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HOMOGENIZATION OF THE FIRST INITIAL BOUNDARY-VALUE
PROBLEM FOR PARABOLIC SYSTEMS:
OPERATOR ERROR ESTIMATES

YU. M. MESHKOVA AND T. A. SUSLINA

ABSTRACT. Let @ C R be a bounded domain of class C™1. In L2 (Q;C"), a selfad-
joint matrix second order elliptic differential operator Bp ., 0 < & < 1, is considered
with the Dirichlet boundary condition. The principal part of the operator is given
in a factorized form. The operator involves first and zero order terms. The operator
Bp . is positive definite; its coefficients are periodic and depend on x/e. The behav-
ior of the operator exponential e~ BD.ct ¢ > 0, is studied as € — 0. Approximations
for the exponential e~ BD.et are obtained in the operator norm on Lz (O;C™) and in
the norm of operators acting from Lo (O;C") to the Sobolev space H'(O;C™). The
results are applied to homogenization of solutions of the first initial boundary-value
problem for parabolic systems.

INTRODUCTION

The paper concerns homogenization theory of periodic differential operators (DO’s).
We mention books on homogenization: [BaPal, [BeLPapl [ZhKO] [Sa].

0.1. Statement of the problem. Let I' C R? be a lattice, and let 2 be the elementary
cell of the lattice I'. For a I-periodic function v in R%, we denote 1°(x) := 1)(x/¢), where
£>0, and ¥ := [Q| 7! [, ¥(x) dx.

Let O C R be a bounded domain of class C1!. In Ly(O;C"), we study a selfadjoint
matrix strongly elliptic second order DO Bp ., 0 < € < 1, with the Dirichlet boundary
condition. The principal part of the operator Bp . is given in a factorized form A, =
b(D)*¢°(x)b(D), where b(D) is a homogeneous first order matrix DO, and g(x) is a
I-periodic, bounded, and positive definite matrix-valued function in R?. (The precise
assumptions on b(D) and g(x) are given below in Subsection [[3l) The operator Bp . is
given by the differential expression

(0.1) Be =b(D)"g"(x)b(D) +

J
with the Dirichlet condition on 0O. Here the a,(x), j = 1,...,d, and Q(x) are I'-periodic
matrix-valued functions, in general, unbounded; a I'-periodic matrix-valued function
Qo(x) is such that Qg(x) > 0 and Qo, Qy" € Lo. The constant ) is chosen so that the
operator Bp . is positive definite. (The precise assumptions on the coefficients are given
below in Subsection [[4])

(a5(x)D; + Dja5(x)") + Q°(x) + AQ5(x)

d
=1
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The coefficients of the operator (L)) oscillate rapidly for small e. Let u.(x,t) be the
solution of the first initial boundary-value problem

(0 2) QS(X)atUE(Xv t): —BEUE(X, t)7 X € 07 t> 01
’ u.(x,t) =0, x€00, t >0; Qf(x)u.(x,0)=p(x), x € O,

where ¢ € Ly(O;C™). We are interested in the behavior of the solution in the small
period limit.

0.2. Main results. It turns out that, as ¢ — 0, the solution u.(-,¢) converges in
L2 (O;C™) to the solution ug(-,t) of the following effective problem with constant coef-
ficients:

03) Qoorug(x,t) = —Bug(x,t), x€ O, t>0;
’ up(x,t) =0, x €00, t>0; Qouy(x,0)=p(x), x€O.

Here BY is the differential expression for the effective operator BY,. Our first main result
is the estimate

(04) Hus( ' at) - 110( ' at)”Lz(O) < 05(t + 52)71/26761:”90”L2(O); t> 07

for sufficiently small . For fixed time ¢ > 0, this estimate is of sharp order O(g). Our
second main result is approximation of the solution u.(-,t) in the energy norm:

(0.5) lue(-,t) = ve(-, D)oy < OV + et e el Lyo), ¢ > 0.

Here v.(-,t) =ug(-,t) +eKp(t;e)p(-) is the first order approximation of the solution
uc(-,t). The operator Kp(t;e) is a corrector. It involves rapidly oscillating factors,
and so depends on €. We have ||eKp(t;e)||p,—mr = O(1). For fixed t, estimate (OLT)
is of order of O(c'/?) due to the influence of the boundary layer. The presence of the
boundary layer is confirmed by the fact that, in a strictly interior subdomain O’ C O,
the order of the H'-estimate can be improved:

Hug( . ,t) — VE( . ,t)”Hl(O/) < CE(t_1/26_1 + t_l)e_CtHQOHL2(o), t> 0.
Here ¢ = dist {O'; 00}.

In the general case, the corrector involves a smoothing operator. We distinguish
conditions under which it is possible to use a simpler corrector without any smoothing
operator. Along with estimate (5], we obtain approximation of the flux ¢g°b(D)u.(-,t)
in the Lo-norm.

The constants in estimates (0.4)) and ([0.5) are controlled in terms of the problem data;
they do not depend on ¢. Therefore, estimates ([0.4]) and (@.3) can be rewritten in the
uniform operator topology. In a simpler case where Qo(x) = 1,,, we have

~Bp.t _ ,~Bp

e © < Ce(t+e%)~Y2%e=t, t>0,

tHLQ(O)‘)LQ

[|le=Bret — e Bl _ cKp(tie < O(eV23 f et e, > 0.

)|l La(O)—HL(O)

The results of such type are called operator error estimates in the homogenization theory.

0.3. Operator error estimates. Survey. Currently, the study of operator error
estimates is an actively developing field of the homogenization theory. The interest in
this subject arose in connection with the papers [BSull BSu2] by M. Sh. Birman and
T. A. Suslina, where the operator A, of the form b(D)*g*(x)b(D) acting in Ly(R%;C")
was studied. By the spectral approach, it was proved that

(0.6) [(Ae +1)7F = (A% + 1) 7Y Ly () Lo (rey < Ce
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Here A° = b(D)*¢"b(D) is an effective operator and ¢° is a constant effective matrix. Ap-
proximation for the operator (A. +1)~! in the (Ly — H')-norm was obtained in [BSud]:

(0.7) [(Ae+ )t = (A°+1)7! - eK (&)L, me)y— 1 (re) < Ce.

Later, T. A. Suslina carried estimates (0.0) and (07) over to more general operator B
of the form (1)) acting in Ly(R?;C™). We also mention the paper [Bo] by D. I. Borisov,
where the expression for the effective operator B? was found and the approximations
@5), (@) for the resolvent were obtained. In [Bol, it was assumed that the coefficients
of the operator depend not only on the rapid variable, but also on the slow variable;
however, the coefficients of B, were assumed to be sufficiently smooth.

To parabolic systems, the spectral approach was applied in the papers [Sull [Su2] by
T. A. Suslina, where the principal term of approximation was found, and in [Su3|, where
an estimate with corrector was proved:

—A. —A° 2\—1/2
(0.8) le™t — ™|, gty pa ey < Celt+3)72, £ 0,

(0.9) e At — =A% —eK(te SO P, 2 e

)HLQ(RdHHl(Rd
In these estimates, the exponentially decaying function of ¢ is absent, because the bottom
of the spectra of A, and A° is zero. The exponential of the operator B, of the form (0.))
was studied in the paper [M] by Yu. M. Meshkova, where analogs of inequalities (0.8])
and (0.9]) were obtained.

A different approach to operator error estimates in homogenization theory was sug-
gested by V. V. Zhikov in [Zh2]. In [Zh2] [ZhPasl], estimates of the form (@.0) and (07
for the acoustics and elasticity operators were obtained. The “modified method of the
first order approximation” or the “shift method”, in the terminology of the authors, was
based on analysis of the first order approximation to the solution and introduction of an
additional parameter. Along with problems in R?, in [Zh2,[ZhPas1] homogenization prob-
lems in a bounded domain @ C R? with the Dirichlet or Neumann boundary conditions
were studied. To parabolic equations, the shift method was applied in [ZhPas2], where
analogs of estimates (0.8) and (0:9) were proved. The further results of V. V. Zhikov,
S. E. Pastukhova, and their students were discussed in the recent survey [ZhPas3].

Operator error estimates for the Dirichlet and Neumann problems for second order
elliptic equations in a bounded domain were studied by many authors. Apparently, the
first result is due to Sh. Moskow and M. Vogelius, who proved the estimate

(0.10) IADYL = (AD) "l 22(0) = La(0) < Ck;

see [MoV], Corollary 2.2]. Here the operator Ap . acts in La(O), where O C R?, and is
given by —div ¢°(x)V with the Dirichlet condition on d0. The matrix-valued function
g(x) is assumed to be infinitely smooth.

For arbitrary dimension, homogenization problems in a bounded domain were studied
in [Zh2] and [ZhPasl]. The acoustics and elasticity operators with the Dirichlet or
Neumann boundary conditions were considered without any smoothness assumptions on
coefficients. The authors obtained approximation with corrector for the inverse operator
in the (Ly — H')-norm with error estimate of order of O(y/2). The order deteriorates
as compared with a similar result in R%; this is explained by the boundary influence. As
a rough consequence, approximation of the form (II0) with error estimate O(/2) was
deduced. Similar results for the operator —div ¢°(x)V in a bounded domain O C R¢
with the Dirichlet or Neumann boundary conditions were obtained by G. Griso [Grll [Gr2]
with the help of the “unfolding” method. In [Gr2], for the same operator a sharp-
order estimate (ILI0) was proved. For elliptic systems similar results were independently
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obtained in [KeLiS] and in [PSul [Sub]. The further results and a detailed survey can be
found in [Su6l, [Su7].

For the matrix operator of the form (0I) with the Dirichlet condition, homogenization
problems were studied by Q. Xu in [Xull Xu3]. The case of the Neumann boundary
condition was studied in [Xu2]. However, in the papers by Q. Xu, the operator is subject
to a rather restrictive condition of uniform ellipticity. Approximations of the generalized
resolvent of the operator (LI with two-parametric error estimates were obtained in the
recent paper [MSu3] (see also the brief communication [MSud]). We focus on these results
in more detail, since they are basic for us. For ( € C\ R, |[¢| > 1, and sufficiently small
€, we have

(011)  [[(Bpe = €¢Q0) ™" = (B = ¢Q0) Ml 101 ooy < CD=ICI T2,
||(BD,€ - CQ%)_I - (B% - C@)_l - EKD(E; C)||L2(O)—>H1(O)

(0.12) <C()(e?IC ™ + o).

Note that the values C(¢) are controlled explicitly in terms of the problem data and
the angle ¢ = arg(. Estimates (0.II)) and (0.I2]) are uniform with respect to ¢ in any
domain of the form {¢ = |¢[e!® € C : || > 1,¢9 < ¢ < 27 — ¢p} with arbitrarily small
¢o > 0. Moreover, in [MSu3|, analogs of estimates ([0.I1) and ([@I2) were proved for a
wider domain of the spectral parameter (.

We proceed to discussion of parabolic problems in a bounded domain. In the two-
dimensional case, some estimates of operator type for elliptic and parabolic equations
were obtained in [ChKonLe]. However, in [ChKonLe| the matrix g was assumed to
be C*°-smooth, and the initial data for a parabolic equation belonged to H?(O). In
the case of arbitrary dimension and without smoothness assumptions on coefficients,
approximation for the exponential of the operator b(D)*¢°(x)b(D) (with the Dirichlet or
Neumann conditions) was found in the paper [MSull:

—Ap .t A%t 2\—1/2 —ct
e = e o)) S Celt+0) T2 20,

He_AD*Et — oAbt _ eKp(t;e

le

)HLQ(O)%HI(O) < CEl/Qt_3/4€_Ct, t> 52.

The method of [MSul] was based on employing the identity

e vt = o [ e ap -t ag,
i J,

where v C C is a contour enclosing the spectrum of Ap . in positive direction. This
identity allowed us to deduce approximations for the operator exponential e =42t from
the corresponding approximations of the resolvent (Ap . — ¢I)~! with two-parametric
error estimates (with respect to € and ¢). The required approximations for the resolvent
were found in [SuT].

The operator with coefficients periodic in the space and time variables was studied by
J. Geng and Z. Shen in [GeS]. In that paper operator error estimates were obtained for
the equation

opu.(x,t) = —div g(e ™ 'x, %) VuL(x, 1)

in a bounded domain of class C*!. The results of [GeS] were generalized to the case of
Lipschitz domains by Q. Xu and Sh. Zhou, see [XuZ].

0.4. Method. We develop the method of the paper [MSul]. It is based upon the
following representation for the solution u. of the first initial boundary-value problem
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@2): uc(-,t) = —5= I, e $'(Bp. — CQ§) "t d(, where v C C is a suitable contour.
The solution of the effective problem (0.3) admits a similar representation. Hence,
1 _ _ —
(0.13)  ue(,t) —up(+,t) = —5— [ e " ((Bp,e = Q)" = (Bp — (Qo) ") @ .
gl

Using the results of [MSu3] (estimate (Q.I1)), we obtain approximation of the resolvent for
¢ € v and employ the representation ([(I.13]). This leads to (04]). Note that the dependence
of the right-hand side of ([I1]) on ¢ for large |(| is important for us. Approximation
with the corrector taken into account is obtained in a similar way.

0.5. Plan of the paper. The paper consists of five sections and Appendix (§§6HE]).
In Il we describe the class of operators Bp ., introduce the effective operator B, and
formulate the required results about approximation of the operator (Bp . —(Q§)~*. The
main results of the paper are obtained in §2l In §3] these results are applied to homoge-
nization of the solutions of the first initial boundary-value problem for nonhomogeneous
parabolic equation. §§4 [ are devoted to applications of the general results. In 4 a
scalar elliptic operator with a singular potential of order O(¢™!) is considered. In §5 we
study an operator with a singular potential of order O(¢~2). In Appendix (§§6HR), we
prove some statements concerning removal of the smoothing operator from the corrector.
The case of additional smoothness of the boundary is considered in §ft the case of a
strictly interior subdomain is discussed in §8 The required properties of the oscillating
factors in the corrector are obtained in §6l

0.6. Notation. Let $ and §), be complex separable Hilbert spaces. The symbols (-, - )g
and || - || stand for the inner product and the norm in $); the symbol || - |5, denotes
the norm of a continuous linear operator acting from £ to ..

The set of natural numbers and the set of nonnegative integers are denoted by N and
Z. , respectively. We denote Ry := [0,00). The symbols (-, -} and | - | denote the inner
product and the norm in C"; 1,, is the identity (n x n)-matrix. If a is an (m x n)-matrix,
then the symbol |a| denotes the norm of a viewed as an operator from C" to C™. If
@ = (ai,...,aq) € Z% is a multiindex, |a| denotes its length: |a| = Z?Zl aj. For
z € C, the complex conjugate number is denoted by z*. (We use such a nonstandard
notation because the upper bar will denote the mean value of a periodic function over the
periodicity cell.) We denote x = (z1,...,7q4) € R iD; = 8; = 0/0x;, j =1,...,d, and
D = —iV = (D1,...,D,). The L,-classes of C"-valued functions in a domain O C R?
are denoted by L,(O;C"), 1 < p < co. The Sobolev classes of C™-valued functions in
a domain O C RY are denoted by H*(0;C"). By H}(O;C") we denote the closure of
C§°(O;C™) in HY(O;C™). If n = 1, we write simply L,(0), H*(O), etc., but sometimes,
if this does not lead to confusion, we use this simple notation for the spaces of vector-
valued or matrix-valued functions. The symbol L,((0,7);$), 1 < p < oo, denotes the
L,-space of $-valued functions on the interval (0,7").

Various constants in estimates are denoted by ¢, C, C,C, € (probably, with indices and
marks).

The main results of the present paper were announced in [MSud].

§1. THE RESULTS ON HOMOGENIZATION OF THE DIRICHLET PROBLEM
FOR ELLIPTIC SYSTEMS

1.1. Lattices in R%. Let I' C R? be a lattice generated by a basis ay,...,a; € R%:

d
r= {aeRd : a:ZVjaj,l/j GZ},
j=1
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and let 2 be the elementary cell of the lattice I':

d
1 1
Q:{ eR?: :E aj, —— < 4<—}.
X X j:17']a_7 2 7'] 2

By || we denote the Lebesgue measure of the cell Q: Q] = measQ. We put 2r; :=
diam .

Let H'(Q) denote the subspace of functions in H'(2) whose I'-periodic extension to
R< belongs to HL (R?). If ®(x) is a [-periodic matrix-valued function in R?, we put
Pe(x) := P(x/e), e > 0; @ := Q7 [, D(x) dx, © := (| fQ‘I)(X)’ldx)_l. Here, in
the definition of ® it is assumed that ® € LUOC(Rd); in the definition of ® it is assumed
that the matrix ® is square and nonsingular, and ®~! € L 1o.(R?). By [®°] we denote
the operator of multiplication by the matrix-valued function ®°(x).

1.2. The Steklov smoothing. The Steklov smoothing operator Sék), € > 0, acts in
Ly(R%; C*) (where k € N) and is given by

(1.1) (@“m@y:mr{/u@-f@dm u € Ly(R% CF).

Q
We shall omit the index k£ in the notation and write simply S.. Obviously, S.D%u =
D“S.u for any u € H°(R% C*) and any multiindex « such that |a| < o. Note that
(12) HSEHHO‘(Rd)A)HU(Rd) S 1, (o Z 0.

We need the following properties of the operator S. (see [ZhPasll Lemmas 1.1 and 1.2]
or [PSul, Propositions 3.1 and 3.2]).

Proposition 1.1. For any function u € H'(R%; CF), we have
[Seu = ul| L, (re) < er1[[Dul[p, ey,
where 2r; = diam Q.
Proposition 1.2. Let ® be a T-periodic function in RY such that ® € Ly(S)). Then the
operator [®¢]S. is continuous in Ly(RY) and
112718 Lo ) Loty < 12 1@ 0)-

1.3. The operator Ap .. Let O C R< be a bounded domain of class C1'1. In L, (0O;C™),
we consider the operator Ap . given formally by the differential expression

A: = b(D)"g" (x)b(D)

with the Dirichlet condition on 00. Here g(x) is a I'-periodic Hermitian (m x m)-
matrix-valued function (in general, with complex entries). It is assumed that g(x) > 0
and g,g7 ! € Loo(R?). The differential operator b(D) is given by b(D) = Z;l:l b;D;,
where the b;, j = 1,...,d, are constant matrices of size m x n (in general, with complex
entries). Assume that m > n and that the symbol b(&) = Z?:l b;&; of the operator b(D)

has maximal rank: rankb(¢) = n for 0 # £ € R?. This condition is equivalent to the
estimates

(1.3) aol, <b(O)*b(O) < ail,, 0S¥ 0<ag<a < oo,
with some positive constants ag and «;. From ([3) it follows that

(1.4) bl <al? j=1,....d
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The precise definition of the operator Ap . is given in terms of the quadratic form
(1.5) ap..[u,u] = / (5 (x)b(D)u, (D)) dx, € HL(O;CM).
o

Extending u € HZ(O;C") by zero to R?\ O and taking (3] into account, we find
—1y—1

(1.6)  aollg™*IzLIDulf,0) < ap.[u,u] < ailgllr. [DulZ, o), e Hs(O;C).

1.4. Lower order terms. The operator Bp .. We study the selfadjoint operator

Bp.. whose principal part coincides with A.. To define the lower order terms, we intro-

duce I'-periodic (n x n)-matrix-valued functions (in general, with complex entries) a;,
7 =1,...,d, such that

(1.7) a; € L,(Q), p=2 for d=1, p>d for d>2, j=1,...,d

Next, let @ and Qg be I'-periodic Hermitian (n x n)-matrix-valued functions (with com-
plex entries) such that

QeLsf), s=1for d=1, s>d/2 for d>2;

Qo(x) > 0; Qo,Qp" € Loo(RY).

For the convenience of further references, the following set of variables is called the
“problem data”:

(1.8)

d, m, n, p, 8; ap, a1, HgHLoc7 ||g_1HLoo7 ”aj”Lp(Q)v Jj=1....4
" a

In Ly(O;C™), we consider the operator Bp., 0 < ¢ < 1, formally given by the
differential expression

L@ 1Qollzees |Qo [l the parameters of the lattice I'; the domain O.

d
(1.10) B. =b(D)*¢*(x)b(D) + Z (a5(x)D; 4 Dja5(x)*) + Q°(x) + AQ5(x)
j=1
with the Dirichlet boundary condition. Here the constant A is chosen so that the operator
Bp . is positive definite (see (II6]) below). The precise definition of the operator Bp .
is given in terms of the quadratic form
d
bp,c[u,u] = (¢°0(D)u,b(D)u),0) + 2 Re Z(a?Dju, u)r,(0)
j=1
+(Q°u,u)r,0) + MQju,u) 0y, uE H&(O; c™).

Let us check that the form bp . is closed. Using the Holder inequality and the Sobolev
embedding theorem, it can be shown that for any v > 0 there exist constants C;(v) > 0
such that

(1.11)

lafull?, ge) < vIDulZ, @) + Ci@)lull7, ge), weH'(RGC),

j=1,...,d; see [Sudl (5.11)-(5.14)]. By the change of variables y := e~ !'x and u(x) =:
v(y), we deduce that

1657l = [ a5 uiPax = [ a0 v dy

<ety [ D)y + i) [ v)Pdy
R4 R4

< I/||DUH%2(R(1) + Cj(u)HuH%Q(Rd), uc H'R%:C"), 0<e<l.
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Then, by ([I3), for any v > 0 there exists a constant C'(v) > 0 such that

d
dy D)l < PGB, oy + OOl
j=1
uc H'R%:C"), 0<e<l.
If v is fixed, then C(v) depends only on d, p, ag, the norms |g~ 1|1, laillz, @), =

1,...,d, and the parameters of the lattice I'.
By ([L3), for u € H'(R% C") we have

(1.13) IDulfZ, gy < cill(g%)?0(D)ullZ, ey,

where ¢; := aal/QHg_lHlL/j. Combining this with (LIZ)), we obtain

d
* 1 1/2 2 2
(1.14) Q‘Rez;@ju, (a5) W)y | < 7 1(9%)20(DYZ, o) + 2l o),
i=
ue HY(R%:CY), 0<e<l,
where ¢y 1= 8¢2C (1) with v 1= 276040”971”;;'

Next, by condition (L8) on @, for any v > 0 there exists a constant Cg(v) > 0 such

that
(1.15) Q7w 1) Ly way| < VDUl ey + Co)|[ull7, gay;
' ue HY(R%LCY), 0<e<1.

For fixed v, the constant Cg(v) is controlled in terms of d, s, ||Q|
eters of the lattice I'.
We fix a constant A in (LI0) as in [MSu2l Subsection 2.8]:

(1.16) A= (Co(v) +e2)llQg lzo, for vu =27 aollg™ |17

We return to the form (LII]). Extending the function u € Hg(O; C™) by zero to R4\ O

and using (LH), (CI3), (LI4), and (TIH) with v = v, we obtain a lower estimate for
the form (CTTI):

L.(), and the param-

1

(1.17) bplu,ul > ZaD@[u, u] > c*||DuH%2(o), uc HY(O;C");
1 1y —

(1.18) ¢ = gaollg~MzL.

Next, by (L), (LI4), and ([CIH) with v = 1, we have
bplu,u] < C'*Hu||§{1(Rd), ue H'(o;Cc"),
where C, := max{3a||g|.. +1;Cq(1) + A|Qo||.. +c2}. Thus, the form bp . is closed.

The corresponding selfadjoint operator in Ly(O;C™) is denoted by Bp .
By the Friedrichs inequality, (LI7)) implies that

(1.19) bpc[u,u] > c.(diam (9)*2||u||2Lz(o), uc Hj(O;C™).
Hence, the operator Bp . is positive definite. By (II7) and (I.19),
(1.20) [l o) < sl Bp 2uliyo), we Hi(O:C");
(1.21) ey = cy /2 (1 + (diam (’))2)1/2 .

We also need an auxiliary operator B D,e. We factorize the matrix Qo(x): there exists
a T-periodic matrix-valued function f(x) such that f, f~! € Lo (R%) and

(1.22) Qo(x) = (f(x)") " f(x) 7"
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(For instance, one can choose f(x) = Qo(x)"1/2.) Let Bp. be the selfadjoint operator
in Ly(O;C™) generated by the quadratic form

(123) %D7E[u7 u] = bD,E[f€u7 feu}

on the domain DomED@ = {u € Ly(O;C") : fu € H}(O;C")}. In other words,
ED’E = (f)*Bpefc. Let f?e denote the differential expression (f¢)*B. f°. Note that

(1.24) (Bp,. —CQ5) ™" = f°(Bp,. — )~ (f)".

1.5. The effective matrix and its properties. The effective operator for Ap . is
given by the differential expression A° = b(D)*¢"b(D) with the Dirichlet condition on 0O.
Here Y is a constant effective matrix of size m x m. The matrix ¢° is expressed in terms
of the solution of an auxiliary problem on the cell. Let an (n x m)-matrix-valued function
A(x) be the (weak) I'-periodic solution of the problem

(1.25) b(D)*g(x)(b(D)A(x) + 1,,,) =0, /QA(X) dx = 0.
Then the effective matrix is given by
(1.26) =10 [ g0 dx
Q
(1.27) 9(x) := g(x) (0(D)A(x) + 1n).

It can be checked that the matrix ¢° is positive definite.
In accordance with [BSu3], (6.28) and Subsection 7.3], the solution of problem (T25])
satisfies

(1.28) A1) < M.

Here the constant M depends only on m, o, ||lgllz.., g7 |z, and the parameters of
the lattice I'.

The effective matrix satisfies the estimates known as the Voigt-Reuss bracketing (see,
e.g., [BSu2, Chapter 3, Theorem 1.5]).

Proposition 1.3. Let ¢° be the effective matriz (L26). Then
(1.29) 9<9°<3.
If m =n, then ¢° = g-
From (29) it follows that
(1.30) 19°l < lgllzwe, 1) < Mg -

Now we distinguish the cases where one of the inequalities in (I.29) becomes an iden-
tity, see [BSu2, Chapter 3, Propositions 1.6 and 1.7].

Proposition 1.4. The identity ¢° = G is equivalent to the relations

(1.31) b(D)*gr(x) =0, k=1,...,m,

where the gi(x), k =1,...,m, are the columns of the matriz g(x).
Proposition 1.5. The identity ¢° = g is equivalent to the representations
(1.32) L(x) =10 + b(D)wg, 19€C™ wyeH(Q;C™), k=1,...,m,

where the 1;(x), k =1,...,m, are the columns of the matriz g(x)~".
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1.6. The effective operator. To describe how the lower order terms of the operator
Bp . are homogenized, we consider a I'-periodic (n X n)-matrix-valued function A(x) that
is the (weak) solution of the problem

d
(1.33) b(D)*g(x)b(D)A(x) + > Dja;(x)* =0, / A(x) dx = 0.
j=1 @
By [Sudl (7.51) and (7.52)], we have
(1.34) \|1~\||H1(Q) <M,
where the constant M depends only on n, p, ag, |97z, lajllz, ), Jj=1...,d, and

the parameters of the lattice I'.
Next, we define constant matrices V and W as follows:

(1.35) V=10 /Q(b(D)A(X))*g(X)(b(D)T\(X)) dx,
(1.36) W= 1007 [ (D)) 9(x) (HD)A) d.
In Lo (O;C™), consider the quadratic form
d
6% [u,u] = (¢°b(D)u, b(D)u)r, o) +2Re Z(a_iju, u)r, ) — 2Re(Vu,b(D)u),0)
j=1

= (W, 1)1, (0) + (Qu, W), (0) + MQoW, W) ry0), 1€ Hy(O;C),
The following estimates were proved in [MSu3| (2.22) and (2.23)]:
(1.37) c||Dull, o) < bp[u,u] < callulfo), ue Hg(O;C"),
(1.38) 6% [u, u] > c,(diam (’))_2Hu\|%2(0), uc H}(O;C™).

Here the constant ¢4 depends only on the problem data (L3). The selfadjoint operator
in Ly(O;C™) corresponding to the form b% is denoted by BY,. By ([37) and (L3]),

(1.39) [ullm0) < esll(BB)?ull ), u € Hy(O;C"),

where c3 is given by ([L21]).
Due to the condition 9O € C11, the operator BY is given by

d
(140)  B® =b(D)"g"b(D) — b(D)*V — V*b(D) + Y (a; + al)D; — W + Q + \Q
j=1

on the domain H2(O;C") N H}(O;C™), and we have

(1.41) I(BB) " lLa(0)»m2(0) < €

Here the constant ¢ depends only on the problem data (I]). To justify this, we refer the
reader to the theorems about regularity of solutions of the strongly elliptic systems (see
[McLl, Chapter 4]).

Remark 1.6. Instead of the condition 9O € C*!, one could impose the following implicit
condition: a bounded Lipschitz domain @ C R? is such that estimate ([CZI]) holds true.
For such domains the results of the paper remain valid. In the case of scalar elliptic
operators, wide conditions on JO ensuring estimate ([L4I]) can be found in [KoE] and
[MaSh! Chapter 7] (in particular, it suffices to assume that 00 € C*, a > 3/2).
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Denote
(1.42) fo = (Qo) %
By ([L.22),
(1.43) ol < Ifllee = QG IE2, 1 T < 1 e = 1QollZ72.

In what follows, we shall need the operator EN?OD := foBY fo corresponding to the quadratic
form

(1.44) b [u, u) := 6% [fou, fou], ue HH(O;C™).
Note that (BY — (Qo)~! = fo(f}% — <)~ fo.

1.7. Approximation of the generalized resolvent (Bp. — (Q5)~!. Now we for-
mulate the results of the paper [MSu3|, where the behavior of the generalized resolvent
(Bpe — €Q5)~! was studied. Suppose that ¢ € C\ R; and [{| > 1. The principal
term of approximation of the generalized resolvent (Bp . — (Q§) ™" was found in [MSu3),
Theorem 2.5]; approximation of this resolvent in the (Ly — H')-norm with the corrector
taken into account was found in [MSu3l Theorem 2.6]; an appropriate approximation of
the operator ¢°b(D)(Bp.—(Q§) ! (corresponding to the “flux”) was obtained in [MSu3|
Proposition 10.7].
We choose numbers €q,e1 € (0, 1] in accordance with the following condition.

Condition 1.7. Let © C R? be a bounded domain. Denote
(00). = {x € R? : dist {x;00} < e}.

Suppose that there exists a number eg € (0, 1] such that the strip (00)s, can be covered by
finitely many open sets that admit diffeomorphisms of class C%' rectifying the boundary
0. Denote €1 1= go(1 +11)7 1, where 2r; = diam .

Obviously, the number £; depends only on the domain O and the lattice I'. Note that
Condition [[7] is ensured by the assumption that 00O is Lipschitz; we have imposed a
more restrictive condition 9O € C1! in order to ensure estimate (LZT).

Theorem 1.8 ([MSu3]). Let O C R be a bounded domain of class C1. Suppose that
the assumptions of Subsections are satisfied. Let

(=1¢le” e C\Ry, [¢]>1.

Denote

1, ¢ € [n/2,3m/2].
Suppose that €1 is subject to Condition [ Then for 0 < e < g1 we have
[(Bp.e = ¢Q5) ™" = (BB = €Q0) | 1, (0) - La(0) < Cre(0)’el 712,
The constant Cy depends only on the problem data ([L9]).

sin ¢! - - -
c(qs):_{ oI, b€ (0,7/2)U(3n/2,2m),

We fix a continuous linear extension operator
(1.45) Po : H°(O;C") — H°(R%;C"), o >0.

Such a “universal” extension operator exists for any bounded Lipschitz domain (see [R]).
We have

(1.46) 1Poll o (o) me@ey < CF, o >0,
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where the constant C’((QU ) depends only on ¢ and the domain O. By R we denote the
operator of restriction of functions in R? to the domain O@. We put

(1.47) Kp(e;¢) = Ro([A°]b(D) + [A]) S-Po (B, — (Qo) !
The corrector (L47) is a continuous mapping of Lo(O; C™) to H(O;C™). This can easily

be checked with the help of Proposition and the relations A, A € H(Q). Note that
leKp(e; )l z.(0)=H1(0) = O(1) for small € and fixed (.

Theorem 1.9 ([MSu3]). Suppose that the assumptions of Theorem [ are satisfied. Let
Kp(e;¢) be given by (LAT). Then for ( € C\ R4, [¢| > 1, and 0 < & < &1 we have

[(Bp.e = Q5™ = (Bp = (Qo) ™" — eKp(s:() HLQ(O)—>H1((9)

< Cac(9)’e2I¢| T + Cae(g) e
Let §(x) be the matriz-valued function (LZM). We put
(149)  Gp(eiC) == §°Sb(D)Po(BY — (Qo) " + g° (b(D)A) " S. Po(BY — (Qo) ™"

Then for ¢ € C\ Ry, |¢| > 1, and 0 < & < &1 the operator ¢g°b(D)(Bp . — ¢Q§)~"
corresponding to the “flux” satisfies

(1.50)  [|g°b(D)(Bp.c = CQ5) ™" = Gp(&: Ol 10y 1oy < Cacl9)™?e!2[¢) 714,

The constants Co, Cs, and 5’2 depend only on the problem data (L3).

(1.48)

n [MSu3, Theorem 9.2], estimates in a wider domain of the spectral parameter were
obtained. It was assumed that ¢ € C\ [¢,, 00), where ¢, is a common lower bound of the

operators épyg and §0 We put
(1.51) =4 aollg Iz 1Qoll L (diam O©) 2

using relations (LIX), (EDIEI), (C22), [L23), (L38), (L43), and (IEZD

Theorem 1.10 ([MSu3]). Let O C R? be a bounded domain of class C11. Suppose that
the assumptions of Subsections are satisfied. Let Kp(e; () be the corrector (IL4T)
and let Gp(e;C) be the operator (LA9). Suppose that ¢ € C\ [¢y, 00), where ¢, is given

by (LEI)). Denote ¢ :=arg(( —¢,), 0 < ¢ < 2w, and

c(¥)?|¢ — ¢y 72, — | <1,
(1.52) Qb(C) = ('(/))Qlc: bl |<: bl

c(¥)?, (=6l =1
Suppose that the number €1 is subject to Condition [l For 0 < ¢ < &1 we have
(1.53) [(Bp.e = CQ5) ™" = (BS = €Q0) || 10y 1a(0y < Caear(€),

|(Bp.e = ¢Q5) ™" = (Bp — ¢Qo) ™" = eKn(e: 0| 1,0y 1(0)

1.54
154 < Gy(/20,(Q)% + 2|1 + 264 0),
(1.55) l9°b(D)(Bp e = €QF) ™" = Gl ¢ HLz(O)—>Lz(O)

< C5(e20,(O)V? + €l + ¢]20,(C)).-

The constants C4, Cs, and C~'5 depend only on the problem data (L9).

Remark 1.11. 1) In (L52)), the expression c(1))2|¢ — ¢,| 72 is inverse to the square of the
distance from ¢ to [¢,, 00).

2) The number (L5T)) in Theorem [[I0lcan be replaced by any common lower bound for
the operators Bp < and B0 Let £ > 0 be an arbitrarily small number. By (Lh3) (with
¢ = 0), Bp, converges to B,OD in the norm-resolvent sense. Therefore, for sufficiently
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small £ we can take ¢, = A?HQO”E; — Kk, where \{ is the first eigenvalue of the operator
BY. Under this choice of ¢,, the constants in estimates become dependent on k.

3) It makes sense to use estimates (LH3)—(L53) for bounded values of |¢| and small
£0,(¢). In this case, the value £/20,({)1/2 + ¢|1 + ¢|'/20,(¢) is controlled in terms of
Ce'/?p,(¢)"/2. For large |¢| and for ¢ separated away from the points 0 and 2, it is
preferable to use Theorems [[.§ and

1.8. Removal of the smoothing operator from the corrector. It turns out that
the smoothing operator in the corrector can be removed under some additional assump-
tions on the matrix-valued functions A(x) and A(x).

Condition 1.12. Suppose that the I'-periodic solution A(x) of problem ([L28) is bounded,
i.e., A € Loo(RY).

Some cases where Condition [[T2is satisfied were distinguished in [BSudl, Lemma 8.7].

Proposition 1.13 ([BSud]). Suppose that at least one of the following assumptions is
satisfied:

1°) d <2

2°) the dimension d > 1 is arbitrary, and the differential expression A is given by
A = D*¢°(x)D, where g(x) is a symmetric matriz with real entries;

3°) the dimension d is arbitrary, and ¢° = g, i.e., relations [(L32) are satisfied.

Then Condition is fulfilled. B

In order to remove S, from the term of the corrector involving As , it suffices to impose
the following condition.

Condition 1.14. Suppose that the T-periodic solution A(x) of problem (L33) is such
that

KELP(Q), p=2ford=1, p>2ford=2, p=dford?>3.
The following result was checked in [Sudl Proposition 8.11].

Proposition 1.15 ([Sud]). Suppose that at least one of the following assumptions is
satisfied:

1°) d < 4;

2°) the dimension d is arbitrary, and A, is given by A. = D*¢%(x)D, where g(x) is a
symmetric matriz with real entries.

Then Condition [[LT4 is satisfied.

Remark 1.16. If A, = D*¢°(x)D, where g(x) is a symmetric matrix with real entries,
then from [LaUl Chapter III, Theorem 13.1] it follows that A, A € L., and the norm
|A]|lL.. does not exceed a constant depending on d, ||g||r., g7z, and Q, while the

norm ||Al|r_, is controlled in terms of d, p, |lgllz.., |97 L., lajll, @), 5 =1,...,d, and
Q. In this case, Conditions [[L12] and [[.14] are fulfilled.

In [MSu3l Theorem 7.6], the following result was obtained.

Theorem 1.17 ([MSud]). Under the assumptions of Theorem [L9, suppose that A(x) is
subject to Condition [[12] and A(x) satisfies Condition [LT4. We put

(1.56) K9(:¢) == (A°B(D) + A%)(BY — Qo) ™,
(1.57) G%(:¢) == gEb(D)(BY — (Qo) " + ¢° ((D)R)*(BY — (Qo) .
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Then for ¢ € C\ R4, [¢| > 1, and 0 < & < &1 we have
-1 0 _
[(Bp,e = Q5™ = (Bp = (Qo) ™" —eKp(e HLg(O)—>H1(O)
< Coc(@)?e! 2|7 + Coc(0) e
l9°8(D)(Bp.c = ¢Q5) ™" = GH(E Dl 10y 1ai0) < Cocl9)*e 217" + Coc(o) e

Here the constants Ca, Cy are as in (LAR) and (L50). The constants Cg and Cg depend
only on the problem data ([LI), p, and the norms ||A|z.., [[AllL,«)-

Approximations in a wider domain of the spectral parameter were found in [MSu3l
Theorem 9.8].

Theorem 1.18 ([MSu3]). Under the assumptions of Theorem and Conditions [[12],
LI, let K%(g;¢) be the corrector [LEB). Let G%(g;¢) be given by (LET). Then for
0<e<e; and ¢ € C\ [¢,00) we have

[(Bp.e = €Q5) ™" = (Bp = €Qo) ™" = KD (&0l 0y 11 0)
< Cr(e20,(Q)'2 + el1 + ¢[V20,(0)),
l9°0(D)(Bp.c = ¢Q5) ™" = GD(e: Ol 1y 0y 100y < Cr(e70 (02 + el L+ ¢ 20,(Q)).
Here the cwonstants C7 and 6’7 depend only on the problem data ([L9), p, and the norms
Az 1AL, @)
Recalling [MSu3, Remarks 7.9 and 9.9], we observe the following.

Remark 1.19. If only Condition [[LT2] (respectively, Condition [[LT4)) is satisfied, then the
smoothing operator S. can be removed from the term of the corrector involving A¢
(respectively, from the term involving A®).

1.9. The case where the corrector is equal to zero. Suppose that ¢° = g, i.e.,
relations (L3I)) hold true. Then the I'-periodic solution of problem ([25]) is equal to
zero: A(x) = 0. Suppose in addition that

d
(1.58) > Djaj(x)* =0
j=1

Then the I-periodic solution of problem (L[33) is also equal to zero: A(x) = 0. By
[MSu3l Propositions 7.10 and 9.12], in this case the following (L — H')-estimate of
sharp order O(g) is valid.

Proposition 1.20 ([MSu3]). Suppose that relations [(L31) and [IL58)) are satisfied.
1°. Under the assumptions of Theorem [, for { € C\ Ry, || > 1, and 0 < e < 1 we

have

(159) H(BD78 - CQ(g))_l - (BOD - C@)_IHLQ((Q)*}H“O) < CSC(¢)4€'

2°. Under the assumptions of Theorem [[I0, for ¢ € C\ [¢,,00) and 0 < & < 1 we have
(1.60) [|(Bp.e = CQ5)™" = (BE = (Q0) ™| L0y (o) = (Co + Croll + ([V*)z0,(€).

The constants Cs, Cy, and C1y depend only on the problem data (L9).
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1.10. Estimates in a strictly interior subdomain. It is possible to improve the
H'-estimates in a strictly interior subdomain O’ of the domain ©. In Theorems 8.1
and 9.14 of [MSu3], the following result was obtained.

Theorem 1.21 ([MSu3|). Let O’ be a strictly interior subdomain of the domain O.
Denote

(1.61) § := min {1;dist {O’; 00}} .

1°. Under the assumptions of Theorem [L9, for ( € C\ Ry, || > 1, and 0 < e < &1 we
have

|(Bp,e =¢Q5) " = (Bp —¢Qo) ™" —eKnl(e HLQ(O)—>H1((9’)
< ¢o(¢)%e(CH1 ¢35 + ¢,
19°(D)(Bp.c = Q)" = G Ol 1y 0y Lagor) S (D) (Cral¢I /267" + ).

The constants C},, C7,, C},, and CY, depend only on the problem data (L9).
2°. Under the assumptions of Theorem [LIQ, for ¢ € C\ [¢;,00) and 0 < € < &1 we have

||(BD,€ - CQ(E))il - (BOD - C@) - EKD 5 C ||L2 O)—=H(O")

< e(Cla67 0, ()2 + CPal1 + ¢[M20,(C)),
l9°6(D)(Bp.e = ¢Q5) ™" = Gp(e: 9| 1,10y La(0r)

<e(Cly6™ mo”z+51’2|1+¢|1/2g.,<o).

(1.62)

(1.63)

The constants C'y, Clly, and Cly, Clly depend only on the problem data (I3J).

If the matrix-valued functions A(x) and A(x) satisfy some additional assumptions, this
result remains true with a simpler corrector. Approximations for ¢ € C\ R4, [¢| > 1,
were found in [MSu3, Theorem 8.2].

Theorem 1.22 ([MSu3]). Suppose that the assumptions of Theorem [L2I(1°) are sat-
isfied. Suppose that the matriz-valued functions A(x) and A(x) satisfy Conditions
and [LI4], respectively. Let K9(g;¢) and G%(g;() be the operators defined by (L56) and
(CED). Then for 0 <e <ej and ¢ € C\ Ry, |¢] > 1, we have

|(Bp.e = €Q5)~" = (Bp = ¢Qo) ™" —eKp(&: Ol 1,0y m1(0r)
< (o) 5(011‘C|71/2571 + C13),
l9°0(D)(Bp.c = €Q5) ™" = Gh(e: Ol 1, (0) (o) < (@)°(CLICIT207 + Cug).

The constants C}, and C}, are as in Theorem [[LZI. The constants Cy3 and Cys depend
on the problem data (LY), p, and the norms ||Al|L ., [[Allz, (o)

Approximations in a wider domain of the parameter ¢ were obtained in [MSu3, The-
orem 9.15].

Theorem 1.23 ([MSu3]). Suppose that the assumptions of Theorem [L2I(2°) are sat-

isfied. Suppose that the matriz-valued functions A(x) and A(x) are subject to Condi-
tions and [LI4], respectively. Let K9 (g;¢) be the corrector ([L56), and let G%(g;()
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be the operator (LET). Then for ¢ € C\ [¢,,00) and 0 < e < &1 we have
H(BD,E - CQE)_I - (BOD - C@) - gKD & C HLQ(O)*}HI(O’)
< e(Cla07 0,2 + Crall +¢[V20,(0)).
Hgsb(D)(BD,E - CQ%) GD & C HL2 0)—Ly(0)
< (G810 (O)2 + Crall + (172 0,(0))-

Here the constants Cy and C'y are as in (L62) and [L6J). The constants Cyy and Chy
depend on the problem data (L), p, and the norms [[Al|L_,, [|AllL,@)-

§2. STATEMENT OF THE PROBLEM. MAIN RESULTS

2.1. Statement of the problem. We study the behavior of the solution of the first
initial boundary-value problem

Q5(x) %= (x,t) = —B.u.(x,t), x€0, t>0;
(2.1) u:(-,t)|oo =0, t>0;

Q5 (x)u.(x,0) = p(x), xe€ 0.
Here ¢ € L2(O;C™). (The solution is understood in the weak sense.) Let us find a
relationship between u.(-,¢) and ¢. By ([22), the function s.(x,t) := (f*(x)) lu. (x,1)

is the solution of the problem

5 (x,t) = —Bes.(x,t), x€0O, t>0;

se(,t)]oo =0, t>0;
se(x,0) = (f5(x))*p(x), x€O.

Then s.(-,t) = e’EDvit(fE)*go and uc(-,t) = fes.(-,t) = fae*BD’Et(fs)*tp.
Our goal is to study the behavior of the generalized solution u. of the first initial
boundary-value problem (2] in the small period limit. In other words, we are interested

in approximations of the sandwiched operator exponential fse_§D=ft( f9)* for small e.
The corresponding effective problem is given by

Qo 8“0( t) = —Bup(x,t), x€O, t>0;
(2.2) (1)l = 0, £> 0
Qoup(x,0) = p(x), xeO.
By ([42), the solution of the effective problem is given by

(2.3) uo( -, 1) = foe P2t fo( - ).

2.2. The properties of the operator exponential. We prove the followmg simple

—BD Et

statement about estimates for the operator exponentials e and e~ Bpt

Lemma 2.1. For 0 < e <1 we have:

—Bp .t —cpt
(2.4) [ Lo(O)—La0) =€ 20,
—Bp .t —1/2 _—cyt/2
25 [P Lo(0)H1L(0) = G fPemetl?, t>0,
—B%¢ —cpt
2.6 P HLQ(O)—)LQ(O) e ™, =0,

N
J

30
|| foe BDt||L2((9)—>H1(O)

(2.5)
(2.6) e
(2.7)
(2.8)

30
2.8 | foe BDt||L2((9)—>H2(O) =
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Here the constants ¢z and ¢, are giwen by (L21)) and (LEI)). The constant ¢ depends only
on the problem data (L9).

Proof Since the number ¢, defined by (IL5]) is a common lower bound for the operators
Bp.. and BY, estimates (24) and ([2.6) are obvious.
By (L20) and (23],

||f667§D75t

< cs|| B2 fre Bt

(2.9) |L2(O)—>H1( L2(0)—=L2(0O)

_ 03H31/2 —Bp,ct

L2(0)=L2(0)
Since .§D)5 > ¢y 1, we have

||Bl/2 —Bp,ct —xt

<supa:/

L2(0)—L2(0)

(2.10)
< e C|,t/2 Sup x1/26—$t/2 S t_1/2e_cbt/2.

xr>cp

Combining this with (Z3]), we obtain inequality ([23]). Similarly, (I39) and (LZ4) imply
estimate (27]).
From (C41)), (TZ43), and the identity BY, = foBY fo it follows that

Hfoe_BODtHLQ(O)ﬂHz(O) < /C\HB%foe_BthHLQ(O)aLQ(O)

< o Hé%e_g%t“mw)%a(@)'

Hence,
—B%t -1 —xt A p—1 —1_—cyt/2
L P Y S L PR

This proves estimate ([Z.8) with the constant ¢ =¢||f 1| .. O

2.3. Approximation of the solution in Ly(O;C"™).

Theorem 2.2. Let O C R? be a bounded domain of class C*'. Suppose that the as-
sumptions of Subsections are satisfied. Let Bp . be the operator in La(O;C™)
corresponding to the quadratic form (LII). Let BY be the operator in Lo(O;C™) given
by the expression (LAQ) on H2(O;C") N HE(O;C™). We put Bp. = (f)*Bp..f¢ and
E% = foBY fo, where the matriz-valued function f is defined by (L22), and the matriz f,
is given by ([42). Let u. be the solution of problem (21I), and let uy be the solution

of the corresponding effective problem (2Z2l). Suppose that the number 1 is subject to
Condition [L7. Then for 0 < e < &1 we have

luc (-, t) = uo(-, 1)L, (0) < Crse(t+3) 7 2e 2 |lg|| 1 0), ¢ > 0.
In operator terms,

_B * _Bo —
2Pt ()" = foe Po o1y 0y sy S Crselt+€%) 7122,
t>0.

(2.11)

Here the constant ¢, is given by (LEl). The constant Ci5 depends only on the problem

data (L9).

Proof. The proof is based on the results of Theorems [[8 .10, and representations for
the exponentials of the operators Bp o BJOD in terms of the contour integrals of the
corresponding resolvents.
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We have (see, e.g., [Kal Chapter IX, Section 1.6])

~ 1 ~
(2.12) e Poet — — — [ e~ YBp.—¢I)7td¢, t>0.
211 y

Here v C C is a contour enclosing the spectrum of the operator B D,e in positive direction.
The exponential of the operator BY satisfies a similar representation. Since the constant
(CED) is a common lower bound of the operators Bp . and BY, it is convenient to choose
the contour of integration as follows:

y={C€C:Im(>0,Re(=Im(+¢/2}U{(eC: Im(<0,Re(=—-Im(+¢,/2}.

Multiplying (ZI2) by f° from the left and by (f¢)* from the right and using iden-
tity (L24), we obtain

feeBoet(feyr — _% W e {(Bp.—CQ5)rdC, t>0.
Similarly,
Joe Pl fo = o [ e ¢ (BY ~ Qo) d¢, >0,
Hence, '
fEIe*BD,at(fE)* _ foeféthfO
(2.13) 1

21

s [ (B = QR - (BY - Q)Y .
.
By Theorems and [[L.T0, we estimate the difference of the generalized resolvents for
¢ € 7 uniformly in arg (. Recall the notation ¢ = arg(¢ — ¢,). Note that for ¢ € v and

Y = 7/2 or ¢ = 31/2 we have |¢| = v/5¢,/2. We apply Theorem [LI0 for ¢ € v with
|¢| < &, where

(2.14) ¢ = max{1; V5¢,/2}.

Obviously, ¢ € (7/4,7m/4) on the contour ~, and

(2.15) p>(¢) < 2max{1;8¢; %} =€, (€.

Therefore, (L53]) implies

(2.16) H — Q) — (Bl% a C@)_luLg(O)HLQ(O) < Cile < 015|C|_1/25a

Cev, [(<E 0<e<e; Cff =02
For the other ¢ € v, we have
(2.17) |sing| >5712, Cey, [(>E
and, by Theorem [[.§]
[(Bp.e = €Q5) ™" = (Bb = ¢Q0) [l 1,0y 10y < Clsl¢I %,

CE'}/? |C|>\C/7 0<€S515
where CJ5 := 5°/2C}. As a result, combining (18] and I8, for 0 < ¢ < £, we have
(219)  [[(Bpe—¢Q0) ™" = (Bh = (Q0) Ml 105 raio < Crslel ™%, (e,
where Cj5 := max{C15;Cls}.

From (ZI3) and 2I9) it follows that
1£2e= Pt (15" = Joe P2 ol oy s gy < 27 Crset V2T (1/2)e 2,

(2.18)
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Taking into account that T'(1/2) = 7'/2, we find

—Bp et * - Bt —1/2A  _—1/2_—cyt/2
(2.20) L7224 (F5)" = foe™ 2" foll 0y s pagoy < 20 P Crset ™ e
< Cv’15(€(7§ +e2) T 2emt/2 > 2,

where 5’15 = 2\/§7r_1/2615. For t < €% we use the rough estimate
_B * _Bo —
LF2em 2t (F5) = foe P2 foll 0y (o) < 21 FNE e
< 20V2flIZ2 e(t+ &2 _1/26_%”2, t <&
L

Relations (2:20) and [Z21)) imply the required inequality (ZII]) with the constant Cy5 :=
max{C15; 2v2| f|17_}- O

(2.21)

2.4. Approximation of the solution in H'(O;C"). We introduce a corrector
(222) Kp(t;e) := Ro([A]S:0(D) + [A%]S.) Pofoe™ 7P fo.

For t > 0 the operator (Z22)) is a continuous mapping of L2(O;C") to H(O;C").
Indeed, by 23], for t > 0 the operator foe™ Btho acts continuously from Lo(O;C")

to H?(O;C"). Hence, the operator b(D)Po foe™ Bbtf, is continuous from Ly (0;C™) to
H!'(R%;C™). Obviously, the operator P@foe_g%tfo is also continuous from Lo (O;C™)
to H'(R%; C™). It remains to use the continuity of the operators [A®]S.: H(R%;C™) —
H'(R%;,C") and [IN\E]SE: H'(R%C") — HY(RY; C"), which follows from Proposition
and the relations A, A € H(Q).

We put Ug(-,t) := Poug(-,t). By v. we denote the first order approximation of the
solution u. of problem (21)):

(2.23) Vel 1) = Go(- ) + eA*S:b(D)io(- 1) + e ST -, ),
ve(,t) =ve(-,t)]o.
So, ve(-,t) = foe_g%tfoso( )+ ekp(t;e)e( ).

Theorem 2.3. Under the assumptions of Theorem 2.2], suppose that the matriz-valued

functions A(x) and A(x) are D-periodic solutions of the problems (L25) and (L33),
respectively. Let Se be the Steklov smoothing operator (1)), and let Po be the extension

operator (L45). We put Uo(-,t) = Poug(-,t). Let v. be defined by 223). Then for
0<e<e; andt >0 we have
[uc(-,t) = ve(-, D)l 1oy < Cre(e2 7/ + et e 2|l 1, (0)-
In the operator terms,
—Bp,t BYt
(2.24) 27528 = foe™ o = eKn i) 0) o)
§016(€1/2t 3/4—|—Et 1)6*%75/2,

where Kp(t;e) is the corrector [Z22)). Suppose that the matriz-valued function §(x) is
defined by (L2T)). For 0 <e <&y and t > 0, the flux p. := g°b(D)u. satisfies

[p<(-t) = §°S-b(D)To( -, 1) — g° (b(D)A) S0 (-, )] 1, 0,
< Chre?t™ 3/éle_cbt/Q||<r"’||L2((9)

In the operator terms,

~

(225)  [[g*B(D)f7e PP (f5)" = Gp(t:2) | 0y oy < Cros /2 e,
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Here
Gp(t:€) 1= §°S-b(D)Po foe 70" fy + g° (b(D)K)"S. Po foe 5" fo.
The constants C1g and Chg depend only on the problem data (L9).

Proof. Asin the proof of Theorem[Z.2] we use representations for the sandwiched operator
exponentials in terms of the contour integrals of the corresponding generalized resolvents.
We have

fee_ED‘Et(fE)* _ foe—é%tfo _ E’CD(t; E)
2.26 —
o =5 / e " (Bp,e = €Q5) ™" = (BY = (Qo) " — eKpl(&;()) dC.
v

21

Here Kp(e; () is the operator (LA7]).
As in [Z16)-(219), using Theorems [[L9 and [[L.T0, we get

|(Bp.e = ¢Q5) ™" = (Bp — ¢Qo) ™" = eKn(&: 0l 1,0y 1(0)
<516(61/2|Q—1/4+5), €y, 0O0<e<en,

with the constant Cig := max{C}g; Cls}, where Clg := (1 + &)Y2C5¢ and O =
max{5C2;25C3}. Relations ([2.26]) and ([227) imply the required estimate ([224) with
the constant Cig := 277’1I‘(3/4)516.

Similarly, the identity

g°b(D) e Bret (£5)" — Gp(t;e)

(2.27)

(2.28) 1 B B
s [ € GHDI B~ Q7! - G0 de
gl
and estimates (L50), (C55) yield inequality (Z225]) with the constant
Clﬁ =27 1F(3/4 max {55/402 2v1/4(1 + 5)1/255€}. U

Remark [[TI(2) leads to the following statement.

Remark 2.4. Let A} be the first eigenvalue of the operator BY, and let x > 0 be an
arbitrarily small number. Due to the norm-resolvent convergence, for sufficiently small
€o the number )‘?HQOHE; — k/2 is a common lower bound for the operators Bp . for
all 0 < € < g,. Therefore, we can shift the integration contour so that it will intersect
the real axis at the point ¢ := )‘(1)HQOHZ; — k instead of ¢,/2. In this way, we obtain
estimates (Z11)), (Z24)), and 228) with e~ /2 replaced by e~ on the right-hand sides.
The constants in estimates become dependent on k.

2.5. Estimates for small time. Note that for 0 < ¢ < €2 it makes no sense to apply
estimates ([2:24) and (220]), because it is better to use the following simple statement
(which is valid, however, for all ¢ > 0).

Proposition 2.5. Under the assumptions of Theorem B2, for t >0 and 0 <e <1 we

have

(2:29) F2e™ P2t (£9)" = foe P2 ol 0y s pra(oy < Cart /%€,

(2.30) Hgsb( )fe *BDE (f)* < Gyt~ 2e= 0012,

(2.31) 196D foe™ %5 ol o) 1 0y < Cort ™22,

where the constants Cyr := 2cs||f||p. and Cir := ||9||2/j||f||Loo depend only on the

problem data (L3).
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Proof. Inequality (229)) follows from ([43]), 1), and 2.
Next, by (L23),

lo7bD) e P2 ()| Lo aion < INEZIA I BB 22 y0) s oo

Together with (ZI0)), this yields (Z30). By (L43) and (L44), estimate (231]) is checked

similarly. |

2.6. Removal of the smoothing operator S, from the corrector. It is possible to
remove the smoothing operator from the corrector if the matrix-valued functions A(x)
and /N\(x) satisfy Conditions and [[LT4] respectively. The following result is checked
like in Theorem by using Theorems [[.17 and [[L18]

Theorem 2.6. Under the assumptions of Theorem 23], suppose that the matriz-valued
functions A(x) and A(x) satisfy Conditions [[L12 and [LT14], respectively. Put

(2:32) K (ts2) = (AB(D) + A%) foe P21 fy,

(2.33) G%(t;€) == §°b(D) foe B0 fo + g° (B(D)R)" foe~Eo" fy.
Then fort >0 and 0 < € < &1 we have

| £2e Bt (£2)" — foe B0t fy — ek (tie ea0)=mr0)
< Crg (V2473 et e,

lg°b(D) fee Boct(fey g%(“g)HLz(O)HLQ(O)
< 518 (61/21573/4 + Etfl)efcbt/;

The constants Chs and C1s depend on the problem data @A), p, and the norms ||A| L.
and ”AHLP(Q)-

Using Remark [[LT9 we observe the following.

Remark 2.7. If only Condition [[LI2] (respectively, Condition [[LT4)) is satisfied, then the
smoothing operator S. can be removed from the term of the corrector involving A€
(respectively, A%).

2.7. The case of smooth boundary. It is also possible to remove the smoothing oper-
ator S. from the corrector by increasing smoothness of the boundary. In this subsection,
we consider the case where d > 3, because for d < 2 we can apply Theorem (see

Propositions [[LT3] and [[LT5).

Lemma 2.8. Let k > 2 be an integer. Let O C R? be a bounded domain with boundary

00 of class C*=11. Then for t > 0 the operator e=Bbt s a continuous mapping from
Ly (O;C") to HI(O;C"), 0< g < k, and

(2.34) |~ Bb < Cut12e7ot2 >0

Ot
HLZ(O)—>H‘1((9)
The constant 6,1 depends only on q and the problem data (9.

Proof. Tt suffices to check estimate (2Z.34)) in the case where ¢ € [0, k| is an integer; then
the result for nonintegral ¢ follows by interpolation. For ¢ = 0, 1,2 estimate ([2.34) was
already proved (see Lemma [ZT]).

So, let ¢ be an integer such that 2 < ¢ < k. By theorems about regularity of so-
lutions of strongly elliptic systems (see, e.g., [McLl Chapter 4]), the operator (E%)’l
acts continuously from H?(O;C") to H°+2(O;C") under the assumption 00 € C7+1:1,
where 0 € Z;. We also take into account that the operator (g%)*l/ 2 is continuous
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from Lo(O;C™) to H(O;C"). Tt follows that, under the assumptions of the lemma, for
an integer q € [2,k] the operator (B%)~%? is a continuous mapping from Lo(O;C") to
H1(O;C™). We have

IN

) <
(2.35) [(BR)~*/ ||L2((9)—>H‘1((9) Co,
where the constant C, depends on ¢ and the problem data (L9). From (238) it follows

that

I A

He DtuLz(O)HH"( ¢ H(E%)q/zeilg%tHLz(O)HLz(O) = éq j;lg ot

IN

éqtfq/Qefcbt/2 sup Iq/2€7I/2 < aqtfq/Qefcbt/a
x>0

~

where C, := éq(q/e)qm. O

Using Lemma 28, the properties of the matrix-valued functions A(x) and A(x), and
the properties of the operator S¢, we can estimate the difference of the correctors ([2.22])

and ([2.32)).

Lemma 2.9. Let d > 3. Let O C R? be a bounded domain of class C¥> if d is even
and of class CHV/21 4f d is odd. Let Kp(t;e) be the operator Z22), and let K% (t;¢)
be the operator [232). Then for 0 <e <1 andt > 0 we have

(2.36) KD (t;e) = K (t:6)l 1y 0y o) < Calt™ + - H471/2)emet/2,
The constant Cq depends only on the problem data (LJ).

Lemma 2.9 and Theorem 2.3] imply the following result.

Theorem 2.10. Under the assumptions of Theorem 2.2], suppose that d > 3 and that
the domain O is as in Lemma 23l Let K% (t;€) be the corrector [232). Let G%(t;¢) be
the operator (Z33). Then fort >0 and 0 < ¢ < &1 we have

Hfae_gD‘t(fE)* — foe Pht fo — KO (1 HLQ(O)%HI(O)

SCd(sl/zt 3/4 4 o4 d/471/2)efcbt/2’

|g°b(D) fee ~Bo.et () _g%(t35)||L2(o)—>L2(0)
< 5d(€1/2t73/4 et /A2 et/2,

(2.37)

(2.38)

The constants Cq and 6d depend only on the problem data (LJ).

The proofs of Lemma and Theorem are presented in the Appendix (see
g7) in order not to overload the main presentation. Clearly, it is convenient to apply
Theorem if ¢t is separated away from zero. For small ¢ the order of the factor
(e}/2t73/% 4 et=4/4=1/2) grows with dimension. This is the “price” for the removal of
the smoothing operator.

Remark 2.11. Instead of the smoothness assumption on 0O as in Lemma 2.9, we could
impose the following implicit condition: a bounded domain O with Lipschitz boundary
is such that estimate ([2:34) is fulfilled for ¢ = d/2 + 1. In such domains the statements
of Lemma [2.9] and Theorem [Z.10] remain valid.
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2.8. The case of zero corrector. Suppose that g° = g, i.e., relations (L31) are true.
Suppose also that condition (58] is satisfied. Then the I'-periodic solutions of problems
(C25) and (L33) are equal to zero: A(x) = 0 and A(x) = 0. Using Proposition [20, we
obtain the following result.

Proposition 2.12. Suppose that relations (L31)) and (LE8) are satisfied. Then, under
the assumptions of Theorem 22, for 0 < e <1 we have

5] 0
(2.39) ||fsefBD‘gt(fs)* _ fOeiBthOHLQ((Q)HHl((g) < Clgatileicbt/27 t>0,
where the constant C1g depends only on the problem data (L9I).

Proof. We use identity (2.13). For |¢| < ¢, where ¢ is the constant ([2.14), we em-

ploy (L60) and 2I58). For |[¢| > ¢ we apply (L59) and (2I7). As a result, we see that,
for0 <e <1,

H(BD,E - CQ8)71 - (Bl% - C@)iluLQ(O)*}Hl(O) < 6196, cer
Cio = max{(Cy + Cro(1 + 5)1/2)02; 25Cs }.
Together with (ZI3), this yields (Z39) with the constant Cg := 27~ Cho. O

2.9. Special case. Now, we assume that ¢° = g, i.e., relations (L32)) are satisfied.
Then, by Proposition [[LI3[(3°), Condition 12 is fulfilled. By Remark 3.5], the
matrix-valued function (L27) is constant and coincides with ¢°, ie., g(x) = ¢° = g.

Thus, 3°b(D) foe P2 fo = ¢°b(D) foe™ 55" fo.
Suppose moreover that (L58)) is true. Then A(x) = 0. The following result can be
deduced from Theorem [2.3] and Proposition [[L11

Proposition 2.13. Suppose that relations (L32) and [[L58)) are satisfied. Then, under
the assumptions of Theorem 2.2, for 0 < e < ey and t > 0 we have

(240) [|g°b(D) f2e™F2<1 (%) = °B(D) foe P2 fol| 1. i 1oy < O™/ 2t 4e12,
The constant C'l depends only on the problem data (L3).

Proof. From Theorem 23] it follows that
lo°b(D) £ B <t ()" — g°S.b(D) Po foe™

Bt
L fOHLQ(O)—>L2(O)
S 61651/2t_3/46_cbt/2.

On the one hand, Proposition [Tl and relations (I3), (L30), (T43), (C44), 2]) imply
that

(2.41)

l9°(S= = DBD)Po foe™ 20" foll . s 1, et
(2.42) < ellgllzo 01?1 Po foe B2 foll 1o(0) s 2 ey
< ellgllin Il nroy?CSatemert/2,
On the other hand, from ([2)), (L3), (C30), (C43), (T44), and &) it follows that
l9°(S= = DBD) Po foe™ 2" foll . s 1, et
(2.43) < 2llgllz. 01" Po foe B0 foll L0y i vy

S 2HgHLoc Hf”Lmai/208)03t_1/2€_cbt/2.
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By @.42) and @2.43),
_BO ~ — —c
19°(S. — D)BD)Po for ™ foll . ) 1y < Croc 24347112,
where Cig := HQHLOCHfHLwOllﬂ(QT C’O C(Q)N )1/2. Combining this with (241]), we
obtain estimate (2.40) with the constant C’16 .= Ci6 + Chs. O

2.10. Estimates in a strictly interior subdomain. Using Theorem[[.2]] we improve
error estimates in a strictly interior subdomain.

Theorem 2.14. Under the assumptions of Theorem 23|, let O’ be a strictly interior
subdomain of the domain O, and let & be defined as in (LE1)). Then for 0 <e < e, and
t > 0 we have

|£2e= PPt (£2)" = foe™P5" fo = eKn(:9) | 1 0) om0
< e(Coot 257 4 Cot e /2,
—B et )
lg7b(D) fee™ 2= (f)" = Gp(t:e)|| 1, 015 10
< e(Copt ™27 4 Copt™hyemt/2,

(2.44)

The constants Cag, Ca1, 5’20, and CN’21 depend only on the problem data ([L9).

Proof. The proof is based on application of Theorem [[L2T] and relations (2:26]), (Z28)).
Also, estimates (ZI5) and (ZI7) are used. We omit the details. O

The following result is checked similarly with the help of Theorems and [[231

Theorem 2.15. Under the assumptions of Theorem 214, suppose that the matriz-valued
functions A(x) and K(x) satisfy Conditions and [LI4], respectively. Let K% (t;¢)
be the corrector [Z32), and let G%(t;€) be the operator Z33). Then for t > 0 and
0 < e <e1 we have

_B vk 1)
Hfse BD’Et(f ) _f0€ BthO eK:D t € ||L2(O)—>H1(O)
< 5(020t_1/2(5_1 +C22t—1)e—cbt/2’
l9°8(D) f2e™ PPt (1) =GBt 9| 1, 0) s pagory < £(Caot 267 4 Cont ™)™ 2,

The constants Cop and Coo are the same as in Theorem 214l The constants Cao and Cos
depend on the problem data (L), p, and the norms |[Al|L, [|Allz, )

Note that it is possible to remove the smoothing operator S. from the corrector in
estimates of Theorem 2.14] without any additional assumptions on the matrix-valued
functions A(x) and A(x). For this, the additional smoothness of the boundary is not
required. We consider the case where d > 3 (otherwise, by Propositions [LT3]and [L.I5 we
can apply Theorem 2.15]). We know that for ¢ > 0 the operator e ~Bbt acts continuously
from Lo(O;C") to H?(O;C") and estimate (Z3J) is fulfilled. Moreover, the following
property of “regularity improvement” inside the domain is valid: for ¢ > 0 the operator

e~Bbt acts continuously from Lo(O;C™) to H?(O'; C™) for any integer o > 3. We have

< C;t71/2(572 + 2571)(071)/2675.,15/27
t>0, o€eN, o>3.

le=P5|
(2.45) L2(0)—H? (0')

The constant C/ depends on o and the problem data (L3). For the scalar parabolic
equations, the “regularity improvement” property inside the domain was obtained in
[LaSoUl, Chapter 3, § 12].
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In a similar way, the “regularity improvement” can be checked for the operator f?%.
It is easy to deduce the qualified estimates ([2:45]), observing that the derivatives D*ug
(where ug is the function [23) with ¢ € Ly(O;C™)) are solutions of the parabolic
equation Qo0;D%ug = —BD%uy. We multiply this equation by x?D%ug and integrate
over the cylinder O x (0,t). Here x is a smooth cut-off function equal to zero near the
lateral surface and the bottom of the cylinder. The standard analysis of the corresponding
integral identity together with the already known inequalities of Lemma 2.1 leads to

estimates (Z.43]).

Using the properties of A(x) and /N\(x), and also the properties of S., we can deduce
the following statement from (2.45]).

Lemma 2.16. Under the assumptions of Theorem 214}, let d > 3, and let K% (t;€) be
the operator (Z32). Denote

(2.46) ha(6;t) ==t~ + 7 Y/2(572 4 ¢~ H)¥/4,
Let 2r; = diam Q. Then for 0 < & < (4r1)710 and t > 0 we have
(2.47) 1K (t:2) — K (8 )| acoyrrs o) < Cltha(6 )"
The constant C!j depends only on the problem data (L9).
From Lemma and Theorem [2.14] we deduce the following result.

Theorem 2.17. Under the assumptions of Theorem 214, let d > 3, let K% (t;€) be the
corrector [Z32)), and let G%(t;¢) be the operator [Z33). Let 2ry = diam Q. Then for
0 < e < min{ey; (4r1) 718} and t > 0 we have

(248) ||f€eiBD’Et(f€) foe BthO - 6ICD t € ||L 0)—H(0O) < €thd(5; t)67Cbt/27
(2.49) ||gab(D)f€efBD’5t(f€)* _ g%(t; g)HLz(O)—)LQ(O/) < €édhd(5; t)efcbt/2.
Here hq(6;t) is given by (248), the constants Cq and Cq depend only on the problem

data (L9).

The proofs of Lemma 216l and Theorem [2.17] are presented in the Appendix (see §g])
in order not to overload the main presentation. Clearly, it is convenient to apply The-
orem 217 if ¢ is separated away from zero. For small ¢ the order of the factor hy(d;t)
grows with dimension. This is the “price” for removal of the smoothing operator.

§3. HOMOGENIZATION OF THE FIRST INITIAL BOUNDARY-VALUE PROBLEM
FOR A NONHOMOGENEOUS EQUATION

3.1. The principal term of approximation. In this section, we study the behavior of
the solution of the first initial boundary-value problem for a nonhomogeneous parabolic
equation:

Qg(x)%(x, t) = —B.u.(x,t) + F(x,t), x€O, t>0;
Qi(x)uc(x,0) = ¢(x), x € 0.

Here F € 9,(T) := L.((0,T); L2(O;C™)), 0 < T < 00, with some 1 <1 < oco. Then

82w =P e + [ DR D
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The corresponding effective problem takes the form

@%(X,t) = —B%y(x,t) + F(x,t), x€O, t>0;
(3.3) u( -, t)[oo =0, t>0;
Qoup(x,0) = (x), x € 0.

The solution of this problem is given by

(3.4) uy(+, 1) = foe B fop(-) + / foe BoU=D fR( - T) di.
0

Subtracting [B4]) from [B2]) and using Theorem (see (ZI10)), we conclude that, for
O<e<egandt>0,

e+, t) = uo(-, 1)l 1,0) < Crse(t+ )" 2e |||, (0) + CrseL(s; 1 F),

t N N -~ -
L(g;4:F) = / e_cb(t_t)/Q(a2 +t— t)_1/2||F( 1)Ly dt.
0

Estimating the term L(g;t; F) for the case where 1 < r < 0o, we obtain the following
result. Its proof is completely similar to that of Theorem 5.1 in [MSull.

Theorem 3.1. Suppose that O C R? is a bounded domain of class C%'. Under the
assumptions of Subsections [[3HLG] let u. be the solution of problem [BI)), and let ug
be the solution of the effective problem [B3) with ¢ € L2(O;C") and F € 9,(T'), where
0<T < oo, with some 1 <r <oo. Then for 0 <e <e; and 0 <t <T we have

(-, 1) = wo(-, Ol za(0) < Crse(t +€%) 72 2|y ) + ¢,0(e, ) [Flls, (1)-

Here 0(e,r) is given by

g2-2/r 1<r<2,
(3.5) O(e,r) =< e(|Ine| + V2, r=2,
g, 2<r S Q.

The constant ¢, depends only on r and the problem data (9.

By analogy with the proof of Theorem 5.2 in [MSul], we can deduce approximation
of the solution of problem 1) in $,(T) from Theorem

Theorem 3.2. Under the assumptions of Theorem [3.1], let u. and ug be the solutions of
problems BI) and B3)), respectively, with ¢ € L2(O;C™) and F € H,.(T), 0 < T < o0,
for some 1 < r < oco. Then for 0 < e < e, we have

[u: —aolls, (z) < crrble, ")l Ly(0) + CozellFllg, (1)

Here 0(e, -) is given by @BH), r—* + (r')~1 = 1. The constant Ca3 depends only on the
problem data ([L9), and the constant ¢, depends on the same parameters and r.

Remark 3.3. For the case where ¢ =0 and F € $(T), Theorem Bl implies that

[ue — ol () < cctllFllgr), 0<e<er
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3.2. Approximation of the solution in H!(O;C"). Now, we obtain approximation
of the solution of problem [BJ)) in the H'(O;C")-norm with the help of Theorem
Some difficulties arise when we treat the integral term in ([B2]), because estimate (2Z24])
“deteriorates” for small t. Assuming that t > €%, we divide the integration interval in
[B2) into two parts: (0,t—¢e?) and (¢t —e2,t). On the interval (0, —£2) we apply (2.24),
and on (t — &2 t) we use (2.29).
Denote
(3.6) W t) = foe Bo frlug (-t — £2),

where ug is the solution of problem (&3). By (B4),

750 t—e’ 50 ~ o~
WE( . 7t) = foe*Bthow( . ) + / foe*BD(tfz)fOF( . ’t) dt.
0

The following statement can be checked much in the same way as Theorem 5.4
in [MSul].

Theorem 3.4. Under the assumptions of Theorem [B.1l, suppose that u. and ug are the
solutions of problems BIl) and B3), respectively, with ¢ € La(O;C™) and F € H,.(T),
0 < T < oo, for some 2 <r < oo. Let we(-,t) be given by @B). Let A(x) and A(x) be
the I'-periodic matriz solutions of problems ([(L28) and (L33), respectively. Let Po be the
continuous linear extension operator (L45) and S. the Steklov smoothing operator ().
We put W.(-,t) := Pow(-,t) and denote

ve(- t) i=ug(-,t) + eATSb(D)W.( -, 1) + eATSwo (-, t).
Let pe(-,t) == g°b(D)uc(-,t), and let §g(x) be the matriz-valued function (L2T). We put
ae( 1) = FFSbD)We( 1) + ¢° (B(D)A) S (- 1),
Then for 0 < e < e and 2 < t < T we have
[uc(- 1) = ve( -, )l (o) < 201627 4™ 2| Ly 0) + Ew(e, ) [F |5, (1),
[P(-,t) —a:(-, )|l Lo(0) < 51651/%_3/46_0”/2H90||L2(o) + &w(e, ) IFls, (1)
Here

gl=2/r, 2<r <4,
(3.7) w(e,r) =14 e?(|lng| +1)3/4, r =4,
gl/2, 4 <r < oo,

where the constants ¢, and ¢, depend only on the problem data ([L9) and r.

Since the right-hand side in (Z25]) grows slower than the right-hand side in ([2:24)) as
t — 0, for r > 4 we can approximate the flux p. in terms of

(3.8) he(-,t) := G°Sb(D)io( -, t) + g° (B(D)A) " Scdio (-, 1).

Proposition 3.5. Under the assumptions of Theorem [3.1], suppose that u, and ug are the
solutions of problems BI) and B3), respectively, with ¢ € La(O;C™) and F € 9,.(T),
0 < T < oo, for some r with 4 < r < co. Let pc(-,t) = g°b(D)u.(-,t) and let h (- ,t)
be given by B8)). Then for 0 <t <T and 0 < e < &1 we have

(39)  [Ip=(+,t) = ho(+,8)|Ly0) < Cree™?t 34 e™ 2| || 1,0y + 02(2)51/2\|F||ﬁ,,(t)-

The constant Céz) depends only on the problem data ([IL9) and r.
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Proof. To check (B3], we use inequality (225)) and identities (32), B4). If r = oo,
we deduce ([39) with C’ézo) = (2/c,)Y4T(1/4)Chs. If 4 < 1 < o0, we apply the Holder
inequality:

Ip<(- 1) = he (-, 1)l o0y < Cree"/ 2t 2|| |y (0) + Croe [|F 5, 1y (e, 6) ",
()T =1
Here .
J(e,t) = /0 T3 e T2 g < (epr! J2)3T /AT (1 — 30 /4).

This implies (39) with the constant Céz) i= (cyr’ /2)3/4 1T D (1 = 3¢ JA)YT' O O
Combining Proposition and Theorem [2.6] we deduce the following result.

Theorem 3.6. Under the assumptions of Theorem B4, suppose that the matriz-valued
functions A(x) and A(x) satisfy Conditions [L12] and 14, respectively. Denote

(3.10) V(- t) i=ug(-,t) +eAb(D)we(-,t) +eAw(-,1),
(3.11) -+, 1) = Fb(D)we (-, 1) + g* (b(D)A) "W (- . 1).
Then for 0 < e < e and 2 < t < T we have
lue(-,8) = Ve (-, Ol mio) < 20152734 l@| 1,0y + hw(e, ) [Flls, )5
IP<(-,) = & (- )| Lao) < 2Case™ 7322 L 0) + cfwle, 7) [ Flls, -
The constants c,. and ¢/l depend only on the initial data (L9), r, p, and the norms ||A| L.,
[AllL,@)-

For the case of sufficiently smooth boundary, we could apply Theorem 2.10] However,
because of the strong growth of the right-hand side in estimates (Z37)), [23])) for small
t, we obtain a substantial result only in the three-dimensional case and only for r > 4.

Proposition 3.7. Suppose that the assumptions of Theorem 3.4 are satisfied with d = 3
and r > 4. Suppose that 00 € C*1. Let V. and q. be given by BI0) and BII). Then
for0<e<e and e <t < T we have

[ue(-,) = V(- )0y < Ca(e! 24 et ")e™ 2|1 g|| 0y + 82727 (|F 15, 1)
IP=(-6) = &e (- )| ooy < Ca(e 2t et/ )e™ 2 0|, o)+ /e > 7>/ |[F 15, 1.

The constants ¢, and ¢! depend only on the problem data (L9) and r.

3.3. Approximation of the solution in a strictly interior subdomain. From
Theorem 2.14] and Proposition we deduce the following result.

Theorem 3.8. Under the assumptions of Theorem B4, let O be a strictly interior
subdomain of O. Let § be given by (LBI)). Then for 0 < e <& and e <t < T we have

e (-, 8) = ve (-, )l on
< e(Coot 2571 + Cort™H)e 2 ||| 1, 0) + k9 (e, 6,7)|F |6, 1)
[Pe(+:t) —a=(-, )|, 0
< e(Coot 72671 4 Cort™He 20| 0y + k(€. 6,7) | Flg, 1)-
Here the constants k, and %T depend only on the problem data (L9) and r, and

I, o,7) == {

g0t 4 etm2/r 2 < r < oo,
0 ' +e(|lngl+1), r=o0.
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Finally, if Conditions [[LT12] and [[.14] are fulfilled, then Theorem [ZI5] implies the fol-
lowing result.

Theorem 3.9. Under the assumtions of Theorem B8], suppose that the matriz-valued
functions A(x) and A(x) satisfy Conditions [L12] and [LI4l, respectively. Suppose that v
and q. are given by BI0) and BII). Then for 0 <e <ey and €2 <t < T we have

uc(-,t) = Ve(-, ) o)
< e(Coot 2671 4 Cont™ e @ 1a(0) + Kt e, 8,7) [l 1)
[p=(+.8) = @=(+, )l Lo c00)
< (Cant 2571 4 Cont Ve 2| p| 1y 0) + kr9(e, 8,7) | |5, (1) -
The constants Erwand Er depend only on the problem data (LI) and also on v, p, and the
norms [|Allz, [|Allz, @)
APPLICATIONS

For elliptic systems in the entire space R?, the examples considered below were studied
in [Sud, [MSu2|. For elliptic systems in a bounded domain, these examples were considered
in [MSu3].

§4. SCALAR ELLIPTIC OPERATOR WITH A SINGULAR POTENTIAL

4.1. Description of the operator. We consider the case where n = 1, m = d,
b(D) = D, and g(x) is a I'-periodic symmetric (d x d)-matrix-valued function with real
entries such that g,g7! € Ly and g(x) > 0. Obviously (see (L3))), ap = a; = 1 and
b(D)*¢°(x)b(D) = —divg*(x)V.

Next, let A(x) = col{A4:(x),...,Aq(x)}, where the 4;(x), j =1,...,d, are I'-periodic
real-valued functions such that

(4.1) A, eL,(Q), p=2ford=1, p>dford>2; j=1,...,d

Let v(x) and V(x) be real-valued I'-periodic functions such that
(4.2) v, Ve L), s=1ford=1, s>d/2 for d>2 /v(x)dx:O.
Q
In Ly(0O), we consider the operator Bp . given formally by the differential expression

(4.3) B. = (D - A%(x))"g°(x)(D — A%(x)) + ¢~ 10 (x) + V(%)

with the Dirichlet condition on dO. The precise definition of the operator Bp . is given
in terms of the quadratic form

bplu,ul = /o ((gE(D —A%u, (D — A%u) + (5711)6 + VE)\u|2) dx, ué€ Hé(@).

It is easily seen (cf. [Sudl Subsection 13.1]) that (Z3) can be written as
d
(4.4) B. =D7g"(x)D + Y _ (a5(x)D; + D;(a5(x))") + Q° ().
j=1

Here Q(x) is a real-valued function defined by
(4.5) Q(x) = V() + (9(x)A(x), A(x)).
The complex-valued functions a;(x) are given by

(4.6) a;(x) = —n;(x)+i&(x), j=1,...,d
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Here the n;(x) are the components of the vector-valued function n(x) = g(x)A(x), and
the functions &; (x) are deﬁned by 5]( ) —0;®(x), where ®(x) is the I'-periodic solution
of the problem A®(x x), [o ®(x)dx = 0. We have

d
(47) o) = = D 0,8, (x)

It is easy to check that the functions (6] satisfy condition (7)) with a suitable p’
depending on p and s, and that the norms ||a;|1, , (o) are controlled in terms of ||g|r..,
AL, @), .(2), and the parameters of the lattlce I'. (See [Sudl Subsection 13.1].)
The function (IE) satisfies condition (&) with a suitable s’ = min{s; p/2}.

Let Qo(x) be a positive definite and bounded I'-periodic function. As in (LI0), we
introduce a positive definite operator Bp . := B p .+ AQ§. Here the constant A is chosen
in accordance with condition (IIG) for the operator Bp . with the coefficients g, a;,
j=1,...,d, Q, and Qo defined above. The operator Bp . is given by

(48) B =(D-A%(x))"g"(x)(D — A%(x)) + &~ "v"(x) + V°(x) + AQ5(x).

We are interested in the behavior of the exponential of the operator gp,g = f*Bp.f*,

where f(x) := Qo(x)~ /2.
For the scalar elliptic operator (L8], the problem data (L3) reduce to the following
set of parameters:

(4.9)

d, p, 53 19l L 197 2w AL, 0 0l VI 20,
1QollL, Qo ||z ; the parameters of the lattice T'; the domain O.

4.2. The effective operator. Let us write out the effective operator. In the case
under consideration, the I'-periodic solution of problem (2] is a row: A(x) = i¥(x),

U(x) = (wl(x), e wd(x)), where 1); € ﬁl(Q) is the solution of the problem

v g()(V5,0) +e) =0, [ 1,60 dx .

Here the e;, 7 = 1,...,d, form the standard orthonormal basis in R?. Clearly, the
functions v, (x) are real-valued, and the entries of A(x) are purely imaginary. By (L27),
the columns of the (d x d)-matrix-valued function §(x) are the vector-valued functions
g(x)(Vip;(x) + €;), j = 1,...,d. The effective matrix is defined as in ([[26): ¢° =
Q]! [, §(x) dx. Clearly, §(x) and ¢° have real entries.

By (@0) and (@7, the periodic solution of problem ([33) is represented as A(x) =
Ay (x) + iAy(x), where the real-valued I-periodic functions Aj(x) and Ay(x) are the
solutions of the problems

— div g(x) VA, (x) + v(x) = 0, /S)/~\1(x) dx =

— div g(x) VAz(x) + div g(x)A(x) = 0, /Q Ao (x) dx =

The column V (see (L35])) has the form V = V; 4 iVs, where V4, V; are the columns
with real entries defined by

0! / (VO())g(x)VAa(x) dx, Vo= |0 / (V0 (x))g(x)V A, (x) dx
Q Q
By (34), the constant W is given by

W =0 /Q (90 VA1 (%), VA1 (3)) + (9(x) VA (x), VEa(x))) dx.
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The effective operator for Bp . acts as follows:

BYu = —div ¢"Vu + 2i(Vu, Vi +7) + (=W + Q + \Qo)u, u € H*(0)N Hy(0).
The corresponding differential expression can be written as
(4.10) B = (D - A%*¢°(D - A% +V° + \Qo,
where

A= (") '(Vi+gA), V' =V+ (gA A) — (g°A°, A") —W.

Let fo := (Qo)~Y/2. Denote BY := foBY fo.
4.3. Approximation of the sandwiched operator exponential. In accordance
with Remark [[.T6] Conditions and [[LT4] are satisfied in the case under consider-

ation, and the norms ||Al|L_ and H/N\HLOO are estimated in terms of the problem data
(#X). Therefore, we can use a corrector that involves no smoothing operator:

(4.11) K (t52) = ([AD + [A%) foe 55" fo = ([W°]V + [A]) foe 55" fo.
The operator ([233) takes the form G (¢;¢) = —i®% (¢; ), where
(4.12) 89 (t:¢) = §°V foe Bb! fo + g7 (VA) foe BPL fy.

Theorems and imply the following result.

Proposition 4.1. Under the assumptions of Subsections 1l and B2, suppose that the
operators K% (t;€) and 8% (t;¢) are given by @II) and @EID), respectively. Suppose that
the number &1 is subject to Condition [0l Then for 0 < e < &7 we have

||f€ —Bp Etfg f e B f0||L2 ) La(O S 015E(t + 52)*1/267%15/2, t> O,

||f8€_BD’Eth _ fOe BthO €ICO tie ||L2((9)_>H1((9) < C18(81/2t_3/4 +€t_1)€_c"t/2,
t>0;

g7V feeBret p= — &% (t; Mo , < Cus(e23 et e @2, 1> 0.

—)LQ(O
The constants Cy5, Cig, and Clg depend only on the problem data (£9).

4.4. Homogenization of the first initial boundary-value problem for a par-
abolic equation with singular potential. Consider the first initial boundary-value
problem for a nonhomogeneous parabolic equation with singular potential:

Q5 (%) % (x,1) = —(D — A(x))"g"(x)(D — A% (x))uc(x, 1)

— (g7 (x) + Ve (x) + AQ§(x)) ue(x,t) + F(x,t), x€O, t>0;
ue(-,t)|o0 =0, t>0;
Q5(¥)ue(x,0) = ¢(x), x € 0.

Here ¢ € Ly(O0) and F € 9,(T) := L,((0,T); L2(0)), 0 < T < o0, for some 1 < r < oco.
By 3) and (£I0), the effective problem takes the form
Q%P (x,t) = —(D — A%)*g°(D — A%)up(x, t)
— (V24 2Qo) uo(x,t) + F(x,t), x€O, t>0;
uo(+,t)|o0 =0, t > 0;
Qouo(x,0) = ¢(x), xeO.
Applying Theorems [B.1] and B.6, we arrive at the following result.
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Proposition 4.2. Suppose that the number 1 is subject to Condition [ Under the
assumptions of Subsection A4, let 1 < r < oo. Then for 0 <e <e; and 0 <t < T we
have

lue (-, 8) = uo( -, D) Loy < Crse(t + %) 722 o] Ly 0) + erfle, )| Flls, (v

Here 0(e,r) is given by ([B.3]).

Assuming that t > €2, we put w.(-,t) = foefg%EQfo_luo( -, t—¢2). Denote V(- ,t) :=
uo(-,t) + eWVwe (-, t) + eA°w.(-,t) and Jo(-,t) = FVw.(-,t) + ¢ (V/NX)EwE( ).
Moreover, assume that 2 < r < co. Then for 0 < e <¢e; and €2 <t < T we have

(-, t) = B (-, 1) |20y < 201882634720l 1,0y + chw(e, )| F |l g, 1)
l9°Vue(-,t) — &+, )| 0y < 2C1se' 2732 || 1, 0) + clw(e, )| Fllg, 1)

Here w(e,r) is given by B). The constants 015, Cis, and Cis depend only on the
problem data [E9). The constants ¢, c., and ¢! depend on the same parameters and
also on r.

§5. THE SCALAR OPERATOR WITH A STRONGLY SINGULAR
POTENTIAL OF ORDER £ 2

Homogenization of the first initial boundary-value problem for parabolic equation with
a strongly singular potential was studied in [AICPiSiVa]. Some motivations can be found
in [AICPiSiVal §1]). However, the results of [AICPiSiVa] cannot be formulated in the
uniform operator topology.

5.1. Description of the operator. Let §(x) be a I'-periodic symmetric (d x d)-matrix-
valued function in R? with real entries such that §, 5! € Lo, and §(x) > 0. Let ¥(x) be
a real-valued I'-periodic function such that

Ve Ly(Q), s=1for d=1, s>d/2 for d>2.

Let A denote the operator in Ly (R%) that corresponds to the quadratic form

/Rd (<§(x)Du,Du> + U(x)|u|2) dx, u€ Hl(Rd).

Adding a constant to the potential ¥(x), we assume that the bottom of the spectrum
of A is the point zero. Then the operator A admits a factorization with the help of
the eigenfunction of the operator D*§(x)D + #(x) on the cell  (with periodic boundary
conditions) corresponding to the eigenvalue A = 0 (see [BSu2l, Chapter 6, Subsection 1.1]).
Apparently, this factorization trick was used in homogenization problems for the first time
in [Zh1l K].

In Ly(0), we consider the operator Ap given by the expression D*§(x)D + ¥(x) with
the Dirichlet condition on dO. The precise definition of Ap is given in terms of the
quadratic form

(5.1) aplu,u] = /O ((7(x)Du, Du) + ¥(x)|ul®) dx, u € H}(O).

The operator .ZD inherits factorization of the operator A. To describe this factorization,
we consider the equation

(5.2) D*§(x)Dw(x) + 9(x)w(x) = 0.
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There exists a I'-periodic solution w € H 1(Q) of this equation defined up to a constant
factor. We can fix this factor so that w(x) > 0 and

(5.3) /Qw2(x) dx = |Q).

Moreover, the solution is positive definite and bounded: 0 < wy < w(x) < wy < co. The
norms ||lwl|,.. and [Jw™!||L_ are controlled in terms of ||gllz_, |77 2., and ||T]1, @)
Note that w and w™! are multipliers in H{ (O).

Substituting v = wz and taking (B.2)) into account, we represent the form (&) as

aplu, u] = /Ow(x)Q@(x)Dsz} dx, u=wz, z¢€ H}O).

Hence, the differential expression for the operator A p admits the factorization
(5.4) A= wiD*¢Dw™!, ¢ =w?%g.

Now, we consider the operator /TD,S with rapidly oscillating coefficients acting in
L5(0) and given by

(55) A/E _ (ws)—lD*gaD(wa)—17 g= W2§7
with the Dirichlet boundary condition. In the initial terms, (B.3]) takes the form
(5.6) A. =D*§D + & 2.

Next, let A(x) = col {A41(x),...,Aq(x)}, where the A;(x) are I'-periodic real-valued

functions satisfying (@I). Let 5(x) and V(x) be I-periodic real-valued functions such
that

(5.7) o,V e Ly(Q), s=1ford=1, s>d/2ford>2; / D(x)w?(x) dx = 0.
Q

In Ly (0O), we consider the operator B D, given formally by the differential expression
B.=(D—A°)GF(D—A%) +e 2 +e 105 +V°

with the Dirichlet condition on dO. The precise definition is given in terms of a quadratic
form.
We put

~

(5.8) v(x) = 0(x)w?(x), V(%)= V(x)w?(x).

By (&.3) and (5.6]), we have %D,E = (w®) B p (w*) "1, where the operator Bp . is given
by (£3) with the Dirichlet condition on dO; g is defined by (54), and v, V are given
by (58). By (&) and the properties of w, the coefficients v and V satisfy (£2). Then
the operator Bp . can be represented as in ([@4), where the a;, j =1,...,d, and Q are
constructed in terms of g, A, v, and V in accordance with ([@5]), (Z5).

The constant A is chosen as in ([[LI6]) for the operator with the same coefficients g,
aj, 5 = 1,...,d, and Q as the coefficients of Bp ., and with Qo(x) := w?(x). Then
the operators gpyg = %Qa + M and Bp. = Bp. + AQ; are related by gp,g =
(O\)E)illgD,g(ws)il.

The following set of parameters is called the “problem data”:

L. V]

dip,s; Nglews 19 2w 1A ki NG :
(5.9) Py Nallee, 197 e, ANz, @) 1911z, (), I17] L.(@)

the parameters of the lattice I'; the domain O.
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5.2. Homogenization of the first initial boundary-value problem for the par-
abolic equation with strongly singular potential. We apply Proposition d.1] to the
operator gDﬁ described in Subsection (Il We have f(x) = w(x)~!, whence, by (53],
fo=1 and g% = BY. The coefficients ¢°, A% and V° of the effective operator are con-
structed in terms of g, A, v, and V (see (&3] and (&.8)), as described in Subsection
We apply the results to homogenization of the solution of the first initial boundary-value
problem

B (xt) = —(D — A*(x))F° (x)(D — A% (x))ue (x, 1)
— (e720° + 710 (x) + V(x) + M) ue(x,t), x€0, t>0;
uc(-,t)a0 = 0, t>0;
ue(x,0) = w(x) " tp(x), x e 0.
Here ¢ € Ly(0O). (For simplicity, we consider a homogeneous equation.) Then u.(-,t) =
eiBDvEt(wE)flga.
Let ug be the solution of the homogenized problem

U (x ) = —(D — A%)*g%(D — A%)ug(x,t) — (VO + N uo(x,t), x€0, t>0;

ot
u0(~,t)|a@:O, t > 0;
uo(x,0) = p(x), xe€O.

Proposition 1] implies the following result.
Proposition 5.1. Under the assumptions of Subsection [5.2], denote
() i=ug( -, t) + eU Vg (-, t) + eA%ug (-, 1),
Ge(+1) = 7 Vuo (1) + g°(VA)uo (- 1).
Then for 0 < e < &1 we have
(@) e (- 8) = uo( -, )| ooy < Crse(t +%) 722 gll Ly 0), ¢ > 0;
(@) e (5 8) = (- )l o) < Cas(e/t3/ + et 1)e™ 20|y 0),
19°V (@) " e+ 8) = G- D)ooy < Cus(e2473 +et™)e 2| | 1, 0,
t > 0. The constants Cy5, Cig, and 6’18 depend on the problem data (2.9).

Note that, in the presence of a strongly singular potential in the equation, not the
solution wu itself, but rather the product (w®)~'u. admits a “good approximation”. This
shows that the nature of the results of §5l differs from that of §dl

APPENDIX

In the Appendix, we consider the case where d > 3 and justify the removal of the
smoothing operator S. in the case of sufficiently smooth boundary (Lemma 2.9 and
Theorem 2I0) and in the case of a strictly interior subdomain (Lemma 216 and Theo-

rem [2T7]).
§6 THE PROPERTIES OF THE MATRIX-VALUED FUNCTIONS A AND K
We need the following results; see [PSul, Lemma 2.3] and [MSu2l Lemma 3.4].

Lemma 6.1. Let A be the I'-periodic solution of problem ([L28). Then for any function
u € C§°(R?) and € > 0 we have

/Rd (DA (x)[2u(x) [ dx < 51||u\|%2(Rd) + Bye? /Rd |A® (x) 2| Du(x)|? dx.
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The constants B1 and By depend on m, d, ag, a1, ||g|lo, and |97 ||z

00!

Lemma 6.2. Let A be the [-periodic solution of problem ([T33). Then for any function
u € C§°(RY) and 0 < & < 1 we have

/?KDKY@HﬂMdoxﬁBmuﬁpma+5f2/dﬁﬂkHﬂDwdox

R R

The constants By and By depend only on n, d, ag, a1, p, llglo_, g~ o, the norms
lajllz, ), J=1,...,d, and the parameters of the lattice I.

Below in {7 we swhall need the following multiplier properties of the matrix-valued
functions A(x) and A(x).

Lemma 6.3. Suppose that a matriz-valued function A(x) is the I'-periodic solution of
problem (L28). Let d > 3 and put l = d/2.
1°. For0<e <1 and u € H~1(R%C™) we have A°u € Ly(R%;C™) and

(6.1) [A®ul| L, ®me) < C(O)HUHH’”(Rdy

2°. For 0 <e <1 and u € H'(R% C™) we have A°u € H*(R% C") and

(6.2) |A%u g1 (ray < C<1)571||U\|L2(Rd) + C(2)||u||Hl(]Rd)~

The constants C©, C)  and C? depend on m, d, ag, o, ||gllr., |97 L., and the

parameters of the lattice T.

Proof. Tt suffices to check (1) and (62) for u € C§°(R%;C™). Substituting x = ¢y,

£%?u(x) = U(y), we obtain
nmmmm@s/“M@*mmmwﬁk:Amewwa@

(6.3)
—Z/ GPO@Edy < SR, @l UL, e

acl’ ael

where v + (/)71 = 1. We choose v so that the embedding H(Q)) < Lo, (Q) is
continuous, i.e., v = d(d — 2)~!. Then

(6.4) 1AL, () < callAlZn g

where the constant cn depends only on the dimension d and the lattice I'. We have
20’ = d. Since the embedding H'=1(Q) < L4(Q) is continuous, we have

(6.5) 10117, 04a) < U310 a),

where the constant cf, depends only on the dimension d and the lattice I'. Now, from

B3G5 it follows that
(6.6) [ I GOPIO0P dx < ench|A o101 s

Obviously, for 0 < ¢ < 1 we have ||Ul|gi-1(ray < [Ju| gi-1(gay. Combining this with

([C2]) and ([64), we see that
(6.7) /Rd A% (%) lu(x)[* dx < cacoM?|[ul|Fio gy, 1w € CGE(REGC™),

which proves estimate (G.I) with the constant C(©) := (cqch)/2M.
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Next, by Lemma [6.1]

ID(A%0) |7, ey < 2€’2/ I(DA)s(X)U(X)IQdXH/ |A®(x)*|Du(x)[* dx
(6.8) Re Re
< 2Be72 /Rd |u(x)\2dx—|—2(1—|—[32)/Rd |A% (x)[2|Du(x)|? dx.

From (6.7) (with u replaced by the derivatives d;u) it follows that
69 [ INGOPIDUGIR dx < cach M ulyeys e CREGTT).
Rd
As a result, relations (67)-(G3) imply inequality (G2) with the constants C'1) :=
(261)'/2 and C?) := M (3 4 282)"/?(cach) /2. O

Using the extension operator Py satisfying estimates ([46]), we deduce the following
statement from Lemma [6.3/(1°).

Corollary 6.4. Under the assumptions of Lemma [63 the operator [A%] acts continu-
ously from H'=1(O;C™) to Ly(O;C"), and

1—
1Al 0)- o) < COCH ™
The following statement can be checked much as Lemma[6.3] by using Lemma [6.2 and

estimate ([L34).

Lemma 6.5. Suppose that a matriz-valued function /~\(x) is the T'-periodic solution of
problem (L33). Let d > 3 and | = d/2.
1°. For0<e <1 anduec H-Y(R%C"), we have A*u € Ly(R%C") and

||/~\€u||L2(Rd) < é(O)HUHHH(Rdy
2°. For 0 < e <1 and u € H'(R% C"), we have Afu e H'(R%;,C") and
1A% 2 ey < CPe™ ull g ey + CP [l gey-
The constants
CO = (caen)?M, CW = (28)V2, C® = V2(Bs + 1)/ (cacy)/*M
depend only on the problem data (L9).

The extension operator Pp allows us to deduce the following corollary from Lem-
ma [6.5)(1°).

Corollary 6.6. Under the assumptions of Lemma 6.0, the operator [7\5] acts continu-
ously from H'=1(O;C™) to Ly(O;C"™), and

AN -1 (0) s a0y < COCEY,

§7. REMOVAL OF THE SMOOTHING OPERATOR FROM THE CORRECTOR
IN THE CASE OF SUFFICIENTLY SMOOTH BOUNDARY

7.1. Proof of Theorem 2.10. Suppose that the assumptions of Lemma are satisfied.
Let ug be given by ([23)), where ¢ € Ly(O;C™). We put

Uo(-,t) = Poug(-,1).
By [222) and ([2:32), we have
(7.1) Kp(t;e)p = (A°S.b(D) + A°S.)To( -, ),
(7.2) KY(t;)e = (A%B(D) + A%)ug (-, 1).
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We need to estimate the following quantity:
IKp(t;e)e — Kb (t;€)pl (o)
< [JA%((Se = DBD)To) (-, )| 11 ey + 1A ((Se = Do) (-, )] 1 (R -

Under the above assumptions, Lemma [Z8 shows that uy € H'*1(O;C"), whence iy €
H"1(R4 C"). This makes it possible to apply Lemma [B.3/(2°) to estimate the first
summand on the right-hand side of ([T.3)):

IA=((Se = Db(D)To) (-, )l a1 (re)
< CWe (S = DBD)To) (-, )| y(rey + CPN((Se = DBD) o) (+, )| 11 ey
where [ = d/2. The first term on the right-hand side of (74)) is estimated with the help
of Proposition [T and formulas (L3)), (T43)), (L46), (23), and (ZI):
e [((Se = Db(D)ao) (-, 1), (ray < T1[DOD)To( -, 8)] 1, (et

< 110708 w0 (-, 1) 20y < COt e ol L0,

(7.3)

(7.4)

(7.5)

where C(3) .= rlai/ng)EHfHLw. To estimate the second term on the right-hand side

of ([T4l), we apply (L2)) and ([T3):

(7.6) 1((S= = DY) (- 1) g1z < 200 [0 1) 143 ey
By (43), (C44), Z3), and Lemma 28] we have

(7.7) (-, )| s rey < CECupallfIF =0T 2em 2|, 0)-
From (Z.8) and (77) it follows that

(7.8) [[((Se = DpD)To) ()| 1 gy < CWHDR2e=al2| 4|1 o),

where C4) = 201/2C5™ VTl f13 .
Now we estimate the second term on the right-hand side of (.3]). By Lemma [6.5(2°),

HKE((SE - I)ﬁo)( " t)HHl(]Rd)
< CWe(Se = Do (-, )l ey + CPN(Se = Do (-, )| rrray, 1= d/2.
The first summand on the right-hand side of () is estimated by using Proposition [I]

and relations (L43), (L44), 23), 23I):
Sz = Do Dl ey < 1CG oDl < COHe 2l 1,0
C® =1 C|f b
The second summand in ([9]) is estimated with the help of (IZ) and (T7):
1S = Dol 1) ey < 200l D)ooy < 200l oos e
(7.11) < CO D20 L, 0);
C® = 205" Cu 11 .-
As a result, relations ((3)—(ZH) and (Z8)—(ZII) imply the inequality
IKp(t:€)p = Kp(te)pllao) < (CVEH 4+ OO D)t Rjg|| 1, o),

(7.9)

(7.10)

where [ = d/2, C(D .= cWCB £ CMCG) and C®) := ¢ CH 4 C@CO), This proves
(236) with the constant Cq := max{C("; C®)}, 0
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7.2. Proof of Theorem 210l Inequality ([237)) follows directly from (Z24) and (2:36]).
Here, C4 := 2(Cq + C16). We have taken into account the fact that for ¢ > 1 the term
et~ does not exceed 51/2t*3/4, and for ¢t < 1 it does not exceed et~4/4~1/2 hecause
d>3.

Now we check (Z38). By ([[4) and (Z37),

9°b(D) (F2eBo=t(£2)* — foe P! fo — £ (AB(D) + K°) foe B fo) ||, .,

(7.12)
< HgHLW (da1)1/2cd(€1/2t_3/4 + Et_d/4_1/2)e_cbt/2.
We have
eg°b(D) (AD(D) + &%) foe P5" fo = g% (B(D)A)" + (b(D)R)") foe 72" fo
(7.13) . BYt - X BY%t
+e€ Z gEbkAsbjDijfoei D fo +€Zg€bjA€Djf0€7 b fo.
k,j=1 j=1

The norm of the second summand on the right-hand side of (ZI3) is estimated with the
help of (A), (C43), Lemma 28 and Corollary 6.4

< COgt—(H)/2g=cst/2
Ly(0O)—L2(0)

d
S gFbAD; DD, foe B0t fy
k=1

(7.14) €

where [ = d/2, C) := a1d0(0)0871)61+1\|g\|LwHf||2Loo. The third summand on the
right-hand side of (I3)) is estimated by using ([4)), (L43), Lemmal[Z8] and Corollary [6.6t

< C(lO)at—(l+1)/2e—cbt/2,
L2 (O)A)LQ(O)

d
> g7b D, foe PRt fy

Jj=1

(7.15) £

where [ = d/2 and
O = (dan) 2EOCE VCra gl 1. -
As a result, relations (ZI2)—(7I5) imply inequality (238]) with the constant

Cq = |lgllr (dar)?Cq + C® 4 C(10), O

§8. REMOVAL OF THE SMOOTHING OPERATOR FROM THE CORRECTOR
IN A STRICTLY INTERIOR SUBDOMAIN

8.1. A property of the operator S.. Now we proceed to estimates in a strictly
interior subdomain. We start with a simple property of the operator S..

Let O’ be a strictly interior subdomain of the domain O, and let ¢ be given by (LG1]).
Denote

0" :={x €0 : dist{x;00} > §/2}, O":={xe O : dist{x;00} > §/4}.

Lemma 8.1. Let S. be the operator ([LI)). Put 2r; = diam Q. Suppose that v €
Ly(R% C™) and v € H7(O";C™) with some 0 € Z,. Then for 0 < e < (4r1)715 we
have Scv € H°(O";C™), and

HSEVHHO‘(O//) S ||V||H'7(O”/)'



Proof. By (L)),
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ISvlBin o = 19172 Y [ ax
"

/DOK v(x —¢ez) dz
la|<o

<! Z/ dx/Q|D°‘ v(x — ez)* dz.

le| <o

(8.1)

Since 0 < ery < 6/4, for x € O and z € Q we have x — ez € O”'. Hence, changing the
order of integration in (8J]), we obtain the required estimate. O

8.2. The cut-off function x(x). We fix a smooth cut-off function x(x) such that
52) X €CERY), 0<x(x)<1; x(x) =1, xe 0
. suppx C 0”; D*(x)| < ko0 7, |a|=0, oc€N.

The constants k, depend only on d, o, and the domain O.

Lemma 8.2. Suppose that x(x) is a cut-off function satisfying 82). Let k € Z..
1°. For any function v € H*(R?;C™) we have

k

11 (k—d
(8.3) vl ey < C S 6 F D v s oy
7=0

2°. For any function v € H**1(RY;C™) we have
. k+1 _ /2, k _ 1/2
(8.4) [Ixvlgrer/2@e < C}g.ﬂ,-i/Q (Za(kH])HVmJ'(ON)) (Z(S(kl)|v||m(@”)) .
§=0 i=0
The constants C(H) and CMY depend on d, k, and the domain O.

k+1/2

Proof. Inequality (B3] follows from the Leibniz formula for the derivatives of the product
xVv and from estimates for the derivatives of x (see ([82])). To check (84]), we should also
take into account that

||W||Hk+1/2(Rd) HWHHHl(Rd)||W||Hk(Rd), WEHk+1(Rd§Cm)- U

8.3. Proof of Lemma [2.76l Under the assumptions of Lemma [2.16] let uy be given
by 23) with ¢ € Ly(O;C"). By (L43) and 27), (28), we have

(85)  [Duo(-,8)llrac0) < o+ Ollmio) < eall flloat™ 22 el| Ly

(8:6)  IDuo(-. a0y < [uo(- )20y < e fllet™ e Cbt/QH@HLz(O}

Let g = Poug. Relations (1)) and (72]) remain valid. We need to estimate the following
quantity:

||’CD(t’€)‘p - ]COD(tM?)SOHHl (0)
< [[A%((S2 = DBD)T0) (- 8) | g gy + AN (S = D0) (1) 1 gy

Recall (cf. Subsection 2I0) that ug(-,t) € H7(O";C") for any 0 € Z;. Then the
function Ug(-,t) satisfies the assumptions of Lemma Bl for any ¢ € Z,. Hence,
(S:tg)(-,t) € HO(O";C") for 0 < e < (4r1)"'6. Then we can apply Lemma 6.3 (20)
to estimate the first summand on the right-hand side of (81):

4TSz = DD )1 e
< €O (8 DHD0) (D) gy + O (15— D)) ()1

(8.7)

(8.8)



974 YU. M. MESHKOVA AND T. A. SUSLINA

I = d/2. The first term on the right-hand side of (8] is estimated by using inequal-
ity (Z8) (which is valid without additional smoothness assumption on 90):

89 < ((Se — DBDY) (- D], o) < CPEe 20l 1, 0,
Now, we consider the second summand on the right-hand side of ([838]). Obviously,
[[x((Sc — I)b(D)tig) (- at)HHl(Rd)

< Ix(Sb(D)ao) (-, )| e (rey + IXO(D) V(- )| ety -

To estimate the second term on the right-hand side of ([8I0), we apply Lemma and
([Cd). If I = d/2 is an integer (i.e., the dimension d is even), then

(8.10)

l
(8.11) IXb(D) o (- &) 11y < O (don) 2" 67D Dug (-, )| 0
j=0
Ifl=d/2=Fk+1/2, then
k+1

‘ 1/2
IxXb(D)Ro( -, 8)[| gt gy < C (day) /2 (Z §~(E+1=9) | Dug (- ,t>|Hﬂ-(o~>)

(8.12) =0

k 1/2
X(Z (S(kU)HDUO(,tH'Ho(Ou)) .
o=0

The norms of Dug( -, t) in Ly(O; C") and in H*(O; C") were estimated in (85)) and (8.6).
By ([T43), 23), and (Z45]) (with O’ replaced by O"), we have

(813)  IDuo(-,t)llme(om < CopallFIZ.. 27272 + 4772 2|, o),
o > 2. Using (BH), (80), and (8II)-(®I3), we arrive at the inequality
(8.14) IXbD)To( -, )| riray < CUPETV2(672 + 171 e ™2 p|| 1, 0).

The constant C*?) depends only on the problem data (I).

To estimate the first term on the right-hand side of (8I0), we apply Lemmas [R1]
and Assume that 0 < ¢ < (4r;)~16. By (), in the case where [ is an integer, we
have

l
(815)  [Ix(SbD)T0) (-, )|y < O (dan) /> 7 6~ Dug (-, 1) 1o (o)

o=0
The norms of Dug( -, t) in Ly(O;C") and in H!(O; C") were estimated in (8.5) and (8.0)).
By (L43), @23), and 243) (with O’ replaced by O"),
(816)  Duo(-,t)llg=(om < CoprllfIZ 47262 + 7172 2| gl| L, 0),
o > 2. From [83), &4), BIH), and BI6) it follows that
(8.17) IX(Seb(D)To) (-, Ol rrray < CUIE2(372 4 t7 1) 2 ]| 1 0.

The constant C'(*3) depends only on the problem data (LJ). Estimate (8I7) in the case

of half-integral [ is checked similarly. Combining B8)-EI0), BI4), and (RIT), we
estimate the first summand on the right-hand side of (81):

||AEX((SE - I)b(D)GO)( : )t)HHl(]Rd)
< 0(14) (t_l + t_1/2(5_2 + t_l)d/4)e_0bt/2||(PHL2((’))-
Here C(*Y) := max{CMC®); 0P (012 4 c13))}.

(8.18)
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The second summand on the right-hand side of ([87) is estimated with the help of

Lemma [6:5(2°):
Hxsx( e = Dto) (- HHl(Rd)
< CWeMx((Se = D)To) (-, )| g gty + CP[Ix (S = Do) (-

where | = d/2. To estimate the first summand on the right-hand side of (m, we use
®2) and inequality [CI0) (which is true without additional smoothness assumptions on
the boundary):

1||X( S —I)uo) HHI(Rd)
<e IS —f>uo) ) ey + €I DXO (S = Do) (-
<CO 6*C”/zllwllLQ((o) e thd 1||(SE—I)ﬁo(.,zs)||L2(]Rd)_

Combining this with Proposition [[I] and relations (L43), (T40), 3)), and (&7), we
obtain

(820) ‘S_l HX(( - I)llo) ||H1(Rd) < C(15) (6_1t_1/2 + t_l)e_Cbt/2||<p||L2(O)a

(8.19)

Ol 1y

O,y

where C(1%) := max{C®); 511"10((9 esllfllne b
If | = d/2 is an integer, the second summand on the right-hand side of ([8I9) is
estimated by analogy with (8I5):

(821) HX(( _I)uo) HHl (R) < 20(11 Zé (= 0)||u0( )HH"(O’”)7

0 < & < (4r1)7'6. The norms of ug in Ly(O;C"), HY(O;C"), and H?*(O;C") are
estimated with the help of Lemma 2.1l and relations (L43]), (23]). For o > 3, the norm
lluo( -, )| 5o(ory is estimated by using ([2.43) (with O’ replaced by O"):

lao(+ )l =(omy < CopallfI7 472672 417172 2 o], 0).
Combining these arguments with (8.21]), we deduce that

(822 [x((S: —I)UO) Dl grggay < CONT2(E72 40742l o),

with a constant C(*®) depending only on the problem data (LJ). For the case of half-
integral I, estimate ([822]) is checked similarly. As a result, relations ([819), (820), and
®22) imply the following estimate for the second summand on the right-hand side of

BD):
[A°X((S- = T)do) (-

< OO (51712 L 1= He=t 2o 1, 0
+ COOOL1/2(572 =1/ et 2| o)

Together with (53 and (BI8), this implies inequality (Z47) with the constant C] :=
c) 4 cW ) L ¢@ 6 We have taken into account that the term §—1¢~1/2 does
not exceed t~/2(§72 4 ¢t~ 1)4/4, 0

HH1 (R%)

8.4. Proof of Theorem 2.7l Inequality (Z48) follows directly from (244 and (Z47).
Here, Cy := max{Cyq0; C21} + C/.
We check (249). From (L4), 232)), and [247)) it follows that
— 5 Ne —-B°
1g°b(D) (fee Bt (£2)* — (I + A°B(D) + A%) foe P2t fo)ll 10y a0

(8.23)
< g/l (dar) 2 Caeha(8; t)e =2,
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We apply identity (I3)). The norm of the second summand on the right-hand side of
[C13) is estimated with the help of (I4]), [82), and Lemma [63)(1°):

e
(8.24)

d
> gFbrAD; DD, foe FRt fy
k=1

LQ(O)—>L2(O/)
B0
< earllgll.C Y IXDeD;foe™ PP foll Loy mior gy L= /2
k,j=1
Next, we apply Lemma If I is an integer, then ([43]) yields

d
Z HXDijfOe_B%th HLQ(O)ﬂHlfl(]Rd)
(8.25) ki=1

-1
<Al 5 0P oo
=0

The norm ||foe_§?3t||L2(o)ﬁHz(@) satisfies (Z8). If i > 1, relations ([C43]) and (2.45)
(with O’ replaced by O”) imply that

—BY i1, — - —1\(i —c
||fo€ BDt||L2(O)—>Hi+2(O“) §C§+2||f||Lx2 +14 1/2(5 24y 1)(+1)/2e bt/2

Combining this with ([28), (824), and (§25]), we obtain

< 0(17)62571/2(572+t71)d/467cbt/2’
LQ(O)—)LQ(O/)

d
ngbkAEbjDijfofi*Bthfo
k=1

(8.26) ¢

where the constant C(!”) depends only on the problem data (L9). If I is half-integral,
inequality (826 is checked by using Lemma [R2(2°).
The third summand on the right-hand side of (.I3)) is estimated similarly by using
(T4, B2), Lemma[65[(1°), and Lemma [82 As a result, we obtain
d
(8.27) 52 ”gsijEDijeiBthfO||L2(O)—>L2(O') < Ot =12(572 4=t/

j=1
Here the constant C(*®) depends only on the problem data (I9).

Finally, relations (L27), (Z13)), (823), (B26), and [B.27) imply inequality (249]) with
the constant Cg := ||g||1.. (da1)/?2Cy + COT) 4+ CO8), 0
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