ.

b) If Δ admits a minimal element 0, the final object eNΔ
exists in NΔ.

c) If the finite sup’s exist in Δ, the finite limits exist in NΔ.
d) If any subset A ⊂ Δ that is bounded from above admits a supremum, arbitrary

(small) limits exist in NΔ.

1.2.1. Construction of limits in NΔ. All of the above statements follow from an explicit
construction of limits in NΔ that we are going to describe now.

Let X : J → NΔ be a diagram in NΔ. Denote by S : NΔ → Sets the underlying set
functor: S : (Z, | · |Z) � Z. Put Y := limJ S ◦ X, and denote by πα : Y → X(α) the
canonical projection of sets for all α : J . Now let Y ◦ be the subset of Y consisting of all
y ∈ Y such that the set of norms of projections {|πα(y)|X(α)}α:J is bounded from above.
This is automatically true in cases a)–c), so in these cases Y ◦ = Y .

Next, put

(1.2.1.1)
∣∣y∣∣

Y ◦ := sup
α:J

∣∣πα(y)
∣∣
X(α)

.

It is easy to see that (Y ◦, | · |Y ◦), together with the restrictions of πα to Y ◦, is the
limit in NΔ of the original diagram X.

1.2.2. Special case: binary direct products in NΔ. In particular, we see that the binary
direct product X × Y of two Δ-normed sets X = (X, | · |X) and Y = (Y, | · |Y ) is given
by the Cartesian product X × Y of underlying sets together with the sup-norm

(1.2.2.1)
(
x, y

)
X×Y

= |x|X ∨ |y|Y .

1.2.3. Special case: final object of NΔ. The final object of NΔ is given by an the singleton
1 = {1} with the norm of its unique element equal to the smallest element 0 of Δ.

1.2.4. Special case: infinite products in NΔ. An infinite product
∏

α Xα is slightly more
complicated to compute: it consists of all families x = (xα)α, xα ∈ Xα, such that
{|xα|Xα

} is bounded from above, with |x| equal to supα |xα|Xα
.

1.2.5. Special case: fibered products in NΔ. Given two norm-shrinking maps f : X → S,
g : Y → S of Δ-normed sets, we can construct their fibered product in NΔ as follows.
We take their set-theoretical fibered product X ×S Y =

{
(x, y) ∈ X ×Y : f(x) = g(y)},

and endow it with the restriction of the sup-norm on X×Y ⊃ X×S Y given by (1.2.2.1).

1.2.6. Special case: equalizers in NΔ. Given two parallel morphisms f, g : X ⇒ Y in NΔ,
we can always construct their equalizer Eq(f, g) in NΔ, without any additional assump-
tions on Δ, as follows. Take the set-theoretical equalizer Eq(f, g) := {x ∈ X : f(x) =
g(x)}, and endow it with the restriction of the Δ-norm | · |X of X.
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1.2.7. Monomorphisms in NΔ. Since f : X → Y is a monomorphism if and only if the
relative diagonal Δf : X → X ×Y X is an isomorphism, we see that f is a monomor-
phism in NΔ if and only if it is set-theoretically injective, i.e., if and only if S(f) is a
monomorphism in Sets. In other words, S : NΔ → Sets reflects monomorphisms.

1.2.8. Strict monomorphisms in NΔ. Recall that strict monomorphisms are those mono-
morphisms that appear as common equalizers of some family of pairs of parallel mor-
phisms with common source. Our explicit description of equalizers shows that i : Y → X
is a strict monomorphism in NΔ if and only if i is set-theoretically injective and norm-
preserving, i.e., |i(y)|X = |y|Y for all y ∈ Y . If we identify Y with a subset of X, this
means that | · |Y is a restriction of the norm of X. In this way the set of strict subobjects
of a Δ-normed set X = (X, | · |X) is in one-to-one correspondence with the power-set
P(X) of X.

1.3. Colimits of normed sets.

Proposition 2. Let Δ be a poset. Then:

a) Arbitrary (small) coproducts exist in NΔ. They can be computed with the aid of
disjoint unions of underlying sets.

b) If any nonempty subset of Δ admits an infimum, arbitrary (small) colimits exist
in NΔ.

Corollary 1.3.1. Let Δ be a poset such that any nonempty subset of Δ admits an
infimum. Then the category NΔ is bicomplete, i.e., admits arbitrary (small) limits and
colimits.

Proof. We know that this condition is sufficient for the existence of arbitrary colimits.
On the other hand, the existence of infima of nonempty subsets of Δ is equivalent to
the existence of suprema of subsets bounded from above, because of well-known relations
between infima (of nonempty subsets) and suprema (of subsets bounded from above):

supA = inf
{
b : A ≤ b

}
;(1.3.1.1)

inf B = sup
{
a : a ≤ B

}
.(1.3.1.2)

We already know from 1.2 that the existence of suprema of subsets bounded from above
implies the existence of arbitrary limits. Another way of expressing the same thing is
this: once we know that arbitrary colimits exist in NΔ, and we know that NΔ admits a
small family of generators (namely, all one-element Δ-normed sets with underlying set
equal to 1 = {1}), we can deduce the existence of arbitrary (small) limits. �

In order to prove the proposition, we have to consider an explicit construction of
colimits in NΔ.

1.3.2. Construction of coproducts in NΔ. Suppose that Xα = (Xα, | · |Xα
) be a family

of Δ-normed sets. Their coproduct in NΔ is simply the disjoint union X :=
∐

α Xα,
with the norm | · |X restricting to | · |Xα

on each component Xα ⊂ X.

1.3.3. Quotient norms. Now suppose that p : (X, | · |X) → (Y, | · |Y ) is a surjective map
of Δ-normed sets. We say that the norm on Y is the quotient norm of that of X with
respect to p if for any y ∈ Y we have

(1.3.3.1) |y|Y = inf
x∈p−1(y)

|x|X .

Notice that the quotient norm on Y is uniquely determined by means of this formula by
the map p and the norm | · |X on X. In other words, given a Δ-normed set (X, | · |X)
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and a surjective map p : X → Y , there is at most one quotient norm | · |Y on Y . If the
infima of nonempty subsets exist in Δ, a quotient norm always exists.

1.3.4. Coequalizers in NΔ. We are ready to compute the coequalizers Coeq(f, g : X ⇒ Y )
in NΔ, provided the infima of nonempty subsets of Δ exist. Let Z be the corresponding
coequalizer computed in Sets, and let p : Y → Z be the projection. Endow Z by the
quotient norm of | · |Y with respect to p. It is easy to see that Z together with this
quotient norm is a coequalizer of f and g.

1.3.5. Arbitrary small colimits in NΔ. Since any colimit can be expressed with the aid
of coproducts and coequalizers, we see that the small colimits exist in NΔ, provided the
infima of nonempty subsets exist in Δ. We can describe these colimits more explicitly
by combining the above results. Given a diagram X : J → NΔ, let Y := colimS ◦X be
the corresponding colimit of underlying sets, and let pα : X(α) → Y be the projection
of a component into the colimit. Now Y becomes a colimit of the diagram X in NΔ,
provided we introduce a norm on the elements of Y by

(1.3.5.1) |y|Y = inf
α,pα(x)=y

|x|Xα
.

1.3.6. Strict epimorphisms in NΔ. Recall that strict epimorphisms are those morphisms
that appear as the common coequalizers of some family of pairs of parallel morphisms
with common target. This implies that if p : Y → Z is a strict epimorphism in NΔ, then
p is a surjective map of sets, and | · |Z is the quotient norm of | · |Y with respect to p.
The converse is true provided binary ∨’s exist in Δ, which is needed for the existence of
a kernel pair Y ×Z Y ⇒ Y . In this case p : Y → Z is even an effective epimorphism, i.e.,
the coequalizer of its kernel pair.

1.3.7. Epimorphisms in NΔ. Recall that p : Y → Z is an epimorphism if and only if the
codiagonal Z → Z

∐
Y Z is an isomorphism. We deduce from the explicit construction

of colimits given above that p : Y → Z is an epimorphism of normed sets if and only if
it is surjective as a map of sets. This statement can easily be shown directly, without
any reference to colimits or additional requirements on Δ.

1.3.8. Case Δ = R≥0. Of course, R≥0 admits the infima of arbitrary nonempty subsets,
hence NR≥0

is bicomplete, as already shown in [Pa].

1.4. Adjoining ∞ to Δ. We saw in 1.3.1 that NΔ is bicomplete if and only if arbitrary
nonempty infima exist in Δ. This condition is a bit cumbersome: it would be more
convenient to work with Δ where arbitrary infima (hence also suprema) exist, i.e., with
Δ a complete lattice.

This problem can be circumvented by adjoining a new largest element to Δ.

Notation 1.4.1. We denote by Δ∞ the partially ordered set Δ 
 {∞}, obtained from
Δ by adjoining a new element ∞, larger than any element of Δ.

1.4.2. Bicompleteness of NΔ and completeness of Δ∞. Clearly, arbitrary nonempty in-
fima exist in Δ if and only if arbitrary infima (and suprema) exist in Δ∞, i.e., if and only
if Δ∞ is a complete lattice. Combining this with 1.3.1, we see that NΔ is bicomplete if
and only if Δ∞ is a complete lattice.
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1.4.3. Adjoint functors between NΔ and NΔ∞ . We have an obvious “embedding func-
tor” e! : NΔ → NΔ∞ , transforming a Δ-normed set X = (X, | · |X : X → Δ) into the
Δ∞-normed set (X, e ◦ | · |X), where e : Δ → Δ∞ is the natural embedding. We usually
denote e!X by the same letter X, and its norm by the same symbol | · |X , assuming Δ
to be canonically embedded into Δ∞ as a subset “of finite elements”.

The functor e! is fully faithful; it enables us to identify the Δ-normed sets with those
Δ∞-normed sets “whose norm takes only finite values”.

The functor e! admits a right adjoint e∗ : NΔ∞→NΔ transforming (X, | · |X : X→Δ∞)
into X<∞ := {x ∈ X : |x|X < ∞} with the norm given by restriction of | · |X . One can
also write X<∞ = X ×Δ∞ Δ. The adjointness relation

(1.4.3.1) HomNΔ∞ (e!X,Y ) ∼= HomNΔ
(X, e∗Y )

is immediate.

1.4.4. Consequence for limits and colimits. Once we have adjoint functors e! � e∗ with
fully faithful e! (hence e∗ a colocalization functor), we can relate limits and colimits in
the two categories under consideration:

e!(colimF ) ∼= colim e! ◦ F ;(1.4.4.1)

colimF ∼= e∗(colim e! ◦ F );(1.4.4.2)

limF ∼= e∗(lim e! ◦ F ).(1.4.4.3)

In particular, we can compute a limit in NΔ, say, an infinite product
∏

α Xα, by
computing it first in NΔ∞ , and then applying e∗ to it, i.e., considering only elements of
finite norm in the product thus obtained.

That said, limits in NΔ∞ are easier to compute and to understand, since the forgetful
functor NΔ∞ → Sets preserves limits. This is due to the following fact.

Proposition 1.4.5. If Δ has a largest element, then the forgetful functor S : NΔ → Sets
admits a left adjoint, hence it preserves all limits.

Proof. Denote the largest element of Δ by ω. It is easy to see that the functor trans-
forming any set A into Aω, the same set endowed with the Δ-norm taking the value ω
on all elements of A, is a left adjoint to S:

(1.4.5.1) HomSets(A,S(X)) ∼= HomNΔ
(Aω, X).

Indeed, any map f : A → X is norm-shrinking in this case. �

1.5. Generators of NΔ.

1.5.1. Notation for one-element normed ets. We denote by 1α the standard singleton
1 = {1} with the norm of its unique element set to α ∈ Δ. The full subcategory of NΔ

consisting of one-element normed sets is equivalent to its full subcategory 1Δ consisting
of all 1α, α ∈ Δ, which in its turn is isomorphic to the category Δop (we view partially
ordered set Δ as a category with at most one morphism between any two objects in a
standard fashion), since a (necessarily unique) morphism from 1α to 1β exists if and only
if α ≥ β.

1.5.2. 1Δ
∼= Δop generates NΔ. Notice that the standard one-element normed sets gen-

erate NΔ under strict epimorphisms. In fact, any object X = (X, | · |X) is not merely
the target of a strict epimorphism from a coproduct of some family of objects from 1Δ;
it is even isomorphic to such a coproduct:

(1.5.2.1) (X, | · |X) ∼=
∐
x∈X

1|x|X .
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1.5.3. Embedding of NΔ into presheaves on Δop. Since 1Δ
∼= Δop generates NΔ, com-

position of Yoneda embedding h : NΔ → N̂Δ with the restriction of presheaves from

NΔ to 1Δ induces a fully faithful limit-preserving embedding I of NΔ into Δ̂op ∼=
Funct(Δ, Sets) = SetsΔ.

This embedding transforms X = (X, | · |X) into the functor

(1.5.3.1) I(X) : α � HomNΔ
(1α, X) ∼= X≤α := {x ∈ X : |x|X ≤ α}.

We are going to study this embedding in more detail later.

1.5.4. Finite normed sets and compact objects of NΔ. Recall that an object X of some
category C is called compact (or sometimes finitely presented) if HomC(X,−) preserves
filtered colimits.

One might expect finite normed sets to be compact objects of NΔ, and the category
NΔ to be compactly generated. In fact, this is usually not true. We claim, however, that
any compact object of NΔ is necessarily finite.

Indeed, suppose that X = (X, | · |X) is compact. Write X as the filtered colimit of
all its finite subsets Y ⊂ X with norms given by restriction of | · |X . By compactness,
we must have

(1.5.4.1) idX ∈ Hom(X,X) ∼= colimfinite Y ⊂ X Hom(Y,X).

This shows that idX : X → X factorizes through some finite Y ⊂ X, which is possible
only if X = Y is finite itself.

Now we might want to study when finite Δ-normed sets are compact. Since any finite
normed set is a finite coproduct of generators 1α, and in any cocomplete category S

∐
T

is compact if and only if both S and T are compact, it suffices to understand when 1α

is compact, i.e., the functor X � Hom(1α, X) = X≤α = {x ∈ X : |x|X ≤ α} commutes
with filtered inductive limits. Here is a partial result in this direction.

Proposition 1.5.5. Suppose Δ is well ordered, i.e., its order is linear, and any nonempty
subset of Δ has the smallest element. Then Hom(1α,−) commutes with filtered colimits,
for any α ∈ Δ; in particular, all finite Δ-normed sets are compact, and NΔ is compactly
generated, since any Δ-normed set is the filtered colimit of its finite subsets with induced
norms.

Since we don’t need this result later, we leave it as an exercise for the reader.

1.5.6. Notation for standard finite normed sets. Any finite normed set is isomorphic to
a standard finite normed set , with the underlying set isomorphic to n = {1, 2, . . . , n} for
some n. We introduce the notation

(1.5.6.1) 〈α1, α2, . . . , αn〉 := (n, α : n → Δ)

for a standard finite set n with the norm α : n → Δ taking the values αi = α(i) at
1 ≤ i ≤ n.

1.6. Monoidal structure on normed sets.

1.6.1. Bifunctor on NΔ defined by a multiplication. Suppose we are given a poset map
μ : Δ×Δ → Δ. It enables us to define a bifunctor ⊗μ : NΔ ×NΔ → NΔ, characterized
uniquely up to isomorphism by the following properties:

• ⊗μ preserves arbitrary coproducts in each argument;

• we have 1α ⊗μ 1β ∼= 1μ(α,β) on the generators 1α of N .

Conversely, any such bifunctor ⊗ having the property that 1Δ is stable under ⊗ can
be obtained with the aid of some μ.
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1.6.2. Properties of ⊗μ in terms of μ. Notice that ⊗μ is associative, commutative and
with unit if and only if the “multiplication” μ : Δ × Δ → Δ has the corresponding
properties.

1.6.3. Canonical tensor product ⊗ on NΔ. In particular, if Δ is a (partially) ordered
commutative monoid, its multiplication defines a “canonical” symmetric monoidal struc-
ture ⊗ on NΔ, characterized by the property that ⊗ preserve arbitrary coproducts and

(1.6.3.1) 1α ⊗ 1β ∼= 1αβ .

1.6.4. Direct description of X ⊗ Y . Of course, we can describe X ⊗μ Y explicitly by
using the decomposition (1.5.2.1): its underlying set is X × Y , with the norm given
by

∣∣(x, y)∣∣
X⊗μY

= μ
(
|x|X , |y|Y ). In particular, if μ is the multiplication of a partially

ordered commutative monoid Δ, we obtain

(1.6.4.1)
∣∣(x, y)∣∣

X⊗Y
= |x|X · |y|Y .

In this situation, we denote (x, y), viewed as an element of X ⊗ Y , by x⊗ y, so that the
following nicer-looking formula holds:

(1.6.4.2)
∣∣x⊗ y

∣∣
X⊗Y

= |x|X · |y|Y .

1.6.5. The special case, where Δ = R≥0. In [Pa], several tensor products were consid-
ered on R≥0-normed sets. All of these tensor products are special cases of the above
construction for the following choices of μ:

• μ(x, y) = max(x, y) yields the Cartesian monoidal structure, with X ⊗μ Y =
X × Y . In fact, taking binary sup ∨ for μ yields a Cartesian monoidal structure
for an arbitrary poset Δ with binary suprema.

• The functions μp(x, y) = (xp + yp)1/p, for 0 < p ≤ ∞, with μ∞ = max, define a
family of monoidal structures ⊗p on NR≥0

.
• The function μm(x, y) = xy defines the “multiplicative” monoidal structure in
the terminology of [Pa], which corresponds to the “canonical” monoidal structure
on NR≥0

in our terminology.

1.6.6. Extension to Δ∞. Given a map μ : Δ × Δ → Δ as above, we can extend it to
μ∞ : Δ∞ ×Δ∞ → Δ∞ by putting

(1.6.6.1) μ∞(x, y) =

{
μ(x, y) if x, y �= ∞;

∞ if x = ∞ or y = ∞.

In this way we obtain a bifunctor ⊗μ∞ on NΔ∞ , having the property that e!(X ⊗μ Y ) ∼=
e!X ⊗μ∞ e!Y and e∗( sX ⊗μ∞

sY ) ∼= e∗ sX ⊗μ e∗ sY .
If μ is commutative, associative, or with unity, μ∞ has the same property. In par-

ticular, when Δ is a commutative ordered monoid, the same is true about Δ∞, and the
canonical monoidal structure of NΔ extends to NΔ∞ .

1.7. Closedness of the monoidal structure on NΔ. We would like to give some
conditions sufficient for NΔ, with Δ an ordered commutative monoid, to be a closed
monoidal category. Since NΔ contains the ⊗-subcategory 1Δ, equivalent to Δop as a
monoidal category, it is reasonable to expect Δop to be closed as well.

1.7.1. Notation for the inner Hom. Given two objects Y and Z of a monoidal category
C = (C,⊗), we denote by Hom(Y, Z), or by Y �C Z or Y � Z the object of C
representing the functor X � Hom(X ⊗ Y, Z). In other words, we expect to have a
canonical isomorphism

(1.7.1.1) Hom(X,Y � Z) ∼= Hom(X ⊗ Y, Z) for all X ∈ C.
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1.7.2. Closedness for NΔ and NΔ∞ . We would like to study the relationship between �
for Δ-normed sets and Δ∞-normed sets, where Δ∞ = Δ ∪ {∞} is obtained from Δ by
adjoining a new largest element as described in 1.4 and 1.6.6.

Namely, if Y ∈ NΔ and sZ ∈ NΔ∞ , then

(1.7.2.1) e∗(e!Y �Δ∞
sZ) ∼= (Y �Δ e∗ sZ).

In particular, if e!Y � sZ is representable in NΔ∞ , then Y � e∗ sZ is representable in NΔ.
Putting here sZ = e!Z for some Z ∈ NΔ and using e∗e!Z ∼= Z, we obtain

(1.7.2.2) (Y �Δ Z) ∼= e∗(e!Y �Δ∞ e!Z)

1.7.3. In particular, if the monoidal category NΔ∞ is closed, the same is true for NΔ.

1.7.4. Proof of (1.7.2.1). We are going to show that the two sides of (1.7.2.1) represent
canonically isomorphic covariant functors on NΔ. Indeed, for any X ∈ NΔ we have

HomΔ

(
X, e∗(e!Y �Δ∞

sZ)
) ∼= HomΔ∞(e!X, e!Y �Δ∞

sZ)(1.7.4.1)

∼= HomΔ∞(e!X ⊗ e!Y, sZ)(1.7.4.2)

∼= HomΔ∞

(
e!(X ⊗ Y ), sZ

)
(1.7.4.3)

∼= HomΔ(X ⊗ Y, e∗ sZ)(1.7.4.4)

∼= HomΔ(X,Y �Δ e∗ sZ).(1.7.4.5)

Proposition 1.7.5. (Properties of 1β � 1γ .) Let β, γ ∈ Δ, and suppose that Δ is
an ordered monoid with largest element ω, which is a zero for the multiplication of Δ.
Then 1β � 1γ , if representable in NΔ at all, consists of exactly one element, i.e., is
isomorphic to some 1α.

Proof. Suppose 1β → 1γ is representable by some X = (X, | · |X). Since ω is the
largest element of Δ, we have X = X≤ω = {x ∈ X : |x|X ≤ ω} = Hom(1ω, X) ∼=
Hom(1ω ⊗ 1β ,1γ) = Hom(1ωβ ,1γ) = Hom(1ω,1γ) = {∗} since γ ≤ ω. This shows that
the underlying set of X is a singleton, hence X ∼= 1α for some uniquely determined
α ∈ Δ. �

Corollary 1.7.6. Under the previous assumptions on Δ, all 1β � 1γ are representable
in NΔ if and only if monoidal category Δop ∼= 1Δ ⊂ NΔ is closed.

1.7.7. Closedness of Δop. Notice that, for any commutative ordered monoid Δ, the
closedness of Δop is equivalent to the following condition.

• For any β, γ ∈ Δ, there is an element �γ/β� ∈ Δ such that

(1.7.7.1) α ≥ �γ/β� ⇔ αβ ≥ γ

Indeed, �γ/β� is merely another notation for β �Δop γ.

1.7.8. Existence of � in Δ and Δ∞. Notice that, if �γ/β� exists in Δ for some β
and γ ∈ Δ, the same is true in Δ∞.

1.7.9. Case of invertible β. If β is invertible, �γ/β� always exists and equals γβ−1. In par-
ticular, �γ/β� exists in R≥0, hence also in sR≥0 = R≥0 ∪ {∞}, if 0 ≤ γ < ∞, 0 < β < ∞,
because all such β are invertible in R≥0.
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1.7.10. Example: Δ = sR≥0. Previous remark enables us to show that Δop is a closed
monoidal category for Δ = sR≥0. Indeed, the existence of �γ/β� for β �= 0,∞ has already
been shown. We must only complement this with the following observations:

�0/0� = 0;(1.7.10.1)

�γ/0� = ∞ if γ �= 0;(1.7.10.2)

�γ/∞� = 0.(1.7.10.3)

Now we would like to prove a partial converse to 1.7.6.

Proposition 1.7.11. Suppose that a commutative ordered monoid Δ is a complete lat-
tice, and the monoidal category Δop is closed. Then the monoidal category NΔ is also
closed. The inner Hom X � Y of two Δ-normed sets X = (X, | · |X) and Y = (Y, | · |Y )
can be computed as follows: the underlying set of X � Y is HomSets(X,Y ), and the norm
of a map φ : X → Y is given by the classical formula for the norm of a linear operator:

|φ|X�Y = inf{α ∈ Δ : ∀x ∈ X, |φ(x)|Y ≤ α · |x|X}(1.7.11.1)

= sup
x∈X

⌈
|φ(x)|Y

/
|x|X

⌉
.(1.7.11.2)

Proof. First of all, observe that both expressions on the right-hand side of (1.7.11.1)
and (1.7.11.2) are well defined and equal to each other. Indeed, for any α ∈ Δ we have

α ≥ sup
x∈X

�|φ(x)|Y /|x|X�

if and only if for all x ∈ X, α ≥ �|φ(x)|Y /|x|X� if and only if for all x ∈ X, α · |x|X ≥
|φ(x)|Y if and only if α belongs to the set on the right-hand side of (1.7.11.1). In other
words, the infimum in (1.7.11.1) is taken along the set of all upper bounds for the family
of (1.7.11.2), so the two expressions have to be equal by (1.3.1.1). �

Now we are going to prove the statement for some special cases.

1.7.12. X = 1β, Y = 1γ . In this case X � Y = 1β � 1γ = 1
γ/β� by 1.7.5. This is
also what is prescribed by (1.7.11.2).

1.7.13. X = 1β, Y arbitrary. Notice that for X = 1β and any coproduct (i.e., disjoint
union) decomposition Y =

∐
ι Yι, the canonical homomorphism

(1.7.13.1) θ :
∐
ι

(X � Yι) →
(
X �

∐
ι

Yι

)
is an isomorphism. Indeed, since 1Δ generates NΔ, it suffices to check that θ becomes
an isomorphism after applying any functor Hom(1α,−), i.e., that

(1.7.13.2) Hom(1α, θ) : Hom
(
1α,

∐
ι

(1β � Yι)
)
→ Hom(1αβ ,

∐
ι

Yι)

is an isomorphism, which is immediate, both sides being canonically isomorphic to∐
ι Hom(1αβ , Yι) since Hom(1α,−) preserves arbitrary coproducts.
Furthermore, this argument shows that both sides of (1.7.13.1) corepresent the same

functor on NΔ, so we can conclude that the right-hand side of (1.7.13.1) exists whenever
the left-hand side exists, and then they are isomorphic.

Representing an arbitrary Δ-normed set Y as
∐

y∈Y 1|y|, we see that

(1.7.13.3) (1β � Y ) ∼=
∐
y∈Y

1
|y|/β�,

which is what is required by (1.7.11.2) for this case.
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1.7.14. X and Y arbitrary. Notice that − � Y transforms arbitrary coproducts into
products; writing X =

∐
x∈X 1|x|, we see that

(1.7.14.1) (X � Y ) ∼=
∏
x∈X

(1|x| � Y ).

Recalling the construction of products inNΔ with the aid of sup-norms discussed in 1.2.4,
we obtain (1.7.11.2) for arbitrary X and Y .

1.7.15. A priori properties of X � Y . The above proof may seem more complicated
than it is necessary. In fact, it is easy to see that X � Y , if exists at all, must satisfy

(X � Y )≤α
∼= Hom(1α, X � Y ) ∼= Hom(1α ⊗X,Y )

∼= {φ : X → Y : |φ(x)|Y ≤ α · |x|X for all x ∈ X}.(1.7.15.1)

In other words, the set of elements of X � Y with norm ≤ α exactly coincides with the
set of “Lipschitz maps X → Y with Lipschitz constant α”. This implies that X � Y
must be equal to the set of all Lipschitz maps X → Y , and that the norm of a Lipschitz
map φ : X → Y must be equal to the infimum of all Lipschitz constants acceptable for φ.

The complicated point is to show that this infimum is a Lipschitz constant for φ as
well, and that the set of all Lipschitz maps X → Y with the norm given by this infimum
satisfies the universal property required from X � Y . This can be shown directly
provided inf βE = β · inf E for any β ∈ Δ and any E ⊂ Δ. This property, in turn, follows
from closedness of the monoidal structure on Δop.

Corollary 1.7.16. Suppose that a commutative ordered monoid Δ admits the infima of
nonempty subsets, and that �γ/β� exists in Δ for all β, γ ∈ Δ such that αβ ≥ γ for at
least one α ∈ Δ. Then the monoidal structure of NΔ is closed, with X � Y given by
the set of all Lipschitz maps X → Y (or, equivalently, by the maps X → Y with finite
Δ∞-norm).

Proof. Using (1.7.2.2) and 1.7.11, we see that it would suffice to show that Δ∞ is a
complete lattice, which is true because Δ admits arbitrary nonempty infima, and that
Δop

∞ is closed as a monoidal category, i.e., �γ/β� exists for all β, γ ∈ Δ∞. This is also
clear:

(1.7.16.1) �γ/β�Δ∞
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
�γ/β�Δ if β, γ < ∞ and αβ ≥ γ for some α ∈ Δ;

∞ if β, γ < ∞, but αβ �≥ γ for all α ∈ Δ;

∞ if β < ∞, γ = ∞;

inf Δ if β = ∞.

�

Corollary 1.7.17. Suppose that a partially ordered set Δ is such that its opposite Δop

is a complete Heyting algebra. Then NΔ is Cartesian closed.

Proof. Since Δ is a complete lattice, we know that NΔ is a bicomplete category. In
particular, it is Cartesian. We introduce a product on Δ by taking binary sup ∨, or,
equivalently, consider binary inf ∧ as a product on Δop. On one hand, we know that
the bifunctor ⊗∨ is isomorphic to the binary direct product bifunctor ×, i.e., the chosen
monoid structure on Δ determines Cartesian monoidal structure on NΔ. On the other
hand, according to 1.7.11, for this monoidal structure to be closed, i.e., for NΔ to
be Cartesian closed, it suffices that Δop be closed for ∧, i.e., that Δop be a Heyting
algebra. �
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1.8. Fuzzy sets. We have already remarked on several occasions that working with Δop

instead of Δ has its advantages. This is due to the fact that NΔ contains a full (monoidal,
if Δ is an ordered monoid) subcategory equivalent to Δop, not to Δ. One might want to
rewrite the theory of Δ-normed sets using “inverse norms”, i.e., Δop-valued norms. A
map is then required to be “inverse norm-extending” instead of “norm-shrinking”. Such
“inverse norms” turn out to have properties similar to those of membership functions of
fuzzy sets, and some fuzzy set and fuzzy logic constructions happen to be special cases
of those considered above for normed sets, when recast in terms of “inverse norms” or
“membership functions”.

1.8.1. Notation for elements of the opposite poset Δop. We need sometimes a notation
for elements of Δop suitable for distinguishing them from “the same” elements of Δ. We
suggest denoting by α �→ α◦ the natural bijection Δ

∼→ Δop, as well as its inverse. Set-
theoretically, this is simply idΔ, since the partially ordered sets Δ and Δop have same
underlying sets. In particular, (α◦)◦ = α and α◦ ≤ β◦ if and only if α ≥ β.

These properties suggest another notation α → α−1 for this same bijection. However,
it may be misleading when Δ is a multiplicatively-written commutative monoid or even
group, so we shall not use it.

1.8.2. Inverse norms as membership functions. Fuzzy sets. A Δ-valued inverse norm
or membership function on a set X, where Δ is any poset, is by definition the same
thing as a Δop-valued norm, i.e., a map | · |◦X or mX : X → Δ. A Δ-fuzzy set is a
pair (X,mX : X → Δ) consisting of a set X and a membership function on X. A
morphism of Δ-fuzzy sets f : (X,mX) → (Y,mY ) is a map of sets f : X → Y such that
mY (f(x)) ≥ mX(x) for any x ∈ X. The category of all Δ-fuzzy sets and their morphisms
will be denoted by FΔ. By definition, FΔ is isomorphic to NΔop .

1.8.3. Interpretation of membership function for Δ = [0, 1]. The most classical version of
fuzzy sets involves membership functions with values in Δ = [0, 1]. In this case, a fuzzy
set X = (X,mX : X → [0, 1]) is to be thought of as a “fuzzy subset” of a “crisp” (i.e.,
usual) set X such that an element x ∈ X belongs to X with “certainty”, “probability”
or “grade” mX(x). When mX takes only values 0 and 1, i.e., is a characteristic function
χA of a “crisp” subset A ⊂ X, we may say that X “is” the “crisp” subset A of X.

This shows that membership functions with values in Δ0 := {0, 1} define an important
subclass of fuzzy sets, namely, those fuzzy sets that are actually crisp.

1.8.4. Restricting Δ to (0, 1]. It sometimes makes sense to forbid the membership func-
tion to take the value 0, thus setting Δ := (0, 1] and Δ0 = {1}. In this case the
“underlying set” or “support” X of a fuzzy set X = (X,mX) will not have “superfluous
elements”, i.e., the elements that belong to X with certainty 0.

1.8.5. Δop isomorphic to R≥0. Notice that (0, 1]op and [0, 1]op are isomorphic to R≥0

and sR≥0, respectively, via the map p �→ 1/p − 1. Another way of establishing such an
isomorphism is given by p �→ − log p. This means that the study of (0, 1] or [0, 1]-fuzzy
sets is essentially equivalent to the study of R≥0 or sR≥0-normed sets.

There are other ways to transform norms into membership functions and conversely.
For example, one can convert a normed set (X, | · |X) into the fuzzy set (X, e−| · |X )
using the “Laplace distribution” associated with the original norm. As long as we are
not interested in additional operations on (0, 1] or R≥0, such as multiplication, any
isomorphism (0, 1]op ∼= R≥0 would do.
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1.8.6. Operations with fuzzy sets. An important part of the theory of fuzzy sets is given by
the so-called t-norm fuzzy logics and associated operations with fuzzy sets. Essentially,
one has to define on [0, 1] an associative commutative operation μ (called a t-norm),
making [0, 1] a commutative monoid, and then a corresponding operation ⊗μ is defined
on fuzzy sets, essentially in the same way as in 1.6.1. Some choices of the t-norm μ have
been considered historically:

• The �Lukasiewich t-norm μ(x, y) := max(x+ y − 1, 0).
• The minimum t-norm μ(x, y) := min(x, y), defining the direct product of fuzzy
sets.

• The product t-norm μ(x, y) := xy.

§2. Graded sets and presheaves

2.0. Embedding normed sets into presheaves. We already saw in 1.5.3 that there
is a natural way to embed the category NΔ of Δ-normed sets into the category SetsΔ of

functors Δ → Sets, or, equivalently, into the category Δ̂op of presheaves on Δop. This
embedding I : NΔ → SetsΔ is given by (1.5.3.1):

I(X) = IΔ(X) : α � X≤α := {x ∈ X : |x|X ≤ α}
∼= HomNΔ

(1α, X).
(2.0.0.1)

We would like to study this fully faithful functor in more detail, and extend most con-
structions of the previous section from normed sets to presheaves. In particular, we are
going to show that the essential image of the embedding I consists exactly of projective
objects of SetsΔ, so that NΔ

∼= Proj SetsΔ, and extend the closed monoidal structure
from NΔ to SetsΔ.

2.0.1. Replacing Δ by a small category I. This leads to a further generalization: while
considering SetsΔ, it is natural to replace a poset or an ordered monoid Δ by small
(symmetric monoidal) category I. We say that the objects of SetsI are I-graded sets.
It might be more convenient to replace I with the opposite category Iop, studying the

category of presheaves Î on a small (symmetric monoidal) category I. This leads to
better-looking statements, cf. 1.8. For example, if I is a small closed symmetric monoidal

category, the same is true for Î.

2.1. Normed sets as projective graded sets. Our next goal is to show that the
essential image of the fully faithful functor I : NΔ → SetsΔ consists exactly of projective
objects of SetsΔ. This suggests that Proj(SetsI) is a nice candidate for the role of the
“category of I-normed sets” for any small category I.

Theorem 2.1.1. (Embedding normed sets into graded.) Let Δ be a partially ordered set.

Denote by I = IΔ : NΔ → SetsΔ the functor given by (2.0.0.1). Then I is fully faithful

and limit-preserving, and its essential image consists of projective objects of SetsΔ,
i.e., the objects P such that Hom(P,−) transforms (strict) epimorphisms in SetsΔ into
surjective maps of sets. Therefore, I establishes an equivalence between the category of
Δ-normed sets NΔ and the full subcategory Proj SetsΔ of projective objects of SetsΔ.

The proof of this theorem will be given as a series of observations.

2.1.2. SetsΔ is a topos; all epimorphisms are strict and effective. Notice that SetsΔ is a
topos, actually the topos of presheaves of sets on Δop. This implies that all epimorphisms
in SetsΔ are strict and effective, so we do not have to think about such distinctions while
discussing projective objects of SetsΔ, and that ξ : X → Y is an epimorphism in SetsΔ

if and only if ξα : X(α) → Y (α) is surjective for all α ∈ Δ.
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2.1.3. Underlying set of X can be recovered as colim IΔ(X). Let

X = (X, | · |X : X → Δ)

be a Δ-normed set. Consider the corresponding functor

IX : α � X≤α = {x ∈ X : |x|X ≤ α}
and its colimit colim IX. By definition, this colimit can be computed as the quotient
of the disjoint union of all (IX)(α) = X≤α modulo the smallest equivalence relation
identifying x as an element of X≤α with x as an element of X≤β whenever x ∈ X and
both α and β are greater than or equal to |x|. This description immediately shows that
colim IX is canonically isomorphic to the underlying set of the Δ-normed set X.

2.1.4. Underlying set of a Δ-graded set. We may want to extend our terminology from
Δ-normed to Δ-graded sets by saying that |X | := colimX is the underlying set of a
Δ-graded set X , even if it does not come from a Δ-normed set.

2.1.5. IΔ is faithful. SinceX = colim IX, we see that any morphism, i.e., norm-shrinking
map f : X → Y can be recovered from If simply by applying the colimit functor, which
gives f on underlying sets. This implies the faithfulness of I.

2.1.6. IΔ is fully faithful. Suppose we are given a natural transformation ξ : IX → IY ,
i.e., a compatible collection of maps ξα : X≤α → Y≤α. Put f := colim ξ : X → Y . By
the definition of colimit, ξα coincides with the restriction of the map of sets f to X≤α;
in other words, f : X → Y is a map of sets mapping X≤α to Y≤α, for all α ∈ Δ, i.e., a
norm-shrinking map, or a morphism X → Y in NΔ. Obviously, ξ = I(f), hence I = IΔ
is fully faithful.

2.1.7. IΔ preserves arbitrary limits. Notice that IΔ preserves all limits that exist in NΔ.
This follows from the fact that the limits in SetsΔ are computed componentwise, and the
fact that each component X � (IX)(α) is given by HomNΔ

(1α,−), which commutes
with any limits by definition.

2.1.8. IΔ preserves arbitrary coproducts. This follows again from the fact that the col-
imits in SetsΔ are computed componentwise, and that each component functor

HomNΔ
(1α,−) : X � X≤α

preserves arbitrary coproducts by the explicit construction of 1.3.2.

2.1.9. IΔ transforms any normed singleton 1α into the corepresentable functor hα. No-
tice that (I1α)(β) = HomNΔ

(1β,1α) ∼= HomΔ(α, β) = hα(β), where hα denotes the
covariant functor Δ → Sets corepresentable by α. This means that IΔ1

α ∼= hα, i.e., IΔ
transforms the standard normed singletons into the corresponding corepresentable func-
tors. Since IΔ is fully faithful, we might want to identify 1α with hα and denote the
corepresentable functor hα by 1α. This is consistent with the notation [S]α introduced
below in 2.4.4.

2.1.10. Any IΔX is projective. Since IΔ preserves arbitrary coproducts by 2.1.8 and
transforms 1α into hα, we obtain by (1.5.2.1)

(2.1.10.1) IΔX =
∐
x∈X

h|x|X .

Since all hα are projective in the presheaf category SetsΔ, the functor

Hom(hα,−) : Y � Y (α)



900 N. V. DUROV

transforming presheaf epimorphisms into surjective maps of sets, and any coproduct of
projective objects is again projective, we see that IΔX is a projective object of SetsΔ,
for any normed set X = (X, | · |X).

2.1.11. Any projective object P of SetsΔ is a retract of some IΔX. Suppose that P is
a projective Δ-graded set. Since the hα generate SetsΔ, we can find an epimorphism
p : F :=

∐
x∈X hφ(x) � P from a “free” object F into P . One can take for example

X :=
∐

α∈Δ P (α) with φ : X → Δ equal to α on P (α). Clearly, F ∼= IΔ(X), where
X = (X,φ : X → Δ) is a Δ-normed set.

Now p is an effective epimorphism and P is projective, so p∗ : Hom(P, F ) → Hom(P, P )
has to be surjective, hence p admits a section σ : P → F , so p is a split epimorphism,
e := σ ◦ p is an idempotent on F ∼= IΔ(X), and P is a retract of F with respect to the
idempotent e: P ∼= Eq(e, idF ) ∼= Coeq(e, idF ).

2.1.12. NΔ is idempotent-complete. Let X = (X, | · |X) be a Δ-normed set, and let
e = e2 : X → X be an idempotent on X. We claim that the corresponding retract
Y := Eq(e, idX) exists in NΔ, hence NΔ is idempotent-complete. Indeed, by 1.2.6
Y = Eq(e, idX) can be computed as the subset Y = {x ∈ X : e(x) = x} with norm
given by restriction of | · |X .

2.1.13. Any projective Δ-graded set P is free, i.e., isomorphic to some IΔY . We have
seen that any projective P is a retract of some IΔX with respect to an idempotent
eP ∈ End(IΔX). We have already shown that IΔ is fully faithful, so eP comes from
an idempotent e ∈ EndNΔ

(X). Now NΔ is idempotent complete, so e defines a retract
X � Y . Any functor preserves retracts of idempotents whenever they exist; in particular,
IΔY is the retract of IΔX corresponding to IΔ(e) = eP , hence is isomorphic to P .

This completes the proof of 2.1.1.

2.2. Free and projective objects of SetsI . We would like to extend some of the
previous considerations to the more general case of SetsI , where I is any small category.
In particular, we would like to study free and projective objects of this category, and
discuss whether they admit a description as “I-normed sets”.

2.2.1. Set of connected components of I-graded set. Let X : I → Sets be an I-graded set
(cf. 2.0.1). Denote by S the constant functor I → Sets with value S, for any set S. By
the definition of colimit,

(2.2.1.1) HomSetsI (X , S) ∼= HomSets(colimX , S).

On the other hand, recall that for any object X of a (Grothendieck) topos E , one can
define the proset π0X : Pro(Sets) of connected components of X by

(2.2.1.2) HomE (X,SE )
∼= HomPro(Sets)(π0X,S).

Comparing these two statements, we see that the colimit colimX is the set of connected
components π0X of X . This is true in any presheaf topos.

2.2.2. Terminology: the underlying set of an I-graded set. We sometimes say that the
colimit colimX is the underlying set of an I-graded set X . This terminology is compatible
with that of 2.1.4.
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2.2.3. Decomposition into a disjoint union of connected components. Since π0X is a set,
we obtain a canonical decomposition of π0X into a disjoint union of connected objects,
indexed by π0X . It can be obtained as follows. For any set S and any element s ∈ S,
denote by is : 1 → S the only map from a singleton into S with image s. By adjunction,
we have a morphism X → π0X . For any c ∈ π0X , we construct the pullback

Xc
��

��

1

ic

��
X �� π0X .

(2.2.3.1)

Since π0X =
∐

c∈π0X 1 is a coproduct decomposition in the topos SetsI , and the
coproducts in topoi are universal and disjoint, we see that

(2.2.3.2) X ∼=
∐

c∈π0X
Xc.

Each π0Xc is a singleton, identified with the subset {c} ⊂ π0X ; this means that each

Xc is a connected object of the topos SetsI (in fact, Y is connected if and only if π0Y is a
singleton), and (2.2.3.2) is a canonical decomposition of the object X into a coproduct (or
“disjoint union”) of its “connected components” (i.e., some connected objects), indexed
by π0X .

One can actually construct such decompositions of an object X in any topos, provided
π0X is a set, and not merely a proset.

2.2.4. P is projective in a topos if and only if any epimorphism X � P splits. Since
(effective) epimorphisms are stable under pullbacks in a topos, P is a projective ob-
ject of a topos E if and only if any epimorphism π : X � P splits, i.e., admits a
section. Indeed, necessity is obvious: since all epimorphisms in a topos are effective,
π∗ : HomE (P,X) → HomE (P, P ) has to be surjective; in particular, one can find a
preimage σ of idP . Conversely, suppose that all epimorphisms with target P split, and
consider an epimorphism p : X → Y and a morphism f : P → Y . We would like to
show that p∗ : HomE (P,X) → HomE (P, Y ) is surjective, i.e., that f factorizes through
p. This is equivalent to the pullback p′ : X ×Y P → P admitting a section σ, because

P
σ→ X ×Y P

pr1→ X will then provide the required factorization for f ; but epimorphisms
are stable under pullback in a topos, so p′ is an epimorphism as well, and it splits by
assumption.

2.2.5. P = P ′ 
 P ′′ is projective if and only if both P ′ and P ′′ are. Recall that any
coproduct of projective objects is again projective, because any product of surjective
maps of sets is surjective. We want to show that, conversely, if a coproduct P = P ′ 
P ′′

is a projective object of a topos E , the same holds for P ′ and P ′′. By symmetry, one
has to show only the projectivity of P ′, i.e., that any epimorphism p′ : X ′ � P ′ splits.
Consider the pushout diagram

X ′ ��

p′

��

X ′ 
 P ′′

p

��
P ′ i1 �� P ′ 
 P ′′.

(2.2.5.1)

Since p is a pushout of p′, it is an epimorphism. By assumption, P = P ′
P ′′ is projective,
so p admits a section σ. Now the above diagram is bi-Cartesian in any topos E , because
all coproducts are universally disjoint in a topos. This means that p′ is a pullback of p,
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so the corresponding pullback σ′ : P ′ → X ′ of σ is a section of p′, i.e., any epimorphism
X ′ → P ′ splits.

2.2.6. P is projective if and only if all its components are. Now suppose that P is an
object of a topos E such that π0P is a set. Consider its decomposition into connected
components:

(2.2.6.1) P =
∐

c∈π0P

Pc.

The above results show that P is projective if and only if all its connected components
Pc are.

2.2.7. Application to projective presheaves. We saw in 2.2.1 that, for any object P of a
presheaf topos SetsI , the proset of its connected components π0P = colimP is actually a
set. This means that any projective object P of SetsI admits a canonical decomposition
into a “disjoint union” (i.e., coproduct) of connected projective objects, indexed by
π0P = colimP.

2.2.8. Connected projective presheaves are retracts of representable functors. We claim
that the connected projective objects of SetsI are precisely the retracts of corepresentable
functors ha. Indeed, any corepresentable functor ha is projective, since

HomSetsI (h
a,−) : X � X (a)

transforms epimorphisms into surjective maps of sets, and connected, since

HomSets(colimha, S) ∼= HomSetsI (h
a, S) ∼= S(a) = S ∼= HomSets(1, S)

for any set S, so π0h
a = colimha ∼= 1. Any retract of the projective object ha is still

projective; connectedness is also stable under retracts, because π0 of such a retract is a
retract of singleton, hence also is a singleton.

Conversely, suppose that P is a connected projective object of SetsI . Since SetsI is
generated by corepresentable functors, we can find an epimorphism p : F :=

∐
ι∈J haι �P

for some family (aι)ι∈J of objects of I. The projectivity of P implies that p admits a
section σ : P →

∐
ι h

aι . The connectedness of P implies that the image σ(P) lies inside
one of haι , i.e., that σ factorizes through one of iι : h

aι → F =
∐

ι h
aι : otherwise the

pullback along σ of this coproduct decomposition of F would provide a nontrivial decom-
position of the connected P into a coproduct, coproducts in a topos being universally
disjoint. Now if σ = iισ

′ for some σ′ : P → haι , then σ′ is a section of piι, and therefore
P is a retract of the corepresentable functor haι as claimed.

2.2.9. Replacing I with an idempotent-complete rigid category does not change SetsI .
Notice that replacing I with its idempotent completion replaces the presheaf category
SetsI with an equivalent one. Furthermore, replacing I with its “rigidification” (the full
subcategory containing exactly one representative of each isomorphism class of objects)

again replaces SetsI with an equivalent category. This means that it suffices to study
SetsI assuming I to be idempotent-complete and rigid.

2.2.10. Projective objects of SetsI as I-graded sets. Let I be a rigid idempotent-complete
small category. Consider a projective object P of SetsI . We have already established
that the connected component decomposition P =

∐
c∈π0P Pc of P exists and is naturally

indexed by π0P = colimP. Any its component Pc is a retract of a corepresentable
functor ha, hence representable itself, I being assumed idempotent-complete. In this
way Pc is isomorphic to hac for an object ac : I, usually determined up to isomorphism.
But I has been assumed rigid, so isomorphic objects of I have to be equal. This means
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that each ac ∈ Ob I is uniquely determined, and we obtain a map a : π0P → Ob I such
that

(2.2.10.1) P ∼=
∐

c∈π0P
ha(c).

2.2.11. Definition of an I-normed set. Let I be any small category. We define an I-nor-
med set to be a couple (X, | · |X) consisting of a set X and a map | · |X : X → Ob I.
Any I-graded set X = (X, | · |X) defines a projective object IX of SetsI by

(2.2.11.1) IX :=
∐
x∈X

h|x|X .

All projective objects of SetsI arise in this way, at least if I is idempotent complete. If
we define morphisms between I-graded sets X and Y as morphisms between IX and IY
in SetsI , we obtain a category NI of I-normed sets such that ProjSetsI is equivalent
to NI if I is idempotent complete. In general, NI is equivalent only to Free SetsI , the
category of “free” objects of SetsI , i.e., coproducts of corepresentable functors.

2.2.12. Explicit description of morphisms between I-normed sets. Let

X = (X, | · |X : X → Ob I) and Y = (Y, | · |Y : Y → Ob I)
be two I-normed sets. We would like to compute HomNI (X,Y ) = HomSetsI (IX, IY )
explicitly. By definition,

IX =
∐
x∈X

h|x|X ,(2.2.12.1)

IY =
∐
y∈Y

h|y|Y .(2.2.12.2)

Any morphism φ : IX → IY induces a map sφ := π0(φ) : X ∼= π0(IX) → Y ∼= π0(IY )
between the underlying sets of X and Y , i.e., sets of connected components of IX and
IY . This means that a connected component h|x|X of IX is mapped into the connected

component h|sφ(x)|Y of IY . By Yoneda,

HomSetsI
(
h|x|X , h|sφ(x)|Y ) ∼= HomI

(
|sφ(x)|Y , |x|X

)
,

so φ is completely determined by the map of sets sφ : X → Y and by ξ : X → ArI such
that ξx ∈ HomI

(
|sφ(x)|Y , |x|X

)
for any x ∈ X.

We arrive to the following definition.

Definition 2.2.13. (Elementary definition of I-normed sets.) Let I be a small category.
An I-normed set X is a couple (X, | · |X), consisting of a set X (called the underlying
set of X) and a map | · |X : X → Ob I, called an I-valued norm on X. A morphism
(X, | · |X) → (Y, | · |Y ) is a couple (f, ξ) consisting of a map of underlying sets f : X → Y
and a map ξ : X → Ar I such that ξx is a morphism from |f(x)|Y to |x|X for any x ∈ X.
Normed sets together with the morphisms thus defined constitute a category NI , called
the category of I-normed sets.

We have also proved the following theorem, generalizing 2.1.1.

Theorem 2.2.14. (Projective objects of SetsI .)

a) Let I be a small category, I ′ its idempotent completion (sometimes called “Karou-
bi closure”), I ′′ the rigidification of I ′. Then restriction along natural functors

I → I ′ ← I ′′ induces equivalences between categories SetsI ← SetsI
′
→ SetsI

′′
,

as well as between the corresponding categories of projective objects.



904 N. V. DUROV

b) Let I be an idempotent-complete small category. Denote by I : NI → SetsI the

natural functor from the category of I-normed sets into SetsI given by (2.2.11.1).
Then I is a fully faithful functor with essential image equal to the full subcategory
Proj SetsI of projective objects of SetsI .

c) Let I be an arbitrary small category. Then I : NI → SetsI is a fully faithful

functor with essential image equal to the full subcategory FreeSetsI of SetsI

consisting of “free” objects, i.e., coproducts of corepresentable functors.

2.2.15. Elements of HomI(|f(x)|, |x|) as witnesses for |f(x)| ≤ |x|. Comparison with
the case of Δ-graded and Δ-normed sets, for Δ a partially ordered set (cf. 2.1.1),
shows us some distinctions with the more general case. For example, a morphism
(f, ξ) : (X, | · |X) → (Y, | · |Y ) is no longer determined by the map of underlying sets
f : X → Y , because now there can be more than one morphism ξx : |f(x)|Y → |x|X
in I. One might think of ξx as a “witness for |f(x)|Y ≤ |x|X”, with potentially more than
one “witness” for such an inequality. This way of thinking sometimes helps generalize
statements about Δ-normed sets to I-normed sets.

2.2.16. Components IX(α) of IX. Let X = (X, | · |X : X → Ob I) be an I-normed set,

and IX =
∐

x∈X h|x| its image in SetsI . When I = Δ, we could write

(2.2.16.1) IX(α) ∼= X≤α =
{
x ∈ X : |x|X ≤ α

}
.

In the general case, we have

(2.2.16.2) IX(α) =
( ∐

x∈X

h|x|
)
(α) =

∐
x∈X

h|x|(α) =
⊔
x∈X

HomI
(
|x|X , α

)
.

Again, instead of subset of X characterized by the property |x|X ≤ α, we consider the
set of pairs (x, ξ), where x is an element of X, and ξ : |x|X → α is a “witness for |x| ≤ α”.

However, IX(α) can no longer be identified with a subset of X: we only have a
canonical map IX(α) → X, compatible with all morphisms (IX)(φ), φ : α → β, such
that the collection of all these maps induces an isomorphism colim IX → X.

2.2.17. Limits and colimits in NI and SetsI . Arbitrary (small) limits and colimits ob-

viously exist in the functor category SetsI ; they can be computed componentwise. As
to the category NI , equivalent to full subcategory Proj SetsI of SetsI (for idempotent-
complete I), we can say that whenever certain limits or colimits preserve projectivity of

objects of SetsI , they exist in NI as well, and are preserved by the functor I. Further-
more, this condition is necessary for the existence of limits: I preserves all limits that
exist in NI , because all component functors X � (IX)(α) ∼= HomNI (1

α, X) do, hence
the limit limD X of a diagram X : D → NI exists if and only if limD I ◦X is a projective
object of SetsI .

2.2.18. Coproducts in NI . For example, any coproduct of projective objects is still pro-
jective (and any coproduct of free objects is still free), so arbitrary coproducts exist in
NI and are preserved by I. The explicit formula (2.2.11.1) shows that coproducts in NI
can be computed with the aid of disjoint unions as in 1.3.2.

2.2.19. Binary products in NI . Notice that for anyX = (X, | · |X), Y = (Y, | · |Y ) : NI ,

(2.2.19.1) IX × IY =
∐

(x,y)∈X×Y

h|x| × h|y|.
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Suppose that the binary coproducts exist in I; let us denote them by ∨. Then hα × hβ ∼=
hα∨β , so the binary products exists in NI in this case, and can be computed by intro-
ducing the ∨-norm on X × Y :

(2.2.19.2)
∣∣(x, y)∣∣

X×Y
:= |x|X ∨ |y|Y .

This corresponds of course to the “sup-norm” in the case of I = Δ.

2.2.20. Arbitrary products in NI . Let J be a set, let {Xι}ι∈J be an J-indexed family of
I-normed sets, and let Xι = (Xι, | · |Xι

). Suppose that J-indexed coproducts exist in I.
Then the direct product X :=

∏
ι∈J Xι exists in NI , and can be computed as follows.

The underlying set of X is X :=
∏

ι∈J Xι, and the I-valued norm | · |X : X → Ob I is
given by

(2.2.20.1)
∣∣(xι)ι

∣∣
X :=

∨
ι∈J

|xι|Xι
.

Here
∨

ι∈J is a notation for J-indexed coproducts in I.
This statement can be proved for example by checking that X = (X, | · |X ) thus

constructed satisfies the universal property expected from the direct product
∏

ι Xι.

Since I : NI → SetsI preserves all limits that exist in NI , we see that IX remains a
product of IXι in SetsI . In particular, the functor π0 = colim: Proj(SetsI) → Sets
commutes with J-indexed products in this case.

2.2.21. Equalizers in NI . Suppose that the coequalizers exist in I. Then the equalizers
exists in NI (and are preserved by I : NI → SetsI , together with all other limits); com-
pare with 1.2.6. Indeed, given two parallel morphisms f = (f, ξ) and g = (g, η) : X → Y ,
where X = (X, | · |X ) and Y = (Y, | · |Y), we construct their equalizer Z = (Z, | · |Z)
and j = (j, κ) : Z → X as follows. Put Z := Eq(f, g) in the category of sets; thus
Z = {x ∈ X : f(x) = g(x)}. For any x ∈ Z, we have two parallel morphisms ξx,
ηx : |f(x)|Y = |g(x)|Y ⇒ |x|X in I. Denote their coequalizer in I by |x|Z , together with
the corresponding map κx : |x|X → |x|Z . Then Z := (Z, | · |Z) is an object of NI , and
j = (j, κ), with j : Z ↪→ X the natural embedding, is an equalizer of f and g in NI .

2.2.22. Arbitrary limits in NI . Combining 2.2.20 with 2.2.21, we see that whenever
arbitrary (small) colimits exist in I, arbitrary (small) limits exist in NI as well, and are

preserved by I : NI → SetsI . In other words, Proj(SetsI) = Free(SetsI) is stable under

(small) limits in SetsI . In fact, one can prove a refined version of this result: if for some
small category D all Dop-indexed colimits exist in I, then all D-indexed limits exist in
NI and commute with the underlying set functor π0 : NI → Sets, X = (X, | · |X ) � X.

We see that, when I is cocomplete (i.e., arbitrary small colimits exist in I), then NI
is complete, and I : NI → SetsI commutes with arbitrary (small) limits, as if it had a
left adjoint. We are going to prove a (dual) result in this direction.

2.2.23. Connected categories, limits and colimits. Recall that a category D is said to be
connected if it is nonempty, and if it cannot be written as the coproduct (i.e., disjoint
union) of two nonempty categories: D �= ∅, D �= D′ 
 D′′ for D′, D′′ �= ∅. We say that
a limit or colimit is connected if it is taken along a (usually small) connected category.

It is worthwhile to remark that, given a presheaf X : Î, the category I/X is con-

nected if and only if X is connected as an object of the topos Î. Furthermore, if
X = inj limι :D hα(ι) is a colimit of representable presheaves, then X is connected if
and only if the index category D is connected, i.e., if and only if the colimit expressing
X is connected.
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Theorem 2.2.24. (I-normed sets as a localization of SetsI .) Suppose that the (small)
connected limits exist in the small category I (for example, I is complete); in particular,

I is idempotent complete. Then the fully faithful functor I : NI → SetsI admits a left
adjoint Q : SetsI → NI , exhibiting a full subcategory Proj(SetsI) = Free(SetsI) of SetsI ,
equal to the essential image of I, as a localization (or “reflection” in another terminology)

of the category SetsI .

Proof. We want to give an explicit construction of a left adjoint Q : SetsI → NI . Given
any X : SetsI , consider the set π0X = colimI X and the connected component decom-
position

(2.2.24.1) X =
∐

c∈π0X
Xc

of (2.2.3.2). Each Xc can be written as a connected colimit of corepresentable functors,
for example, in the canonical way:

(2.2.24.2) Xc
∼= inj lim

α :Iop
/Xc

hα.

Here we use the fact that the category Iop
/X is connected if and only if presheaf X : Îop

is connected.
Define an object |c| of I to be “the same” limit computed in I (recall that the Yoneda

embedding Iop → SetsI is contravariant in this case):

(2.2.24.3) |c| := proj lim
α : (Iop

/Xc
)op

α.

By construction, we have an arrow Xc = inj limα:Iop
/Xc

hα → h|c|, which is universal

with respect to all morphisms from Xc into corepresentable functors. Since Xc is con-
nected, this arrow is also universal with respect to all morphisms from Xc into objects of
Free(SetsI), i.e., Q(Xc) is singleton 1|c| with the norm of its only point put equal to |c|.
Now, Q has to respect coproducts; applying this (partially defined) functor to (2.2.24.1),
we see that Q(X ) has to be the set of connected components π0X with the norm of each
c ∈ π0X given by (2.2.24.3). It is easy to see that, indeed, (π0X , | · |) has the universal
property required from Q(X ). �

Corollary 2.2.25. If I admits the (small) connected limits, for example, it is complete,
then NI is cocomplete, i.e., arbitrary (small) colimits exist in NI . They can be com-
puted by applying the localization functor Q to the corresponding colimit computed in
SetsI . The underlying set functor π0 : NI → Sets is cocontinuous, i.e., commutes with
all colimits.

Proof. Only the last statement requires a proof. It follows from the fact that π0 = colimI
commutes with all colimits in SetsI , being a colimit itself, and the fact that Q preserves
π0; more precisely, the “localization” (or “reflection”) morphism X → IQ(X ) becomes
an isomorphism after applying π0. This is a consequence of the explicit construction of
Q(X ) given during the proof of 2.2.24. �

2.2.26. Explicit construction of Q for I = Δ. Suppose that I is a partially ordered set Δ
with infima of nonempty subsets, for example R≥0 or sR≥0. Then the functor Q : SetsΔ →
NΔ can be described as follows. The underlying set of Q(X ) for some X : SetsΔ has
to be equal to π0X = colimΔ X . Denote by φα the natural map X (α) → π0X for each
α ∈ Δ; then the norm | · |Q(X ) : π0X → Δ is defined by

(2.2.26.1) |x|Q(X ) = inf{α ∈ Δ : φ−1
α (x) �= ∅}.
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Proposition 2.2.27. Suppose I admits all connected limits and finite coproducts, and
that Iop is Cartesian closed. Then the left adjoint Q : SetsI → NI to I preserves the
finite products.

Proof. Our assumptions imply the existence of Q by 2.2.24 and the existence of finite
products in NI by 2.2.20, preserved by the fully faithful functor I : NI → SetsI . We
want to show that γX ,Y : Q(X × Y) → Q(X ) ×Q(Y) is an isomorphism for any X , Y :

SetsI , since the preservation by Q of the final object ho, where o is the initial object of I,
is trivial. Now the binary products are distributive with respect to arbitrary coproducts
both in SetsI (which is a topos) and NI (where distributivity follows from explicit
constructions), and Q preserves the coproducts, being a left adjoint, so we can express
both X and Y as the coproducts (“disjoint unions”) of their connected components.
Therefore, we may assume both X and Y connected.

Now write X and Y as (connected) colimits of the corepresentable functors: X =

inj limι:D hα(ι), Y = inj limκ:D′ hβ(κ). Since SetsI is Cartesian closed, binary products in

SetsI commute with colimits, and we obtain

(2.2.27.1) X × Y ∼= inj lim
(ι,κ):D×D′

hα(ι) × hβ(κ) ∼= inj lim
ι,κ

hα(ι)∨β(κ).

The explicit construction of Q given during the proof of 2.2.24 tells us that Q(X × Y)
is the normed singleton 1γ with γ equal to “the same” colimit computed in Iop (or the
dual limit computed in I):
(2.2.27.2) Q(X × Y) = 1γ where γ = inj lim

ι,κ

(
α(ι)×Iop β(κ)

)
in Iop.

Now, since Iop has been assumed to be Cartesian closed, the binary products commute
with arbitrary colimits in this category as well, so we have

(2.2.27.3) γ ∼= γ′ ×Iop γ′′ where γ′ = inj lim
ι

α(ι), γ′′ = inj lim
κ

β(κ).

It remains to observe that Q(X ) = 1γ′
and Q(Y) = 1γ′′

, so that Q(X )×Q(Y) = 1γ′∨γ′′ ∼=
1γ = Q(X × Y) as claimed. �
2.2.28. The case of I = Δ with infima of nonempty subsets and finite suprema. Proposi-
tion 2.2.27 is applicable in particular to I = Δ, where Δ is a partially ordered set with
infima of nonempty subsets and finite suprema, distributive with respect to each other:

(2.2.28.1) inf
ι∈I

(β ∨ αι) = β ∨ inf
ι∈I

αι, I �= ∅.

For example, Δ = R≥0 or sR≥0 have these properties.
Notice that the case of I = Δ with infima of nonempty subsets already appeared in

several statements, such as 1.3.1. Is 2.2.25 indeed a generalization of this statement?
All our examples of categories I with arbitrary (small) connected limits and finite

coproducts come from partially ordered sets, so we might wonder whether there are any
other examples. The answer turns out to be negative.

2.2.29. Small I with connected limits and binary coproducts is a poset. We claim that
any small category I admitting arbitrary (small) connected limits and binary coprod-
ucts is equivalent to a partially ordered set Δ with infima of nonempty subsets and
joins. Let I be such a small category; we have to show that I is a preorder, i.e.,
that cardHomI(X,Y ) ≤ 1 for any X, Y : I. Suppose that this is not the case; then we
can choose two distinct parallel morphisms u �= v : X ⇒ Y between two objects of I.

We have assumed the existence of binary coproducts in I; in particular, we have
X 
X with two embeddings i, j : X ⇒ X 
X and the codiagonal map δ = 〈idX , idX〉,
characterized by δ ◦ i = δ ◦ j = idX . By the universal property of X 
X, the morphisms
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u and v induce w := 〈u, v〉 : X 
 X → Y such that w ◦ i = u, w ◦ j = v. Since u �= v,
we must also have i �= j. We see that without loss of generality, we may assume that
Y = X 
X, and u and v are standard embeddings i, j : X ⇒ X 
X.

Now we want to use the existence of connected limits in I. For any small set S, denote

by PS
δS→ X the fibered product of S copies of δ : X 
X → X. The set of sections of δS

is

(2.2.29.1) HomI/X
(X,PS) ∼= HomI/X

(X,X 
X)S ⊃ {i, j}S .

We see that

(2.2.29.2) HomI(X,PS) ⊃ HomI/X
(X,PS) ⊃ {i, j}S .

Since i �= j, we obtain

(2.2.29.3) cardArI ≥ cardHomI(X,PS) ≥ 2cardS

for any small set S. Since I was assumed to be a small category, we might take S := ArI;
then (2.2.29.3) implies cardS ≥ 2cardS , which is absurd.

2.2.30. I-fuzzy sets and presheaves. One can dualize all of the above statements and
constructions, replacing I with Iop, as discussed in 1.8. The category NI of I-normed
sets becomes the category FI of “I-fuzzy sets”, consisting of pairs X = (X,mX ), where
X is any set, and mX : X → Ob I is an “I-valued membership function”. Constructions
with I-fuzzy sets turn out to be related to “I-valued logics” in a more natural way than
for I-normed sets. For example, the direct product of two I-fuzzy sets X = (X,mX ) and
Y = (Y,mY) is given by X×Y with membership functionmX×Y(x, y) := mX (x)∧mY(y),
where ∧ is the direct product of I corresponding to (additive) logical conjunction under
the Curry–Howard correspondence. This might be understood as “(x, y) ∈ X ×Y if and
only if x ∈ X and y ∈ Y”, interpreted in the I-valued logic.

2.3. Monoidal structures on I-graded sets. We would like to introduce monoidal
structures on I-graded and I-normed sets induced by a monoidal structure on I, much as
in 1.6. Such considerations are more convenient to make in the context of contravariant
functors, i.e., presheaves, and I-fuzzy sets; statements for I-graded sets, i.e., objects
of SetsI , and I-normed sets, can be obtained afterwards by replacing I with the dual
category Iop.

2.3.1. Colimit-preserving extension of a bifunctor from I to Î. We claim that any bi-
functor ⊗ : I × I → I can be uniquely (up to isomorphism) extended to a bifunctor

⊗̂ : Î × Î → Î, which commutes with colimits in each argument and restricts to (a
functor isomorphic to) ⊗ via Yoneda embedding:

(2.3.1.1) hS⊗̂hT
∼= hS⊗T for any S, T ∈ I.

This can be deduced from the fact that any presheaf can be written as a colimit of
representable presheaves:

(2.3.1.2) X ∼= colimS:I/X
hS .

This implies that necessarily

(2.3.1.3) X⊗̂Y ∼= colim(S,T ) : I/X×I/Y
hS⊗T .
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2.3.2. Alternative construction via left Kan extension. Notice that

I/X × I/Y ∼= (I × I)/X�Y ,

where X � Y : Î × I is given by

(2.3.2.1) (X � Y )(S, T ) := X(S)× Y (T ).

Then formula (2.3.1.3) turns out to be the formula for the image of X � Y under left

Kan extension ⊗! : Î × I → Î of ⊗ : I × I → I. Therefore,

(2.3.2.2) X⊗̂Y ∼= ⊗!(X � Y ).

2.3.3. Alternative description via “bilinear maps”. Consider the trifunctor

BilinÎ : Î
op × Îop × Î → Sets,

given by

(2.3.3.1) BilinÎ(X,Y ;Z) := HomÎ(X⊗̂Y, Z).

Using (2.3.2.2) together with the universal property of the left Kan extensions, we obtain

(2.3.3.2) BilinÎ(X,Y ;Z) ∼= HomÎ
(
⊗!(X � Y ), Z

) ∼= HomÎ×I(X � Y, Z ◦ ⊗).

In other words, the “bilinear maps” Φ ∈ BilinÎ(X,Y ;Z) can be described as collections
of maps of sets

(2.3.3.3) ΦS,T : X(S)× Y (T ) → Z(S ⊗ T ), where S, T : I,

functorial in S and T in a natural fashion: for any f : S′ → S, g : T ′ → T , we have

X(S)× Y (T )
X(f)×Y (g) ��

ΦS,T

��

X(S′)× Y (T ′)

ΦS′,T ′

��
Z(S ⊗ T )

Z(f⊗g) �� Z(S′ ⊗ T ′).

(2.3.3.4)

This direct description enables us to define first the trifunctor BilinÎ , and then X⊗̂Y

as the object of Î corepresenting BilinÎ(X,Y ;−).

2.3.4. Generalization to polyfunctors. In fact, 2.3.1 can be generalized to polyfunctors:
any functor M : In → I can be uniquely (up to isomorphism) extended to a functor

M̂ : În → Î commuting with arbitrary colimits separately in each argument. The proof is

essentially the same. For example, M̂(X1, . . . , Xn) can be constructed as M!(X1 �X2 �
· · ·�Xn), where M! : În → Î is the left Kan extension of M .

2.3.5. Consequence for associativity and commutativity constraints. This generalization
is useful when a bifunctor ⊗ : I × I → I admits an associativity constraint α,

αS,T,U : (S ⊗ T )⊗ U
∼→ S ⊗ (T ⊗ U).

In this case, applying existence and uniqueness statements for extensions of trifunctors
(S, T, U) � (S⊗T )⊗U

∼→ S⊗(T⊗U), we obtain the existence of a functorial isomorphism
α̂ between (X⊗̂Y )⊗̂Z and X⊗̂(Y ⊗̂Z). Next, applying uniqueness for n = 4, we see
that α̂ satisfies the pentagon axiom, so α̂ is an associativity constraint for ⊗̂. Similar
arguments apply to commutativity and unit constraints and their relationship with the
associativity constraint.
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2.3.6. Monoidal structure on Î. We see that whenever I = (I,⊗) is a (symmetric)

monoidal category, the same is true about Î, with (symmetric) monoidal structure given
by the extension ⊗̂ of ⊗ constructed above. This monoidal structure is closed, and the

Yoneda embedding h : I → Î has a natural structure of a monoidal functor. These

properties characterize the monoidal structure on Î uniquely.

2.3.7. Closedness of the monoidal structure of Î. We would like to show that the functor

HY,Z : X � BilinÎ(X,Y ;Z) is representable for any fixed Y , Z : Î and any bifunctor
⊗ : I × I → I. This would imply in particular the closedness of the monoidal structure

of Î, when ⊗ is part of the monoidal structure on I.
Indeed, HY,Z : X � BilinÎ(X,Y ;Z) = HomÎ(X � Y, Z ◦ ⊗) transforms arbitrary

colimits into limits, because X � X�Y preserves arbitrary colimits, and HomÎ(−, Z◦⊗)

transforms colimits into limits. This is sufficient for representability of a functor Îop →
Sets.

Presheaf Y � Z representing HY,Z can easily be recovered by Yoneda:

(Y � Z)(S) ∼= HomÎ(hS , Y � Z) ∼= HY,Z(hS) = BilinÎ(hS, Y ;Z).

Writing any X : Î as a colimit of representable sheaves, we see that HY,Z(X) →
Hom(X,Y � Z) is an isomorphism for all X, not only for representable.

2.3.8. Formulas for the inner Hom Y � Z. We have established the following formula
for the inner Hom Y � Z:

(2.3.8.1) (Y � Z)(S) ∼= BilinÎ(hS , Y ;Z) ∼= HomÎ(hS⊗̂Y, Z).

In particular, for any T : I we have

(2.3.8.2) (hT � Z)(S) ∼= HomÎ(hS⊗̂hT , Z) ∼= Z(S ⊗ T ).

Denote by rT : S � S ⊗ T the “right multiplication by T” endofunctor on I. Then

(2.3.8.3) (hT � Z) ∼= Z ◦ rT = r∗TZ.

By the universal property of left Kan extensions, this implies that

(2.3.8.4) X⊗̂hT
∼= rT,!X

and by interchanging the arguments

(2.3.8.5) hS⊗̂Y ∼= lS,!Y, where lS : T � S ⊗ T .

Finally, this implies

(Y � Z)(S) ∼= HomÎ(hS⊗̂Y, Z) ∼= HomÎ(lS,!Y, Z)

∼= HomÎ(Y, l
∗
SZ) = HomÎ(Y, Z ◦ lS).

(2.3.8.6)

In other words, (Y � Z)(S) consists of collections of maps of sets φ = (φT )T :I ,
φT : Y (T ) → Z(S ⊗ T ) compatible with all morphisms g : T ′ → T in I.

2.3.9. Restriction of ⊗̂ to I-fuzzy sets. Notice that ⊗̂ preserves coproducts in each ar-
guments, and transforms pairs of representable presheaves into representable presheaves.

This implies that Free(Î), the full subcategory of “free” presheaves (i.e., presheaves iso-
morphic to a coproduct of representable presheaves), is stable under ⊗̂. In particular,

when ⊗ is a (symmetric) monoidal structure on I, we see that Free(Î) is a monoidal

subcategory of Î.
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On the other hand, the functor I : FI → Î transforming I-fuzzy set X = (X,mX )
into the presheaf

(2.3.9.1) IX :=
∐
x∈X

hmX (x)

establishes equivalence between FI and Free(Î). This means that we can transport

the restriction of ⊗̂ to Free(Î) along the quasi-inverse of this equivalence and obtain a
bifunctor ⊗ = ⊗F on FI . When ⊗ is a (symmetric) monoidal structure on I, this ⊗F
determines a symmetric monoidal structure on FI , and I becomes a monoidal functor.

2.3.10. Explicit formula for the tensor product of I-fuzzy sets. More explicitly, let X =

(X,mX ) and Y = (Y,mY) be two I-fuzzy sets. Then, since Î preserves coproducts in
each argument and restricts to the original ⊗ on representable presheaves, we have

(2.3.10.1) IX⊗̂IY ∼=
∐

x∈X,y∈Y

hmX (x)⊗mY(y).

This is canonically isomorphic to I(X ⊗ Y) if we put

X ⊗ Y := (X × Y,mX⊗Y), where(2.3.10.2)

mX⊗Y(x, y) := mX (x)⊗mY(y).(2.3.10.3)

Our next goal is to provide a formula for the inner Hom of I-fuzzy sets. The following
statement is a generalization of 1.7.11.

Theorem 2.3.11. (Inner Homs for I-fuzzy sets.) Suppose that I is a closed symmetric
monoidal category such that arbitrary (small) products exist in I. Then the category of

I-fuzzy sets FI is also a closed symmetric monoidal category, and the functor I : FI → Î
preserves the inner Hom. Furthermore, given two I-fuzzy sets X = (X,mX ) and Y =
(Y,mY), the inner Hom X � Y can be constructed as follows. Its underlying set is the
set Hom(X,Y ) = HomSets(X,Y ) of all maps of sets φ : X → Y , and the membership
function is given by

(2.3.11.1) mX�Y(φ) =
∏
x∈X

(
mX (x) � mY

(
φ(y)

))
.

Proof. We have to show that IX � IY , computed in Î, is isomorphic to IZ, where
Z = (Hom(X,Y ),mZ), with mZ given by formula (2.3.11.1). This would imply Z ∼=
(X � Y) in FI , since I : FI → Î is a fully faithful monoidal functor. Computation of
IX � IY will be done in several steps: �

2.3.12. � in Î preserves the limits. Observe that � in Î transforms the colimits in first
argument into limits, since ⊗̂ preserves colimits separately in each argument. This is
applicable in particular to the coproduct defining IX =

∐
x∈X hmX (x):

(2.3.12.1) (IX � IY) ∼=
∏
x∈X

(hmX (x) � IY).

2.3.13. hS � − preserves the colimits. Our next claim is thatW � (hS � W ) preserves

arbitrary colimits in Î. Indeed, by (2.3.8.3), hS � W is isomorphic to the composition
r∗S(W ) = W ◦rS , where rS : T � T ⊗S is the right multiplication by S, and r∗S preserves
arbitrary colimits, for example because it admits a right adjoint, the right Kan extension
rS,∗ of rS .
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2.3.14. Application to hS � IY. We can apply the previous remark to the coproduct
defining IY . We obtain

(2.3.14.1) (hS � IY) ∼=
∐
y∈Y

(hS � hmY(y)).

2.3.15. Computation of hS � hT . Finally, we have to compute hS � hT , assuming the
monoidal structure of I closed. For any U : I, we have

(hS � hT )(U) ∼=HomÎ(hU , hS � hT ) ∼= HomÎ(hU ⊗̂hS , hT )

∼=HomÎ(hU⊗S , hT ) ∼= HomI(U ⊗ S, T )

∼=HomI(U, S �I T ) ∼= hS�T (U).

(2.3.15.1)

This proves that

(2.3.15.2) (hS � hT ) ∼= hS�T

whenever the monoidal structure of I is closed.

2.3.16. Computation of IX � IY. Combining together formulas (2.3.12.1), (2.3.14.1),
and (2.3.15.2), we get

(2.3.16.1) (IX � IY) ∼=
∏
x∈X

∐
y∈Y

hmX (x)�mY(y)

in the case when the monoidal structure of I is closed. Assuming the existence of
arbitrary products in I, we can apply 2.2.20 to compute the product on the right-hand
side of (2.3.16.1), which is the X-indexed product of IYx, where Yx is the I-fuzzy set
Yx = (Y,mYx

), mYx
(y) = (mX (x) � mY(y)). We see that this product is isomorphic

to IZ, where the underlying set of Z is
∏

x∈X Y ∼= HomSets(X,Y ), and the membership
function mZ : Hom(X,Y ) → Ob I is given by

(2.3.16.2) mZ(φ) =
∏
x∈X

(
mX (x) � mY

(
φ(x)

))
.

This is exactly formula (2.3.11.1), and we have completed the proof of 2.3.11.

2.3.17. Interpretation in the I-valued linear logic. Formula (2.3.16.2) can be understood
as an interpretation of the statement “φ : X → Y is a map X → Y if and only if for
all x ∈ X, condition x ∈ X linearly implies φ(x) ∈ Y” in the I-valued linear logic.
Formula (2.3.10.3) admits a similar interpretation: “(x, y) ∈ X ⊗ Y if and only if the
linear conjunction of x ∈ X and y ∈ Y holds”.

2.3.18. Dual case: the monoidal structure on I-normed and I-graded sets. Replacing I
with Iop, we obtain statements about the category NI ∼= FIop of I-normed sets and

the category SetsI ∼= Îop of I-graded sets. Instead of restating all previous results in
the dual situation, we are going to refer to them directly, leaving the task of dualizing
statements to the reader.

We are also going to discuss the more general case of a monoidal structure on CI ,
where I is a small monoidal category as before, but C is any monoidal category. When
C is Sets with the Cartesian monoidal structure, we recover counterparts of our previous
constructions for the covariant functor case.
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2.4. Monoidal structure on CI . The reader may have noticed that one can replace
(Sets,×) with any other monoidal category C = (C,⊗C) in the definition (2.3.3.3) of
a “bilinear natural transformation” of presheaves. This will be our starting point for
defining a monoidal structure on the functor category CI for any small monoidal category
I and any (cocomplete closed) monoidal category C. This monoidal structure is by no
means new; it is known as the “Day convolution product”, cf. [Day].

We shall be particularly interested in the cases where C = Ab and C = K-Mod, K a
commutative ring, apart from the already considered case of C = Sets.

2.4.0. Conditions on I and C. In what follows, I denotes a small monoidal category,
and C a cocomplete (i.e., closed under colimits) closed monoidal category. We want to
construct a monoidal structure on CI = Funct(I, C) under these assumptions, symmetric
if both original monoidal structures are symmetric. Our first steps require I to be merely
a small category.

2.4.1. Terminology: I-graded Abelian groups, K-modules, objects of C. We say that
Abelian objects of CI , i.e., covariant functors I → C, are I-graded objects of C. When
C = Sets, C = Ab, K-Mod for a commutative ring K etc., we speak about I-graded sets
(cf. 2.0.1), I-graded Abelian groups, I-graded K-modules and so on.

2.4.2. The case of discrete I = Δ. Consider the case of discrete I, when I = Δ, with Δ
a monoid. Then CΔ consists of families X = (Xα)α∈Δ of objects of C, with morphisms
f : X → Y given by families f = (fα)α∈Δ of morphisms fα : Xα → Yα. In other words,
we recover the classical category of Δ-graded objects in C.

2.4.3. Underlying object of an I-graded object. Let X : I → C be an I-graded object of C.
We say that the colimit colimI X is the underlying object of X , and sometimes denote
it by |X |. When the natural morphism X (a) → |X| is a monomorphism, we may want
to identify X (a) with a subobject of |X |. This terminology is compatible with 2.1.4
and 2.2.2.

On the other hand, when C is additive and I = Δ is discrete, we have |X | =
⊕

α∈Δ Xα

for X = (Xα)α∈Δ, and each component Xα is canonically identified with the correspond-
ing subobject in the direct sum |X |, so we recover the “elementary” definition of graded
Abelian groups or K-modules in this case.

2.4.4. Special objects [M ]α of CI . Given objects M : C and α : I, we can define a
special object [M ]α of CI by requiring the existence of isomorphism

(2.4.4.1) HomCI
(
[M ]α,X

) ∼= HomC
(
M,X (α)

)
functorial in X from CI . Sometimes we write Mα instead of [M ]α when no confusion
may arise.

Clearly, [M ]α is determined uniquely (up to unique isomorphism) by the above prop-
erty. It always exists since C was assumed cocomplete, and can be computed for example
with the aid of the left Kan extension Iα,!M of the embedding Iα : 1 → I that maps the
only object of the unit category into α : I. This description yields a formula for [M ]α:

(2.4.4.2) [M ]α : β � M (HomI(α,β)).

Here M (S) denotes the S-indexed coproduct of copies of the object M , characterized
by property HomC(M

(S), N) ∼= HomC(M,N)S. One might also write M ⊗ S or M � S
instead of M (S), thinking of C as naturally tensored (or enriched) over Sets.

One can also check directly that the right-hand side of (2.4.4.2) satisfies the universal
property of (2.4.4.1).
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Notice that (α,M) � [M ]α defines a bifunctor Iop × C → CI , commuting with arbi-
trary colimits in the second variable. It is worthwhile to remark that (2.4.4.2) together
with (2.4.4.1) imply

HomCI
(
[M ]α, [N ]β

) ∼= HomC
(
M, [N ]β(α)

)
∼= HomC

(
M,N (HomI(β,α))

)
.

(2.4.4.3)

2.4.5. Special objects generate CI under colimits. The special objects [M ]α, where α runs
through all objects of I, and M through all objects, or merely a set of generators for
C, constitute a dense system of generators for CI . In other words, the functor mapping
X : CI into presheaf

(α,M) � HomCI ([M ]α,X ) ∼= HomC(M,X (α))

on Iop × C or Iop × G, where G is a full subcategory generating C, is fully faithful.

2.4.6. Coends. We have seen that any object X : CI can be represented as a colimit
of special objects. In fact, there is a canonical way of expressing X in this way, best
described in terms of coends.

Recall that a coend
∫ I

F of a functor F : Iop × I → C, where I is a small category
and C is any category, is a special kind of colimit along the “morphism decomposition”
category Ar→ I of all morphisms φ : α → β in I, with morphisms from φ : α → β to
φ′ : α′ → β′ given by couples (χ0, χ1), where χ0 : α → α′ and χ1 : β

′ → β are morphisms

in I, providing a decomposition φ = χ1◦φ′◦χ0, of the functor F̃ : (φ : α → β) � F (β, α),

with F̃ ((χ0, χ1)) given by F (χ1, χ0):

(2.4.6.1)

∫ I
F = colimAr→ I F̃ .

Another expression for coends in terms of iterated colimits is given by the following
coequalizer of coproducts expression:

(2.4.6.2)
∐

φ : α→β

F (β, α) ⇒
∐
α :I

F (α, α) 		

∫ I

F.

In other words, HomC(
∫ I

F,X) is canonically isomorphic to the set of all “extranatural
transformations” θ : F → X, i.e., families of morphisms

θ = (θα)α :I , θα : F (α, α) → X

such that θα ◦ F (φ, idα) = θβ ◦ F (idβ, φ) for any morphism φ : α → β in I:

F (β, α)
F (idβ ,φ) ��

F (φ,idα)

��

F (β, β)

θβ

��
F (α, α)

θα �� X.

(2.4.6.3)

We sometimes write
∫ ι : I E or

∫ ι E , where E = E{ι, ι} is an expression where ι occurs

exactly twice, once covariantly and once contravariantly, to denote the coend
∫ I(

(ι, ι′) �
E{ι, ι′}

)
.
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2.4.7. Coend expression for an I-graded object. Now let X : I → C be any I-graded
object of C. We claim that

(2.4.7.1) X ∼=
∫ α :I

[X (α)]α.

Indeed, by definition HomCI
(∫ α

[X (α)]α,Y
)
consists of families of morphisms θ=(θα)α : I ,

θα : [X (α)]α → Y , “extranatural” in the sense that

(2.4.7.2) θβ ◦ [X (φ)]β = θα ◦ [X (α)]φ for any φ : α → β in I.

By the definition of the special object [X (β)]α, this is the same thing as a collection
θ
α : X (α) → Y(α) such that

(2.4.7.3)
(
θβ ◦ [X (φ)]β

)

=

(
θα ◦ [X (α)]φ

)

,

i.e.,

(2.4.7.4) θ
β ◦ X (φ) = Y(φ) ◦ θ
α.

This is precisely the condition for
(
θ
α : X (α) → Y(α)

)
α :I to constitute a natural trans-

formation X → Y , hence HomCI
(∫ α :I

[X (α)]α,Y
) ∼= HomCI (X ,Y) for any Y : CI , so

X ∼=
∫ α : I

[X (α)α] as claimed.

2.4.8. Special objects in SetsI . When C = Sets, [1]α coincides with the corepresentable
functor hα, and [S]α is isomorphic to the coproduct of S copies of [1]α = hα. Since 1

generates Sets, we see that [1]α = hα generate SetsI . The brief notation 1α for [1]α

turns out to be compatible with 1.5.1 in view of 2.1.9.

2.4.9. Special generators of AbI and K-ModI . The category C = K-Mod is generated
by one object K = Ks (the ring K, viewed as a left module over itself). This implies

that [K]α generate K-ModI , and [Z]α generate AbI . Furthermore, there generators are
projective:

2.4.10. [P ]α is projective when P is. Notice that [P ]α is a projective object of CI when-
ever P is projective in C, because effective epimorphisms of CI are detected component-
wise. Therefore, if G ⊂ C is a set (full subcategory) of projective generators for C, then
[P ]α, P : G, α : I, constitute a family of projective generators for CI , and any projective
object of CI has to be a retract of a coproduct of some objects of this form. For example,
any projective I-graded Abelian group has to be a retract of the direct sum of copies of
[Z]α.

2.4.11. Underlying object of [M ]α. The underlying object
∣∣[M ]α

∣∣=colimI [M ]α is canon-
ically isomorphic to M . This follows for example from the fact that the underlying
object functor colimI : CI → C is the left Kan extension P! along the canonical projec-
tion P : I → 1, and [M ]α is the value of a left Kan extension Iα,!(M) as well, hence
colimI [M ]α ∼= P!Iα,!(M) ∼= (P ◦ Iα)!(M) ∼= M .

2.4.12. Bilinear natural transformations in CI . Now we start assuming both I and C
monoidal. In this case, we can give a definition similar to (2.3.3.3).

Given three I-graded objects X , Y and Z of C, we define a bilinear natural transfor-
mation Φ: X × Y → Z to be a collection Φ = (Φα,β)α,β :I of morphisms in C, where

(2.4.12.1) Φα,β : X (α)⊗C Y(β) → Z(α⊗I β).
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This collection must be natural in α and β, meaning that for any morphisms f : α → α′

and g : β → β′ in I the following diagram is commutative:

X (α)⊗C Y(β)
X (f)⊗CY(g) ��

Φα,β

��

X (α′)⊗C Y(β′)

Φα′,β′

��
Z(α⊗I β)

Z(f⊗Ig) �� Z(α′ ⊗I β′).

(2.4.12.2)

We denote by BilinCI (X ,Y ;Z) the set of all natural bilinear transformations

Φ: X × Y → Z.

Another equivalent way of defining BilinCI (X ,Y ;Z) is given by the formula

(2.4.12.3) BilinCI (X ,Y ;Z) = HomCI×I
(
⊗C ◦ (X × Y),Z ◦ ⊗I

)
.

2.4.13. Polylinear natural transformations. The above definition can be immediately gen-
eralized to the case of n-polylinear natural transformations, for any integer n ≥ 0. Given
X1, . . . , Xn and Y in Ob CI , we define

(2.4.13.1) PolylinCI (X1, . . . ,Xn;Y) := HomCIn

(
⊗(n)

C ◦ (X1 × · · · × Xn),Y ◦ ⊗(n)
I

)
,

where ⊗(n)
C : Cn → C denotes the iterated tensor product of C, and similarly for I.

2.4.14. Polycategory structure on CI . The sets PolylinCI (X1, . . . ,Xn;Y) introduce on CI

a polycategory structure (i.e., a generalization of the notion of a category where one
has “morphisms” from finite sequences of objects into one object), compatible with the
original category structure since 1-polylinear natural transformations coincide with the
usual natural transformations:

(2.4.14.1) PolylinCI (X ;Y) ∼= HomCI (X ,Y).

Actually,a polycategory is a special version of a colored operad, with set of colors equal
to the set of objects of the polycategory in question. This means that the structure of a
polycategory must also include “operadic composition” maps

PolylinCI (Y1, . . . ,Yr;Z)×
r∏

i=1

PolylinCI (Xαi−1+1, . . . ,Xαi
;Yi)

→ PolylinCI (X1, . . . ,Xn;Z)

(2.4.14.2)

for any n, r ≥ 0, 0 = α0 ≤ α1 ≤ · · · ≤ αr = n. Such maps are quite easy to define; we
do not wish to write out explicit expressions for them at this point.

2.4.15. Construction of tensor product on CI . We denote by X1 ⊗ · · · ⊗ Xn or X1 ⊗CI

· · ·⊗CI Xn the object of CI representing PolylinCI (X1, . . . ,Xn;−). Such an object always
exists: indeed, according to (2.4.13.1), it can be defined with the aid of the left Kan

extension ⊗(n)
I,! of the functor ⊗(n)

I : In → I:

(2.4.15.1) X1 ⊗CI · · · ⊗CI Xn
∼= ⊗(n)

I,!
(
⊗(n)

C ◦ (X1 × · · · × Xn)
)
.

Such left Kan extensions always exist in our situation, category C being assumed cocom-
plete.

In particular, we have a “tensor product” bifunctor ⊗ = ⊗CI : CI × CI → CI such
that X ⊗ Y represents BilinCI (X ,Y ;−).
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2.4.16. Iterated tensor products and associativity. We would like to show the existence
of canonical isomorphisms

(2.4.16.1) γn,m : X1 ⊗ · · · ⊗ Xm+n
∼→ (X1 ⊗ · · · ⊗ Xn)⊗ (Xn+1 ⊗ · · · ⊗ Xn+m).

This would imply that X1 ⊗ · · ·⊗Xn can be constructed as an iterated binary tensor the
product ⊗CI , with any choice of the order of operations. In turn, this would mean the
existence of associativity and unit constraints for ⊗CI , i.e., a monoidal structure on CI .

Notice that the existence of a natural transformation γn,m follows from the existence
of the polycategoric composition maps of (2.4.14.2); the problem is to prove that γn,m is
an isomorphism.

2.4.17. Iterated tensor products in CI commute with colimits whenever this holds in C.
We claim that the (iterated) tensor products ⊗CI : CI × CI → CI and ⊗(n)

CI : (CI)n → CI

commute with colimits in each variable. Indeed, this is equivalent to saying that

PolylinCI (X1, . . . ,Xn;Y)

transforms the colimits in each argument Xi into the corresponding limits of sets; let us
show this for the first argument X of BilinCI (X ,Y ;Z), the general case being similar.
Suppose that X = inj limι :D Xι. We are writing here a colimit as a “generalized induc-
tive limit along a small category D”; in other words, inj limι Xι is simply a shorthand
for colim(λι.Xι) or colim(ι � Xι), so we are actually dealing with the case of an arbi-
trary (small) colimit. In this case, Bilin(X ,Y ;Z) consists of collections Φ = (Φα,β) of
morphisms

(2.4.17.1) Φα,β : X (α)⊗C Y(β) → Z(α⊗ β)

natural in α and β : I. Write X (α) as inj limι Xι(α) and use the fact that ⊗C commutes
with colimits in the first argument, the monoidal structure of C being assumed to be
closed (we use the closedness of ⊗C for the first time here!). We see that Φ is given by a
collection

(2.4.17.2) Φι
α,β : Xι(α)⊗C Y(β) → Z(α⊗ β)

natural in α, β : I and ι : D. Fixing ι and letting α and β vary, we obtain a collection
of elements Φι ∈ BilinCI (Xι,Y ;Z), natural with respect to ι. This is the same thing as
an element of proj limι BilinCI (Xι,Y ;Z) as desired.

2.4.18. Reduction to the case of special objects. Recall that CI is generated under col-
imits by the special objects [M ]α of 2.4.4; one can even write arbitrary X as a col-
imit of [X (α)]β for all morphisms φ : α → β in I, i.e., a coend

∫ α
[X (α)]α, cf. (2.4.7.1)

and (2.4.6.1). Together with the previous result 2.4.17, this implies that it suffices to
check that γn,m of (2.4.16.1) is an isomorphism whenever all Xi are special: Xi = [Mi]

αi .
This would follow from the explicit formula (2.4.19.1) for tensor products of special
objects given below.

2.4.19. Tensor product of special objects of CI . We claim that

(2.4.19.1) [M1]
α1 ⊗CI ⊗ · · · ⊗CI [Mn]

αn ∼= [M1 ⊗C · · · ⊗C Mn]
α1⊗···⊗αn

for any n ≥ 0, Mi : C, αi : I. In particular, for n = 2 and n = 0 we obtain

(2.4.19.2) [M ]α ⊗ [N ]β ∼= [M ⊗N ]α⊗β

and

(2.4.19.3) 1CI ∼= [1C ]
1I
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Let us prove (2.4.19.1). Put Xi := [Mi]
αi , X := X1⊗· · ·⊗Xn. According to (2.4.15.1),

X can be computed as ⊗(n)
I,! (

sX ), where sX = ⊗(n)
C ◦ (X1 × · · · × Xn) : In → C. Explicitly,

(2.4.19.4) sX : (β1, . . . , βn) � X1(β1)⊗C · · · ⊗C Xn(βn).

Recall that Xi = [Mi]
αi , so that Xi(βi) ∼= M

(Hom(αi,βi))
i by (2.4.4.2). Since ⊗C is closed,

it commutes with arbitrary coproducts, and we arrive at

(2.4.19.5) sX : (β1, . . . , βn) � (M1 ⊗ · · · ⊗Mn)
(Hom(α1,β1)×···×Hom(αn,βn)).

Again by (2.4.4.2), this can be identified with a special object of CIn

:

(2.4.19.6) sX ∼= [M1 ⊗ · · · ⊗Mn]
(α1,...,αn).

Recall that special objects can be written as images of left Kan extensions. In particular,
sX = Iα,!(M), where M := M1 ⊗ · · · ⊗ Mn, Iα : 1 → In is the the functor from the
one-point category into I with image α := (α1, . . . , αn).

Next recall that X = X1 ⊗ · · · ⊗Xn is given by the left Kan extension ⊗(n)
I,! (

sX ). Using
the transitivity of the left Kan extensions, we obtain

X = ⊗(n)
I,! (

sX ) = (⊗(n)
I,! ◦ Iα,!)(M) = (⊗(n)

I ◦ Iα)!(M)

= I⊗(n)(α),!(M) = Iα1⊗···⊗αn,!(M) = [M ]α1⊗···⊗αn .
(2.4.19.7)

This is formula (2.4.19.1) as required. According to 2.4.16 and 2.4.18, the existence of
this formula implies the existence of associativity and unit constraints for ⊗CI , i.e., CI

with ⊗CI is a monoidal category.

2.4.20. Formula for iterated tensor products in terms of coends. Combining together for-
mula (2.4.19.1) for iterated tensor products of special objects, the fact that⊗CI commutes
with colimits in each argument (cf. 2.4.17), and the explicit expression (2.4.7.1) of any
object of CI as a coend, i.e., a special type of colimit of special objects, we obtain an
expression for the (iterated) tensor product of arbitrary objects of CI in terms of iterated
coends:

(2.4.20.1) X1 ⊗CI · · · ⊗CI Xn
∼=

∫ α1 : I,...,αn :I [
X1(α1)⊗C · · · ⊗C Xn(αn)

]α1⊗I ···⊗Iαn .

2.4.21. Components of a tensor product of functors. Combining (2.4.20.1) with (2.4.4.2),
and observing that the coends are computed componentwise in a functor category, we
obtain an explicit formula for the components of X ⊗ Y :

(2.4.21.1) X ⊗ Y : γ �
∫ α :I,β : I(

X (α)⊗ Y(β)
)(Hom(α⊗β,γ))

.

2.4.22. The case of discrete I. When the category I is discrete, i.e., I = Δ for some
monoid Δ, the above constructions and results reduce to their classical counterparts,

especially when C is additive. For example, the coend
∫ ι : Δ

F (ι, ι) of a functor

F : Δop ×Δ → C

is isomorphic to the coproduct
∐

ι∈Δ F (ι, ι) along the diagonal, better written as a direct
sum ⊕ιF (ι, ι) when C is additive. In particular, (2.4.21.1) becomes

(2.4.22.1) X ⊗CΔ Y : γ �
⊕

α+β=γ

X (α)⊗C Y(β)

if we write the monoid operation of Δ additively.
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2.4.23. CI is symmetric whenever both C and I are. Notice that the monoidal category
CI is symmetric (i.e., admits a commutativity constraint) whenever both C and I are.
This follows for example from formula (2.4.20.1).

2.4.24. Tensor product with special object. When one or several of Xi in (2.4.20.1) are
already special, this formula can be simplified. For example, we have a coend formula
for the tensor product of a special object with arbitrary object:

(2.4.24.1) [M ]α ⊗ Y ∼=
∫ β :I[

M ⊗ Y(β)
]α⊗β

.

2.4.25. Monoidal structure on CI is closed. Since ⊗CI commutes with colimits in each
argument by 2.4.17, and CI admits a reasonably small system of generators consisting of
special objects [M ]α, by 2.4.5, it is reasonable to expect the monoidal structure of CI to
be closed, especially in view of the assumption of closedness for the monoidal structure
of C. This is indeed the case: (CI ,⊗CI ) is closed, assuming C to be closed monoidal,
complete, and cocomplete.

We show this by providing a formula for the linear Hom �CI in two steps.

2.4.26. Formula for [N ]β � Z. Fix N : C, β : I, and Z : CI . Then for any M : C
and α : I we have

HomCI
(
[M ]α, [N ]β � Z

) ∼=HomCI
(
[M ⊗C N ]α⊗β ,Z

)
∼=HomC

(
M ⊗C N,Z(α⊗ β)

)
∼=HomC

(
M,N �C Z(α⊗ β)

)
∼=HomCI ([M ]α,W),

(2.4.26.1)

where the functor W : I → C is given by

(2.4.26.2) W : α �
(
N �C Z(α⊗ β)

)
.

Since the [M ]α generate CI under colimits, this proves that W is ([N ]β � Z), i.e.,
([N ]β � Z) exists for any N : C, β : I, Z : CI , and is given by

(2.4.26.3)
(
[N ]β �CI Z

)
: α �

(
N �C Z(α⊗ β)

)
.

2.4.27. General case: the end formula for Y � Z. Notice that ⊗CI commutes with
colimits in the second argument by 2.4.17; this immediately implies that − �CI Z
transforms all colimits in the first argument into the corresponding limits. Since a coend
is a special kind of a colimit, and any Y : CI can be expressed as a coend of special
objects by (2.4.7.1), we obtain the following formula:

(2.4.27.1) (Y �CI Z) ∼=
∫
β : I

(
[Y(β)]β �CI Z

)
.

The right-hand side of this formula is representable by (2.4.26.3) and by the assumption
for C to be complete, i.e., to admit arbitrary small limits, in particular, ends. In this way
we prove the existence of (Y �CI Z) for arbitrary Y , Z : CI , and obtain an expression
for this linear Hom in terms of ends in CI . We can easily write out the individual
components of (Y � Z) by combining (2.4.27.1) with (2.4.26.3):

(2.4.27.2) (Y �CI Z) : α �
∫
β :I

(
Y(β) �C Z(α⊗ β)

)
.
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2.4.28. The case of discrete I and additive C. Suppose that I = Δ is discrete, i.e., a
commutative monoid which will be written additively, and C is additive with Δ-indexed
products, for example, C = K-Mod for some commutative ring K. Then (2.4.27.2)
reduces to the well-known formula for the “graded Hom” of Δ-graded objects of C:

(2.4.28.1) (Y � Z)(α) ∼=
∏
β∈Δ

HomC
(
Y(β),Z(α+ β)

)
.

2.4.29. Monoids in CI . We claim that the monoids in CI are exactly the lax monoidal
functors I → C (cf. [Day]). When both I and C are symmetric monoidal, so the same
holds for CI , then the commutative monoids in CI correspond to the lax monoidal functors
I → C compatible with symmetries of I and C.

Indeed, a monoid structure on a functor X : CI is a multiplication morphism μ : X⊗CI

X → X together with unit ε : 1CI → X satisfying the associativity and unit axiom. By
definition, μ is essentially the same thing as a bilinear map μ′ ∈ BilinCI (X ,X ;X ), i.e., a
collection of morphisms

(2.4.29.1) μ′
α,β : X (α)⊗C X (β) → X (α⊗I β).

Similarly, a unit ε : 1CI = [1C ]
1I → X is the same thing as a morphism ε′ : 1C → X (1I).

The associativity and unit conditions on μ′
α,β and ε′ are exactly those of a lax monoidal

functor structure on X : I → C.

2.5. Functoriality of CI in C. Now we are interested in studying how the monoidal cat-
egory CI varies with C. Of course, any functor F : C → D induces a functor F I : CI → DI .
We want to know when we can expect F I to be monoidal or lax monoidal, when it com-
mutes with limits or colimits, or admits adjoints. We are going to apply these results
to the scalar extension/restriction functors ρ∗ : K-Mod → K ′-Mod and ρ∗ : K

′-Mod →
K-Mod, where ρ : K → K ′ is a homomorphism of either classical commutative rings
or generalized rings of [Du], i.e., commutative algebraic monads on Sets. Taking here
K = F∅ (corresponding to the identity monad IdSets), we obtain free K ′-module and
forgetful functors K ′-Mod � Sets.

The results presented below seem a little ad hoc and unsystematic; a systematic point
of view enabling one to understand and guess proper statements before proving them
will be presented in 2.8.

2.5.1. F I preserves limits or colimits whenever F does. It is easy to see that F I : CI →
DI preserves some or all limits or colimits whenever F : C → D does, since the limits and
colimits in the functor categories CI and DI are computed componentwise.

2.5.2. F I and GI are adjoint whenever F and G are adjoint. Similarly, if F : C → D
and G : D → C are adjoint functors, the same holds for F I : CI � DI : GI . Indeed, if
ξ : IdC → G ◦F is an adjunction unit for F and G, then ξI : IdCI → GI ◦F I = (G ◦F )I

is given by

(2.5.2.1) ξIX := ξ � X : X → (G ◦ F )I(X ) = G ◦ F ◦ X for any X : I → C,
and similarly, the counit ηI is given by ηIY := η �Y for any Y : I → D, where η : F ◦G →
IdD is the adjunction counit of C and D.

2.5.3. Comparison of special objects in CI and DI. Let M : C, α : I be objects, and
F : C → D a functor. Consider the special objects [M ]α : CI and [F (M)]α : DI defined
in 2.4.4. Both F I([M ]α) and [F (M)]α : DI lie in DI ; we claim that they are related
by a canonical morphism in DI :

(2.5.3.1) θM,α :
[
F (M)

]α → F I([M ]α
)
.
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In order to construct θM,α, it suffices to construct

θ
M,α : F (M) → (F I([M ]α))(α) = F
(
([M ]α)(α)

)
by the universal property (2.4.4.1) of special objects. Such a morphism is easily obtained
by applying functor F to the canonical morphism

id
[M ]α : M → ([M ]α)(α).

2.5.4. F I preserves special objects whenever F preserves small coproducts. We claim
that the morphism θM,α of (2.5.3.1) is an isomorphism provided F preserves small co-
products. In this case one can write F I([M ]α) ∼= [F (M)]α and say that F I preserves
special objects whenever F preserves small coproducts. In order to prove this, recall the
explicit formula (2.4.4.2) for the values of the special object [M ]α : I → C: we have
[M ]α(β) ∼= M (Hom(α,β)). Since F preserves small coproducts, we see that both F I([M ]α)
and [F (M)]α map β into F (M)(Hom(α,β)), and therefore are canonically isomorphic.

2.5.5. F I is compatible with bilinear maps whenever F is lax monoidal. Now suppose
that F : C → D is a lax monoidal functor between monoidal categories, i.e., for any
X,Y : C we have a morphism

γX,Y : F (X)⊗D F (Y ) → F (X ⊗C Y ),

functorial in X and Y and compatible with the constraints of the monoidal categories C
and D. In this case F I acts on bilinear maps in CI . More precisely, for any X , Y and
Z : CI , we have a canonical map

(2.5.5.1) F̃ : BilinCI (X ,Y ;Z) → BilinDI (F IX , F IY ;F IZ).

This map can be described as follows. A bilinear map Φ ∈ BilinCI (X ,Y ;Z) actually
is a collection of morphisms Φα,β : X (α) ⊗C Y(β) → Z(α ⊗ β), natural in α, β : I.
Applying F to each Φα,β yields a similar collection defining a bilinear map F̃ (Φ) ∈
BilinDI (F IX , F IY ;F IZ):

(F IX )(α)⊗D (F IY)(β) = F
(
X (α)

)
⊗D F

(
Y(β)

)
γX(α),Y(β)−→ F

(
X (α)⊗C Y(β)

)
F (Φα,β)−→ F

(
Z(α⊗ β)

)
= (F IZ)(α⊗ β).

(2.5.5.2)

2.5.6. F I is lax monoidal whenever F is. Recall that X ⊗CI Y was defined in 2.4.15 as
the object representing BilinCI (X ,Y ;−), so (2.5.5.1) may be rewritten as

(2.5.6.1) HomCI (X ⊗CI Y ,Z) → HomDI (F IX ⊗DI F IY , F IZ).

Applying this to the identity morphism of Z := X⊗CIY , we obtain a canonical morphism

(2.5.6.2) μX ,Y : F IX ⊗DI F IY → F I(X ⊗CI Y).

We also have a canonical homomorphism for units of monoidal categories:

(2.5.6.3) ε : 1DI = [1D]
1I →

[
F (1C)

]1I → F I([1C ]
1I

)
= F I(1CI ).

The first arrow here is induced by 1D → F (1C) coming from the lax monoidal functor
structure on F ; the second arrow is that of (2.5.3.1).

It is easy to see that (2.5.6.2) and (2.5.6.3) together define a lax monoidal structure
on F I . The simplest way to see this is to observe that the action (2.5.5.1) of F on
CI-bilinear maps extends immediately to polylinear maps, thus defining a polyfunctor
sF between polycategories CI → DI extending F I . Such a polyfunctor extension corre-
sponds exactly to the lax monoidal structure on F I .
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2.5.7. If F is monoidal and preserves small colimits, the same holds for F I . We claim
that if F is monoidal and preserves small colimits, the same holds for F I . Indeed, we
know already that F I is lax monoidal by 2.5.6, and preserves small colimits by 2.5.1.
We have to show that the morphisms (2.5.6.3) and (2.5.6.2) are isomorphisms for all X ,
Y : CI . Since all functors involved commute with small colimits and any object of CI

can be represented as a small colimit of special objects (cf. 2.4.5), it suffices to check this
for special X = [M ]α and Y = [N ]β , where our statement immediately follows from 2.5.4
and (2.4.19.2): both the source and the target of μ[M ]α,[N ]β turn out to be isomorphic to

[F (M) ⊗D F (N)]α⊗β. The isomorphism property in (2.5.6.3) is even simpler: the first

morphism is induced by 1D
∼→ F (1C), and the second one is an isomorphism by 2.5.4.

2.5.8. If F : C � D : G is a monoidal adjunction, the same holds for F I : CI � DI :
GI. Combining together 2.5.2, 2.5.6, and 2.5.7, we see that whenever F : C � D : G
is a monoidal adjunction (so that F is monoidal and preserves colimits, and G is lax
monoidal and preserves limits), the same is true for F I : CI � DI : GI .

2.5.9. Monad defined by F I � GI. Let F � G be adjoint functors, defining a monad
Σ := G ◦ F on a category C. Then F I � GI are also adjoint, and define the monad
ΣI = GI ◦ F I on CI .

2.5.10. ΣI is a monad on CI whenever Σ is one on C. Furthermore, if Σ = (Σ, μ, ε) is a
monad on C, then ΣI = (ΣI , μI , εI) is a monad on CI . This can be checked directly, or
deduced from the previous result by finding a couple of adjoint functors with composition
equal to Σ. Such a couple always exists; one can take for D for example the Eilenberg–
Moore category CΣ, or the Kleisli category CΣ.

2.5.11. If G : D → C is monadic, the same holds for GI : DI → CI . Now suppose that
the functor G : D → C is monadic; in particular, it admits a left adjoint F . Then GI

admits a left adjoint F I ; we claim that GI is monadic. We know already that the
monad corresponding to GI is ΣI if Σ is the monad defined by G. Thus the statement
about the property of GI to be monadic may be restated as a natural equivalence of
Eilenberg–Moore categories:

(2.5.11.1) (CI)Σ
I ∼= (CΣ)I , for any monad Σ on C.

The latter statement can be checked directly: an object of (CI)Σ
I
, i.e., a ΣI-model (or

ΣI-algebra in another terminology) in CI is an object X : CI , i.e., a functor X : I → C,
together with a morphism α : ΣI(X ) → X , i.e., a natural transformation α : Σ ◦X → X ,
which must be compatible with monad multiplication μI and unit εI . We see imme-
diately that the commutative diagrams expressing this compatibility together with the
naturality of α and other natural transformations involved amount to saying that each(
X (ι), αι : Σ

(
X (ι)

)
→ X (ι)

)
, where ι : I is a Σ-model in C, i.e., an object of CΣ, and

any X (φ), φ : ι → κ in I, is a Σ-model morphism, i.e., a morphism in CΣ. We obtain
a functor I → CΣ, i.e., an object of (CΣ)I ; this gives the required equivalence (even
isomorphism) of categories.

2.5.12. Kleisli categories. A similar statement for Kleisli categories is also true and can
be checked similarly:

(2.5.12.1) (CI)ΣI ∼= (CΣ)I , for any monad Σ on C.
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2.6. Application: normed and graded algebraic structures. Let Σ be a finitary
monad on Sets, i.e., a monad commuting with filtered colimits (in other words, Σ is
ω-accessible). In [Du] such monads were called algebraic, because they are in one-to-
one correspondence with (finitary) algebraic theories, such as groups, monoids, Abelian
groups, modules over a ring K, algebras over a commutative ring K and so on. However,
if one allows algebraic theories with operations of infinite arities, one has to admit that
all accessible monads are “algebraic”.

We can apply the results of 2.5.11 in this case. We obtain a monad ΣI on the category
SetsI of I-graded sets, and the corresponding Eilenberg–Moore category is isomorphic
to (SetsΣ)I , the category of I-graded Σ-models.

In particular, we obtain categories of I-graded groups, Abelian groups, K-modules
and so on, with (monadic) forgetful functors into the category SetsI of I-graded sets
and their left adjoints, the free I-graded Σ-model functor.

2.6.1. Commutative case. Now suppose that a finitary monad Σ is commutative (cf. [Du,
3]), i.e., Σ is a generalized ring in the terminology of [Du]. Then we have a natural

symmetric monoidal structure ⊗Σ on the category of Σ-models Σ-Mod = SetsΣ such
that the free Σ-model functor LΣ : Sets → Σ-Mod is monoidal (and its right adjoint, the
forgetful functor ΓΣ : Σ-Mod → Sets is automatically lax monoidal). Applying 2.5.7

and 2.5.6, we see that the “free I-graded Σ-model functor” LI
Σ : SetsI → (Σ-Mod)I

is monoidal, and its right adjoint, the forgetful functor ΓI
Σ : (Σ-Mod)I → SetsI , is lax

monoidal. This is applicable in particular to the categories of Abelian groups (with usual
tensor product ⊗ = ⊗Z) and of modules over a commutative ring K.

2.6.2. Explicit description of Δ-normed Σ-models. Now suppose that I = Δ is a partially
ordered set, and that X : (Σ-Mod)Δ is a Δ-graded Σ-model such that its underlying

Δ-graded set sX := ΓΣΔ(X ) is projective. We know that Proj(SetsΔ) is equivalent to the
category NΔ of Δ-normed sets (2.1.1); under this equivalence, sX corresponds to the set
X := colimΔ

sX with a norm | · |X : X → Δ such that sX (ι) = X≤ι = {x ∈ X : |x|X ≤ ι}
for any ι ∈ Δ.

Next, each sX (ι) = X≤ι is the underlying set of the Σ-model X (ι), i.e., we must
have a “Σ-structure” on each X≤ι, compatible with embeddings X≤ι → X≤κ whenever
ι ≤ κ. Since Σ is finitary, we know that a Σ-structure α : Σ(X≤ι) → X≤ι on the set
X≤ι is completely determined by its “application maps” αn = αn,ι : Σ(n)×Xn

≤ι → X≤ι,

for all integers n ≥ 0. The elements of Σ(n) = Σ(n), n = {1, 2, . . . , n}, are usually
called n-ary operations of Σ, and αn(t, x1, . . . , xn) is usually denoted by [t]X≤ι

(x1, . . . , xn)
or t(x1, . . . , xn), and called “the result of applying the operation t to the n-tuple x1,
. . . , xn of elements of X≤ι”. These “application maps” are related to the monadic
action α : Σ(X≤ι) → X≤ι as follows. A collection x = (x1, . . . , xn) is essentially a map
x : n → X≤ι; then

(2.6.2.1) [t]X≤ι
(x1, . . . , xn) =

(
α ◦ Σ(x))(t).

More details can be found in [Du, 4].
In our case, for any n ≥ 0, t ∈ Σ(n), ι ∈ Δ, and x1, . . . , xn ∈ X such that |xi|X ≤ ι

for all i, we obtain an element tι(x1, . . . , xn) in X, of norm not exceeding ι. Furthermore,
the requirement that all embeddings Xι ⊂ Xκ, ι ≤ κ, be Σ-homomorphisms, means that
tκ(x1, . . . , xn) = tι(x1, . . . , xn) whenever κ ≥ ι ≥ |xi| for all i.

In order to determine the Σ-model structure, one has to define tι only for a subset
of “generating operations” of the monad Σ. For example, when Σ = ΣZ is the free
Z-module monad (identified with the “classical” ring Z in [Du]), defining the category of
Abelian groups, it is sufficient to determine addition [+]ι : Xι ×Xι → Xι corresponding
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to the element [+] = (1, 1) ∈ ΣZ(2) = Z2, symmetry [−]ι : Xι → Xι, corresponding to
[−] = (−1) ∈ ΣZ(1) = Z, and the zero 0ι ∈ Xι, corresponding to 0 ∈ ΣZ(0) = 0.

Let us say that a Δ-normed set together with a ΣΔ-action on its image in SetsΔ is
a Δ-normed Σ-model. We have obtained an explicit description of Δ-normed Σ-models:
it is a Δ-normed set X = (X, | · |X : X → Δ), together with operations tι : X

n
≤ι → X≤ι,

defined for all t ∈ Σ(n) and all ι ∈ Δ, compatible with all embeddings X≤ι ↪→ X≤κ,
ι ≤ κ.

2.6.3. The case of discrete Δ. When Δ is discrete, we arrive at a Δ-graded set X =
(X, | · |X : X → Δ), i.e., a Δ-indexed collection of sets (Xι)ι∈Δ, Xι = {x ∈ X : |x| = ι},
with action of n-ary operations of Σ defined only on the collections (x1, . . . , xn) such
that all xi have the same “degree” or “norm”: |x1| = · · · = |xn|, independently for each
value of norm. In other words, we simply obtain a Δ-indexed collection of Σ-models Xι,
i.e., a functor Δ → Σ-Mod, something we should have expected.

2.6.4. The case of filtered Δ. Another interesting case is that of filtered Δ, for example
linearly ordered Δ = [0, 1] or Δ = R≥0. In this case, the forgetful functor ΓΣ : Σ-Mod
commutes with the “underlying object functor” | − | = colimΔ, because it is a filtered
colimit in this case, and ΓΣ commutes with filtered colimits whenever monad Σ is finitary.

We see that the set X = colimΔ X is equipped with the operations tX : Xn → X for
all t ∈ Σ(n), apart from the norm | · |X : X → Δ. They are related by the following
condition: if all |xi| do not exceed ι, then tX(x1, . . . , xn) has also norm of at most ι.
In other words, the subset X≤ι ⊂ X is a Σ-submodel of X, i.e., it is stable under all
operations of the finitary monad Σ.

When Δ admits finite suprema, for example if Δ = R≥0, then a Δ-normed Σ-model
can be described as follows: it is a Δ-normed set X together with a Σ-action on it, i.e.,
operations tX : Xn → X for all t ∈ Σ(n), n ≥ 0, such that

(2.6.4.1)
∣∣tX(x1, . . . , xn)

∣∣
X

≤ sup
1≤i≤n

|xi|X .

For example, if Σ = ΣZ, we obtain the R≥0-normed Abelian groups: these are Abelian
groups X with an R≥0-valued norm | · | such that |x + y| ≤ max(|x|, |y|), | − x| = |x|
and |0| = 0, i.e., the R≥0-normed Abelian groups are merely Abelian groups with non-
Archimedian norms. Similarly, the R≥0-normed left K-modules are K-modules X with
norms as above, with the additional condition |λx| ≤ |x| for any λ ∈ K and x ∈ X.

We will see later how to deal with “Archimedian norms” as well.

2.6.5. Σ-models in arbitrary category with finite products C. Let Σ be a finitary monad on
Sets. Then the Σ-models (or “Σ-algebras”) in Sets can be described in several equivalent

ways. One of them is given by the Eilenberg–Moore category SetsΣ of the monad Σ.
Another one, due to Lawvere, is given by considering FunctΠ(TΣ, Sets), the category of
all finite product-preserving functors from the corresponding “Lawvere theory” category
TΣ into Sets. Here TΣ can be taken to be (NΣ)

op, where N denotes the full subcategory
of Sets consisting of standard finite sets 0, 1, 2, . . . , n = {1, 2, . . . , n}, . . . , and NΣ is
the full subcategory of the Kleisli category SetsΣ with object set equal to ObN.

This description enables us to define the category Σ-ModC of Σ-models in arbitrary
category C with finite products as FunctΠ

(
(NΣ)

op, C
)
, and extend any finite product-

preserving functor Q : C → D to a functor Σ-ModC → Σ-ModD by mapping X : Nop
Σ → C

to Q ◦ X. For example, Σ-ModSetsI ∼= (Σ-Mod)I , and Σ-ModNI is equivalent to the
category of “I-normed Σ-models” discussed above in 2.6.1.
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2.6.6. Tensor product of R≥0-normed Abelian groups. Recall that for I = Δ = R≥0

the fully faithful functor I : NΔ → SetsΔ preserves finite products and admits a finite
product-preserving right adjoint Q (cf. 2.2.27). This means that, for any finitary monad
Σ, we have the induced functor

QΣ : Σ-ModΔ → Σ-ModNΔ
,

the right adjoint to the fully faithful functor IΣ induced by I : NΔ → SetsΔ. If Σ
is commutative, we have a natural tensor product ⊗Σ on Σ-ModΔ, given by the Day
convolution product of 2.4. Using the functors IΣ and QΣ, we can define a tensor
product on Δ-normed Σ-models:

(2.6.6.1) X ⊗Σ Y := QΣ

(
IΣ(X)⊗Σ IΣ(Y )

)
.

For example, if X and Y are two R≥0-normed Abelian groups, we have their “normed
tensor product” X ⊗ Y = X ⊗Z Y . Its underlying set coincides with the usual tensor
product of Abelian groups (because Δ = R≥0 is filtered), and the norm | · |X⊗Y is given
by a non-Archimedian variant of the classical formula for norms on tensor products of
vector spaces:

(2.6.6.2) |z|X⊗Y = inf
z=

∑
i xi⊗yi

sup
i

|xi|X · |yi|Y .

This can be checked directly by using (2.4.21.1) and (2.2.26.1).
However, using the localization functor Q in this fashion loses some information. For

example, it is not even clear whether this tensor product of normed Abelian groups is
associative. Derived versions of this construction are better in most respects, even if they
lead to less familiar notions, cf. [DuN2, 3.6.30]

2.7. Functoriality of CI in I. We would like to discuss now the less obvious func-
toriality of CI in I. Of course, this involves left and right Kan extensions of functors
f : I → J .

2.7.1. Notation for Kan extensions: f!, f
∗, f∗. Given a functor f : I → J between small

categories, we denote by f∗ : CJ → CI the corresponding “restriction” or “pullback”
functor:

(2.7.1.1) f∗ : X �→ X ◦ f.

Its left and right adjoints, i.e., the left and right Kan extensions of f will be denoted by
f! and f∗ : CI → CJ , respectively. Recall that f∗ always exists when C is complete, and
f! when C is cocomplete.

2.7.2. Explicit formula for f!. We would like to recall here the explicit formula for the
values of f!X , for any X : CI :

(2.7.2.1) (f!X )(γ) = inj lim
α :I/γ

X (α).

Here I/γ denotes the small category I ×J J/γ consisting of the couples (α, φ), where α
is an object of I, and φ : f(α) → γ is a morphism in J .

2.7.3. f! preserves special objects. Our next observation is that f! preserves special ob-
jects, cf. 2.4.4. More precisely, if M : C and α : I, then

(2.7.3.1) f!
(
[M ]α

) ∼= [M ]f(α).
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The shortest way to prove this is to recall that [M ]α = Iα,!(M), where Iα : 1 → I denotes
the functor from the point category into I with image α. By the transitivity of left Kan
extensions, this implies

f!([M ]α) = f!Iα,!(M) = (f ◦ Iα)!(M) = If(α),!(M) = [M ]f(α).

2.7.4. f! preserves free objects when C = Sets. A special case of formula (2.7.3.1) for
C = Sets, M = 1 reads

(2.7.4.1) f!(h
α) = hf(α) for any α : I.

Since f! preserves arbitrary colimits and in particular coproducts, we see that f! trans-
forms free objects of SetsI , i.e., coproducts of the corepresentable functors, into free
objects of SetsJ :

(2.7.4.2) f!
( ⊔
ι∈X

hαι
) ∼=

⊔
ι∈X

hf(αι).

2.7.5. Induced functor f! : NI → NJ on normed sets. According to 2.2.14,c), the free

objects of SetsI and SetsJ admit an equivalent description as I- and J -normed sets
(cf. 2.2.11). Therefore, restriction of the functor f! to Free(SetsI) induces a functor
sf! : NI → NJ between equivalent categories:

NI
sf! ���������

II
��

NJ

IJ
��

SetsI
f! �� SetsJ .

(2.7.5.1)

2.7.6. Explicit description of f! : NI → NJ . Let X = (X, | · |X : X → Ob I) be an

I-normed set, so that II(X ) =
⊔

x∈X h|x|X . Then (2.7.4.2) and (2.7.5.1) imply that

f!X = sf!X can be described explicitly as f!X = (X, f ◦ | · |X ). In other words, f!X has
the same underlying set X as X , with new norm | · |f!X given by

|x|f!X = f(|x|X ).(2.7.6.1)

Since f is a functor, this definition is compatible with the morphisms φ = (sφ, ξ) : X → Y
of I-normed sets.

2.7.7. Special case: the poset map f : Δ → Δ′. This description of f! can be specialized
further to the case of an increasing map of partially ordered sets f : Δ → Δ′. In this
case, f! transforms a Δ-normed set into a Δ′-normed set simply by composing its norm
with f . This explains the notation e! used previously in 1.4.3.

2.7.8. Conditions for a nice behavior of f∗ : CJ → CI . Our next goal is to determine
when f∗ : CJ → CI behaves nicely with respect to special objects. The special of case
C = Sets is important here: it turns out that f∗ has nice properties for general C whenever
f∗ : SetsJ → SetsI preserves free objects, thus inducing a functor sf∗ : NJ → NI on
normed sets. We are going to study this situation in more detail, starting with some
special cases.
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2.7.9. Special case: f∗ when f admits a left adjoint g. Suppose that f : I → J admits a
left adjoint g : J → I. Then the functor f∗ is canonically isomorphic to g!, for example
because the category J/α = J ×I I/α, needed for computing g!Y by (2.7.2.1), turns out
to be isomorphic to the category J/f(α), admitting a final object idf(α). We can apply
(2.7.3.1) to g in this case:

(2.7.9.1) f∗([M ]γ
) ∼= g!

(
[M ]γ

) ∼= [M ]g(γ).

If C = Sets, we also have f∗(hγ) ∼= hg(γ) for the corepresentable functors by (2.7.4.1),

hence f∗ : SetsJ → SetsI preserves corepresentable functors and free objects, provided f
admits a left adjoint. We obtain an induced functor sf∗ = sg! : NJ → NI in this case, the
right adjoint to sf! of 2.7.6.

It is worthwhile to remark that, conversely, if f∗ transforms corepresentable functors
into corepresentable functors, then f admits a left adjoint g. Indeed, if f∗(hγ) ∼= hα for
some α : I, then α satisfies the universal property required from g(γ): HomI(α, β) =
hα(β) ∼= (f∗(hγ))(β) = hγ(f(β)) = HomJ (γ, f(β)).

2.7.10. Application to continuously and discretely normed sets. The above argument is
applicable to the situation when we want to consider “continuously normed sets” from
NR≥0

and compare them to “discretely normed sets” from NZ∪{−∞}, appearing while
we work over discrete valuation rings. In this case, we fix some real ρ > 1 and define a
homomorphism

fρ : Δ = Z ∪ {−∞} → Δ′ = R≥0,

where

fρ(n) := ρn

(we prefer not to invert the order on Z here, so we use ρn, not ρ−n). This increasing map
fρ : Δ → Δ′ admits a left adjoint gρ : Δ

′ → Δ, given by gρ(x) := �logρ x�. We obtain
adjoint functors

fρ,! : NZ∪{−∞} � NR≥0
: f∗

ρ = gρ,!,

which transform discretely normed sets into continuously normed sets and conversely by
composing their norms with fρ or gρ.

2.7.11. Special case: f∗ when f is a sieve embedding. Now suppose that I ⊂ J is a
sieve in J , i.e., a full subcategory of J containing the source of any morphism from J
whenever it contains its target, and f : I → J is the embedding of this sieve into J . In
particular, f is fully faithful.

In this case,

(2.7.11.1) HomJ
(
γ, f(α)

)
=

{
HomI(γ, α) if γ ∈ Ob I;
∅ otherwise.

This implies for f∗ : SetsJ → SetsI that

(2.7.11.2) f∗(hγ) =

{
hα if f(α) ∼= γ;

∅ otherwise.

For general C, this also implies, in view of (2.4.4.2),

(2.7.11.3) f∗([M ]γ
)
=

{
[M ]α if f(α) ∼= γ;

0CI otherwise.

Here 0CI denotes the initial object of CI .
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2.7.12. sf∗ : NJ → NI for a sieve embedding f . According to (2.7.11.2), f∗ transforms

any corepresentable functor from SetsJ into either a corepresentable functor on SetsI or
the initial object ∅ of SetsI . This implies that f∗ transforms the free objects of SetsJ

into free objects of SetsI , thus inducing a functor sf∗ : NJ → NI on equivalent categories
of normed objects.

This functor sf∗ can be described explicitly in terms of normed sets. Namely, if Y =
(Y, | · |Y : Y → ObJ ) is an J -normed set, then sf∗Y is given by subset sY = {y ∈ Y :

|y|Y ∈ Ob I} together with the restriction of | · |Y to sY ⊂ Y , considered as a map
sY → Ob I. One can also say that | · |

sf∗Y : sY → Ob I is obtained from | · |Y : Y → ObJ
by pulling back along f : Ob I → ObJ .

2.7.13. Special case: embedding Δ ⊂ Δ′ of downward-closed subset of a poset. This is
applicable in particular to the case when f is an embedding of a downward closed subset
Δ into a partially ordered set Δ′, for example, the map e : Δ → Δ∞ of 1.4.3. In the
latter case we recover the functor already denoted by e∗ in loc.cit., a right adjoint to e!.

Now we pass to the general case.

2.7.14. Multiadjoint functors. We say that a functor f : I → J admits a left multiadjoint
(cf. [AR, 4.24]) if any of the following equivalent conditions holds:

a) Given any object γ : J , one can find a (small) family (αi)i∈S of objects of I and
morphisms φi : γ → f(αi) having the following property: for any object β : I
and morphism ψ : γ → f(β), there is exactly one index i ∈ S and exactly one
morphism χ : αi → β such that ψ = f(χ) ◦ φi.

b) For any object γ : J , there is a small family (αi)i∈S of objects of I, together
with a functorial isomorphism in β : I:

(2.7.14.1) HomJ
(
γ, f(β)

) ∼= ⊔
i∈S

HomI(αi, β).

c) For any γ : J , one can find a small family (αi)i∈S of objects of I such that

(2.7.14.2) f∗(hγ) ∼=
⊔
i∈S

hαi in SetsI .

d) The functor f∗ : SetsJ → SetsI transforms corepresentable functors from SetsJ

into free functors from SetsI .
e) The functor f∗ : SetsJ → SetsI transforms Free(SetsJ ) into Free(SetsI).

The equivalence of these conditions is immediate, each condition being an easy refor-
mulation of the preceding one.

2.7.15. If f admits a left adjoint, it admits a left multiadjoint. Of course, if f admits a
left adjoint functor g, it admits a left multiadjoint in the sense of the previous definition.
More precisely, if f admits a left multiadjoint with the cardinality of the set S of the
above conditions a)–c) equal to one for any choice of γ : J , then f admits a left adjoint.

2.7.16. If f : I → J is a sieve embedding, it admits a left multiadjoint. Similarly, if
f : I → J is a sieve embedding, formula (2.7.11.2) shows that condition 2.7.14,c) is
satisfied for any γ : J , with cardS equal to 1 or 0 depending on whether γ belongs to
the sieve I or not.

2.7.17. If f admits left multiadjoint, f∗ induces a functor sf∗ : NJ → NI . If f admits
left multiadjoint, condition 2.7.14,e) shows that f∗ maps Free(SetsJ ) into Free(SetsI),
hence it induces a functor sf∗ : NJ → NI on the equivalent categories of normed sets,
right adjoint to sf!.
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2.7.18. Explicit description of f∗ : NJ → NI . The functor f∗ = sf∗ : NJ → NI is in
general not so easy to describe in terms of normed sets. One can say that each point y
of Y = (Y, | · |Y) with norm γ := |y|Y is transformed by f∗ into several points of f∗Y
with norms (αi)i∈S of conditions a)–c) of 2.7.14.

2.7.19. Action of f∗ on special objects. Now consider the case of general C, still assuming
that f admits a left multiadjoint. Then f∗ : CJ → CI transforms the special object [M ]γ

of CJ into a coproduct of special objects of CI :

(2.7.19.1) f∗([M ]γ
)
=

⊔
i∈S

[M ]αi .

Here the family (αi)i∈S is determined by γ as in conditions a)–c) of 2.7.14.
This formula follows immediately from (2.4.4.2) and (2.7.14.1).

2.7.20. f! is (lax/oplax) monoidal whenever f is (oplax/lax) monoidal. Now suppose that
C, I, and J are monoidal categories, and f : I → J is either monoidal, lax monoidal,
or oplax monoidal. We claim that f! : CI → CJ is monoidal, oplax monoidal, or lax
monoidal, respectively, with respect to the Day monoidal structure on CI and CJ , dis-
cussed in 2.4.

The easiest way to see this is with the aid of special objects. Choose arbitrary M : C,
N : C, α : I and β : I; then by (2.7.3.1) and (2.4.19.2),

(2.7.20.1) f!
(
[M ]α ⊗CI [N ]β

) ∼= f!
(
[M ⊗C N ]α⊗β

) ∼= [M ⊗C N ]f(α⊗β),

and

(2.7.20.2) f!
(
[M ]α

)
⊗CJ f!

(
[N ]β

) ∼= [M ]f(α) ⊗CJ [N ]f(β) ∼= [M ⊗C N ]f(α)⊗f(β).

Now, [M ⊗N ]γ is contravariant in γ : J ; so, if f is oplax, we have a morphism

uα,β : f(α⊗ β) → f(α)⊗ f(β),

inducing a morphism from (2.7.20.2) to (2.7.20.1):

(2.7.20.3) v[M ]α,[N ]β : f!
(
[M ]α

)
⊗CJ f!

(
[N ]β

)
→ f!

(
[M ]α ⊗CI [N ]β

)
.

This is exactly what is needed to define a lax monoidal structure on f! : CI → CJ , at
least on special objects. The required associativity conditions are also easily checked by
considering triples of special objects in CI . Furthermore, v[M ]α,[N ]β is an isomorphism
whenever uα,β is, making f!, or rather its restriction to special objects, a monoidal functor
whenever f is one. Similarly, if f is lax, we use the morphisms vα,β : f(α) ⊗ f(β) →
f(α⊗β) to define morphisms u[M ]α,[N ]β from (2.7.20.1) to (2.7.20.2), needed to construct
an oplax monoidal structure on f!.

Now we have to extend these results from special to arbitrary objects of CI . This is
best done with the aid of formula (2.4.7.1), providing a canonical expression of arbitrary
object of CI as a colimit of special objects, since f!, ⊗CI , and ⊗CJ all commute with
colimits in each argument.

2.7.21. Reformulation in terms of Iop and J op. The previous result looks better if we
replace I and J with the opposite categories. So, let C be a monoidal category, and let
f : I → J be a lax, oplax, or monoidal functor. Then the left Kan extension functor
f! : CIop → CJ op

canonically is a lax/oplax/monoidal functor as well. This is applicable
in particular to C = Sets: then any lax/oplax/monoidal functor f : I → J extends to a

functor f! : Î → Ĵ on presheaf categories having the same property.
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2.7.22. Statement for monoidal adjunctions. Finally, let f � g be a monoidal adjunction
between small monoidal categories I and J , meaning that f : I � J : g are adjoint, f is
monoidal, g is automatically lax monoidal, and the monoidal structure of f is compatible
with the lax monoidal structure of g via the adjunction. Then, for any closed monoidal
category C, the left Kan extension functors f! : CIop � CJ op

: g! constitute a monoidal
adjunction as well.

Indeed, the adjointness of f! and g! was already discussed in 2.7.9; the monoidality
of f! and the lax monoidality of g! was shown in 2.7.21; finally, compatibility of (lax)
monoidal structures on these functors with the adjunction is easily verified on special
objects, generating the categories in question under colimits.

2.7.23. Orthogonality with changes of C. We would like to remark that the above “func-
toriality” of CI with respect to I is “orthogonal” to the “functoriality” in C, discussed
in 2.5. This means, for example, that for any f : I → J and F : C → D we have a
commutative diagrams like

CI FI
��

f!
��

DI

f!
��

CJ FJ
�� DJ .

(2.7.23.1)

2.8. Monoidal category CI as a vectoid product C� Îop. We would like to sketch
here a general point of view improving our understanding of the categories CI and their
properties. While not indispensable for the exposition, we find it quite illuminating.

2.8.1. Bicategory of cocomplete categories. Our starting point is that the Yoneda em-

bedding h : I → Î of a small category into its presheaf category Î describes Î as “the
category freely generated by I under colimits” (cf. [HT, 5.1.5.6]), or as “the cocomplete
category freely generated by I”. More precisely, consider the bicategory of cocomplete
categories, with cocomplete categories (i.e., categories admitting arbitrary (small) col-
imits) as objects and cocontinuous (i.e., colimit-preserving) functors as morphisms (and
natural transformations as 2-morphisms). This bicategory admits a forgetful 2-functor

into the category Cat of all categories; its left adjoint transforms I into Î. This is the

meaning of the phrase “Î is the cocomplete category freely generated by I”.

2.8.2. Universal property of hI : I → Î. The universal property of the Yoneda embedding

hI : I → Î for a small category I can be made explicit without reference to bicategories
and adjoint 2-functors between them. Namely,

a) hI : I → Î is a functor from I into a cocomplete category Î;
b) any functor F : I → C from I into a cocomplete category C can be factorized

through hI : I → Î up to isomorphism, i.e., given any C and F : I → C as

above, there is a cocontinuous functor F̃ : Î → C and a functorial isomorphism

θ : F̃ ◦ hI
∼→ F .

c) The above factorization (F̃ , θ) is essentially unique, i.e., if (F̃ ′, θ′) is another

couple with the same properties, then there is an isomorphism η : F̃
∼→ F̃ ′ such

that θ′ ◦ (η � hI) = θ.

The proof of this statement is straightforward. One first writes arbitrary presheaf X
as a canonical colimit of representable presheaves:

(2.8.2.1) X = inj lim
α : I/X

hα.



HOMOTOPY THEORY OF NORMED SETS I.BASIC CONSTRUCTIONS 931

Then, since F̃ is to be cocontinuous, and F̃ (hα) ∼= F (α) for any α : I, we must have

(2.8.2.2) F̃ (X) = inj lim
α :I/X

F (α).

We can use this formula to define F (X) because C is assumed to be cocomplete.

2.8.3. Functoriality of I � Î. Since I � Î is a left adjoint 2-functor — or, equiva-

lently, since Î is obtained from I with the aid of some universal property — any functor

f : I → J must induce an (essentially unique) colimit-preserving functor f! : Î → Ĵ such
that f! ◦ hI ∼= hJ ◦ f , i.e., f!(hα) ∼= hf(α) for any α : I. This functor f! is nothing else
than the left Kan extension of f , because this left Kan extension preserves colimits and
satisfies f!(hα) ∼= hf(α) as well.

This explains the ubiquity of left Kan extensions f! in this context, cf. 2.7.3 and
several next items.

2.8.4. I � Î preserves adjunction. Since I � Î is a bifunctor, it has to transform
adjoint pairs f � g in the 2-category of small categories into adjoint pairs f! � g! in the
2-category of cocomplete categories. This is what we have already observed and exploited
in 2.7.9, up to replacing some categories with opposites.

2.8.5. Convolution product of cocomplete categories. Given two cocomplete categories A
and B, we can consider componentwise cocontinuous (i.e., colimit-preserving separately
in each argument) bifunctors Ψ: A × B → C, with values in arbitrary cocomplete cate-
gories C. Sometimes a universal couple (Ψ, C) of this sort exists, which will be denoted by
ΦA,B : A×B → A�B. This means that any componentwise bicontinuous Ψ: A×B → C
factorizes through ΦA,B up to a unique isomorphism, much like the universal property
made explicit in 2.8.2.

When such A� B exists, it is unique up to equivalence of categories; it will be called
the convolution product of A and B. Sometimes it is also called the Day convolution
product (even though Day originally defined a monoidal structure on a functor category,
cf. 2.4); we also called it vectoid product in [DuV]. When A and B are (Grothendieck)
topoi, A� B turns out to be the (2-categorical) direct product of these topoi.

The bifunctor ΦA,B is usually also denoted by �, so that, if X : A and Y : B are
two objects, X � Y := ΦA,B(X,Y ) is an object of A � B. This makes � into a sort of
“tensor product” for cocomplete categories and their objects.

2.8.6. Existence of the convolution product. Unfortunately, one cannot prove the exis-
tence of A�B for arbitrary cocomplete categories A and B. One has to impose suitable
finiteness conditions. The best choice is to require that A and B be presentable cate-
gories, i.e., cocomplete categories admitting a (small) set of λ-presentable generators for
some (small) regular cardinal λ. We refer to [HT] or to [AR] (where this notion is known
as a “locally presentable category”) for technical details.

For our present purpose it will suffice to know that A � B exists and is presentable

whenever A and B are presentable, and that Î is presentable for any small category
I. Therefore, we can go on, replacing everywhere the 2-category of cocomplete cate-
gories (and cocontinuous functors) with the 2-category of presentable categories (and
cocontinuous functors).

2.8.7. 2-monoidal structure � is closed. Notice that the convolution � is symmetric
and “closed”, in the sense that the category of cocontinuous functors FunctL(B, C) :=
Functcocont(B, C) is a cocomplete category for any cocomplete B and C (it is better to
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assume B presentable, so as to make this functor category locally small; when both B
and C are presentable, this functor category is presentable as well), such that

(2.8.7.1) FunctL(A� B, C) ∼= FunctL
(
A,FunctL(B, C)

)
.

2.8.8. Convolution product with Sets. Notice that Sets is the “unit object” for the “2-mo-
noidal structure � on presentable categories”:

(2.8.8.1) Sets � C ∼= C for any cocomplete C.

This can easily be deduced from (2.8.7.1) and obvious equivalence for the category of
cocontinuous functors Sets → C:

(2.8.8.2) FunctL(Sets, C) ∼= C.

2.8.9. Convolution product with Î. An important formula is

(2.8.9.1) Î � C ∼= Funct(Iop, C) = CIop

.

One can prove this statement for presentable C as follows. First, one considers the special

case of C = Ĵ , discussed below in 2.8.10. Then one represents an arbitrary presentable

category C as a localization of a presheaf category Ĵ with respect to some small set of

morphisms S ⊂ Ar Ĵ (this is in fact an equivalent description of presentable categories),

meaning that C is equivalent to the full reflective subcategory S⊥ of Ĵ consisting of S-local
objects, i.e., objects X with the property that HomĴ (−, X) transforms all morphisms

from S into bijections. Next, one shows that if C = S⊥ ⊂ Ĵ , then Î � C can be obtained

from Î � Ĵ by localizing along T := {hα} � S = {hα � φ |α : I, φ ∈ S}; this is
in fact part of the general proof of existence for the convolution product of arbitrary

presentable categories. Then one shows that a functor F ∈ Funct(Iop, Ĵ ) ∼= Î � Ĵ is

(hα � S)-local (for fixed α) if and only if its value F (α) is S-local in Ĵ , i.e., belongs to

C = S⊥ ⊂ Ĵ , hence F is T -local if and only if it factorizes through C ⊂ Ĵ , i.e., belongs

to Funct(Iop, C) ⊂ Funct(Iop, Ĵ ).

2.8.10. Convolution product of two presheaf categories. A special case of (2.8.9.1) is

(2.8.10.1) Î � Ĵ ∼= Î × J for any small I and J .

This formula can be proved directly by comparing universal properties of both sides:

FunctL(Î � Ĵ , C) ∼= FunctL
(
Î,FunctL(Ĵ , C)

)
∼= Funct

(
I,Funct(J , C)

) ∼= Funct(I × J , C) ∼= FunctL(Î × J , C).
(2.8.10.2)

2.8.11. I � Î is 2-monoidal. This formula can be interpreted by saying that I � Î is a
“2-monoidal functor” from the 2-category of small categories with Cartesian product into
the 2-category of presentable categories with convolution product. In particular, it has
to transform monoids in the first of these 2-categories, i.e., small monoidal categories I,
into monoids in presentable categories, i.e., presentable categories with componentwise
cocontinuous monoidal structure.

2.8.12. Î is monoidal whenever I is. We see that if I is monoidal, Î admits a compo-
nentwise cocontinuous monoidal structure such that

(2.8.12.1) hα ⊗Î hβ
∼= hα⊗Iβ .

This explains what we already saw in 2.3.1 and 2.3.6.
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2.8.13. Vectoids as commutative monoids under �. It is interesting to note that the vec-
toids of [DuV] are precisely the “commutative monoids” for the 2-monoidal structure �
on the 2-category of presentable categories. This explains our alternative name “vectoid
product” for the convolution product �, since it induces the 2-direct product on the
2-category of vectoids.

2.8.14. Special objects of Î � C. When X runs over a set of generators of a presentable
category C, and Y over generators of a presentable category D, their products X � Y
run over a set of generators of the convolution product C �D.

We can specialize this to the case of Î � C: the objects hα � M , where α runs over
I and M over all objects or merely some set of generators of C, constitute a family of

generators for Î � C.
Now under the equivalence Î�C ∼= Funct(Iop, C), the objects hα�M are transformed

into “special objects”

(2.8.14.1) [M ]α : β � M (HomI(β,α)).

These are exactly the special objects of 2.4.4, provided we replace I with the oppo-
site category. This explains the appearance and importance of special objects in our
considerations.

2.8.15. C�D is cocontinuous monoidal whenever C and D are. The tensor product of two
monoids in a symmetric monoidal category is a monoid again, commutative if the two
original monoids were. Applying this to the “2-monoidal structure” on the 2-category
of presentable categories given by the convolution product, we see that if C and D are
vectoids, i.e., monoidal presentable categories with tensor product preserving colimits in
each argument, then C �D is a vectoid again.

2.8.16. Monoidal structure on Î�C. In particular, whenever there is a monoidal structure
⊗I on a small category I, inducing componentwise cocontinuous monoidal structure

⊗Î on Î by 2.8.12, and a componentwise a cocontinuous monoidal structure ⊗C on
a presentable category C, we obtain a componentwise cocontinuous monoidal structure

⊗Î�C on Î�C, symmetric if the original monoidal structures were. Under the equivalence

Î � C ∼= CIop

of (2.8.9.1), this monoidal structure corresponds to a monoidal structure
on CIop

, which is precisely the Day convolution product discussed in 2.4. This is best
seen on the level of special objects, cf. (2.4.19.2) and 2.8.14.

This explains to a certain extent why the convolution product of presentable cate-
gories sometimes is also called the “Day convolution product”, even though Day himself
originally considered only the functor category case in [Day].

2.8.17. Functoriality of Î � C in C. Notice that the construction

C � Î � C ∼= CIop

is 2-functorial in C for any fixed small category I. In particular, any cocontinuous
functor F : C → D induces a functor F Iop

: CIop → DIop

, (lax) monoidal whenever F is.
Furthermore, this construction has to preserve adjoint pairs, so if F : C � D : G are
adjoint functors, so are F Iop

and GIop

. This explains some of the results of 2.5.

2.8.18. Functoriality of Î � C in I. Similarly, the construction

I � Î � C ∼= CIop

is 2-functorial in a small category I for a fixed presentable category C. In particular, any

functor f : I → J induces a cocontinuous functor f! : Î → Ĵ and then also a cocontinuous
f! � C : CIop → CJ op

. The latter functor still merits to be denoted f!, because it is a left
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Kan extension of fop : Iop → J op. Again, this 2-functorial construction has to preserve
adjoint pairs of functors, monoidality and lax monoidality of functors and so on, thus
explaining most of the results of 2.7.

2.8.19. Orthogonality of the two functorialities of Î � C. One sees that the functoriality

of Î � C in I is “orthogonal” or “decoupled” from the functoriality of this convolution
product in C, giving rise to a large amount of commutative squares. This orthogonality
was already observed in 2.7.23.

Continued in [DuN2] and [DuN3].
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