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HOMOGENIZATION OF THE FIRST INITIAL BOUNDARY-VALUE

PROBLEM FOR PARABOLIC SYSTEMS:

OPERATOR ERROR ESTIMATES

YU. M. MESHKOVA AND T. A. SUSLINA

Abstract. Let O ⊂ Rd be a bounded domain of class C1,1. In L2(O;Cn), a selfad-
joint matrix second order elliptic differential operator BD,ε, 0 < ε ≤ 1, is considered
with the Dirichlet boundary condition. The principal part of the operator is given

in a factorized form. The operator involves first and zero order terms. The operator
BD,ε is positive definite; its coefficients are periodic and depend on x/ε. The behav-

ior of the operator exponential e−BD,εt, t > 0, is studied as ε → 0. Approximations
for the exponential e−BD,εt are obtained in the operator norm on L2(O;Cn) and in
the norm of operators acting from L2(O;Cn) to the Sobolev space H1(O;Cn). The
results are applied to homogenization of solutions of the first initial boundary-value
problem for parabolic systems.

Introduction

The paper concerns homogenization theory of periodic differential operators (DO’s).
We mention books on homogenization: [BaPa, BeLPap, ZhKO, Sa].

0.1. Statement of the problem. Let Γ ⊂ R
d be a lattice, and let Ω be the elementary

cell of the lattice Γ. For a Γ-periodic function ψ in Rd, we denote ψε(x) := ψ(x/ε), where
ε > 0, and ψ := |Ω|−1

∫
Ω
ψ(x) dx.

Let O ⊂ Rd be a bounded domain of class C1,1. In L2(O;Cn), we study a selfadjoint
matrix strongly elliptic second order DO BD,ε, 0 < ε ≤ 1, with the Dirichlet boundary
condition. The principal part of the operator BD,ε is given in a factorized form Aε =
b(D)∗gε(x)b(D), where b(D) is a homogeneous first order matrix DO, and g(x) is a
Γ-periodic, bounded, and positive definite matrix-valued function in Rd. (The precise
assumptions on b(D) and g(x) are given below in Subsection 1.3.) The operator BD,ε is
given by the differential expression

(0.1) Bε = b(D)∗gε(x)b(D) +
d∑

j=1

(
aεj(x)Dj +Dja

ε
j(x)

∗)+Qε(x) + λQε
0(x)

with the Dirichlet condition on ∂O. Here the aj(x), j = 1, . . . , d, and Q(x) are Γ-periodic
matrix-valued functions, in general, unbounded; a Γ-periodic matrix-valued function
Q0(x) is such that Q0(x) > 0 and Q0, Q

−1
0 ∈ L∞. The constant λ is chosen so that the

operator BD,ε is positive definite. (The precise assumptions on the coefficients are given
below in Subsection 1.4.)
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The coefficients of the operator (0.1) oscillate rapidly for small ε. Let uε(x, t) be the
solution of the first initial boundary-value problem

(0.2)

{
Qε

0(x)∂tuε(x, t)= −Bεuε(x, t), x ∈ O, t > 0;

uε(x, t) = 0, x∈∂O, t > 0; Qε
0(x)uε(x, 0) = ϕ(x), x ∈ O,

where ϕ ∈ L2(O;Cn). We are interested in the behavior of the solution in the small
period limit.

0.2. Main results. It turns out that, as ε → 0, the solution uε( · , t) converges in
L2(O;Cn) to the solution u0( · , t) of the following effective problem with constant coef-
ficients:

(0.3)

{
Q0∂tu0(x, t) = −B0u0(x, t), x ∈ O, t > 0;

u0(x, t) = 0, x ∈ ∂O, t > 0; Q0u0(x, 0) = ϕ(x), x ∈ O.

Here B0 is the differential expression for the effective operator B0
D. Our first main result

is the estimate

(0.4) ‖uε( · , t)− u0( · , t)‖L2(O) ≤ Cε(t+ ε2)−1/2e−ct‖ϕ‖L2(O), t ≥ 0,

for sufficiently small ε. For fixed time t > 0, this estimate is of sharp order O(ε). Our
second main result is approximation of the solution uε( · , t) in the energy norm:

(0.5) ‖uε( · , t)− vε( · , t)‖H1(O) ≤ C(ε1/2t−3/4 + εt−1)e−ct‖ϕ‖L2(O), t > 0.

Here vε( · , t) = u0( · , t) + εKD(t; ε)ϕ( · ) is the first order approximation of the solution
uε( · , t). The operator KD(t; ε) is a corrector. It involves rapidly oscillating factors,
and so depends on ε. We have ‖εKD(t; ε)‖L2→H1 = O(1). For fixed t, estimate (0.5)

is of order of O(ε1/2) due to the influence of the boundary layer. The presence of the
boundary layer is confirmed by the fact that, in a strictly interior subdomain O′ ⊂ O,
the order of the H1-estimate can be improved:

‖uε( · , t)− vε( · , t)‖H1(O′) ≤ Cε(t−1/2δ−1 + t−1)e−ct‖ϕ‖L2(O), t > 0.

Here δ = dist {O′; ∂O}.
In the general case, the corrector involves a smoothing operator. We distinguish

conditions under which it is possible to use a simpler corrector without any smoothing
operator. Along with estimate (0.5), we obtain approximation of the flux gεb(D)uε( · , t)
in the L2-norm.

The constants in estimates (0.4) and (0.5) are controlled in terms of the problem data;
they do not depend on ϕ. Therefore, estimates (0.4) and (0.5) can be rewritten in the
uniform operator topology. In a simpler case where Q0(x) = 1n, we have∥∥e−BD,εt − e−B0

Dt
∥∥
L2(O)→L2(O)

≤ Cε(t+ ε2)−1/2e−ct, t ≥ 0,∥∥e−BD,εt − e−B0
Dt − εKD(t; ε)

∥∥
L2(O)→H1(O)

≤ C(ε1/2t−3/4 + εt−1)e−ct, t > 0.

The results of such type are called operator error estimates in the homogenization theory.

0.3. Operator error estimates. Survey. Currently, the study of operator error
estimates is an actively developing field of the homogenization theory. The interest in
this subject arose in connection with the papers [BSu1, BSu2] by M. Sh. Birman and
T. A. Suslina, where the operator Aε of the form b(D)∗gε(x)b(D) acting in L2(R

d;Cn)
was studied. By the spectral approach, it was proved that

(0.6) ‖(Aε + I)−1 − (A0 + I)−1‖L2(Rd)→L2(Rd) ≤ Cε.
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Here A0 = b(D)∗g0b(D) is an effective operator and g0 is a constant effective matrix. Ap-
proximation for the operator (Aε+ I)−1 in the (L2 → H1)-norm was obtained in [BSu4]:

(0.7) ‖(Aε + I)−1 − (A0 + I)−1 − εK(ε)‖L2(Rd)→H1(Rd) ≤ Cε.

Later, T. A. Suslina carried estimates (0.6) and (0.7) over to more general operator Bε

of the form (0.1) acting in L2(R
d;Cn). We also mention the paper [Bo] by D. I. Borisov,

where the expression for the effective operator B0 was found and the approximations
(0.6), (0.7) for the resolvent were obtained. In [Bo], it was assumed that the coefficients
of the operator depend not only on the rapid variable, but also on the slow variable;
however, the coefficients of Bε were assumed to be sufficiently smooth.

To parabolic systems, the spectral approach was applied in the papers [Su1, Su2] by
T. A. Suslina, where the principal term of approximation was found, and in [Su3], where
an estimate with corrector was proved:∥∥e−Aεt − e−A0t

∥∥
L2(Rd)→L2(Rd)

≤ Cε(t+ ε2)−1/2, t ≥ 0,(0.8) ∥∥e−Aεt − e−A0t − εK(t; ε)
∥∥
L2(Rd)→H1(Rd)

≤ Cε(t−1/2 + t−1), t ≥ ε2.(0.9)

In these estimates, the exponentially decaying function of t is absent, because the bottom
of the spectra of Aε and A0 is zero. The exponential of the operator Bε of the form (0.1)
was studied in the paper [M] by Yu. M. Meshkova, where analogs of inequalities (0.8)
and (0.9) were obtained.

A different approach to operator error estimates in homogenization theory was sug-
gested by V. V. Zhikov in [Zh2]. In [Zh2, ZhPas1], estimates of the form (0.6) and (0.7)
for the acoustics and elasticity operators were obtained. The “modified method of the
first order approximation” or the “shift method”, in the terminology of the authors, was
based on analysis of the first order approximation to the solution and introduction of an
additional parameter. Along with problems in R

d, in [Zh2, ZhPas1] homogenization prob-
lems in a bounded domain O ⊂ Rd with the Dirichlet or Neumann boundary conditions
were studied. To parabolic equations, the shift method was applied in [ZhPas2], where
analogs of estimates (0.8) and (0.9) were proved. The further results of V. V. Zhikov,
S. E. Pastukhova, and their students were discussed in the recent survey [ZhPas3].

Operator error estimates for the Dirichlet and Neumann problems for second order
elliptic equations in a bounded domain were studied by many authors. Apparently, the
first result is due to Sh. Moskow and M. Vogelius, who proved the estimate

(0.10) ‖A−1
D,ε − (A0

D)−1‖L2(O)→L2(O) ≤ Cε;

see [MoV, Corollary 2.2]. Here the operator AD,ε acts in L2(O), where O ⊂ R2, and is
given by − div gε(x)∇ with the Dirichlet condition on ∂O. The matrix-valued function
g(x) is assumed to be infinitely smooth.

For arbitrary dimension, homogenization problems in a bounded domain were studied
in [Zh2] and [ZhPas1]. The acoustics and elasticity operators with the Dirichlet or
Neumann boundary conditions were considered without any smoothness assumptions on
coefficients. The authors obtained approximation with corrector for the inverse operator
in the (L2 → H1)-norm with error estimate of order of O(

√
ε). The order deteriorates

as compared with a similar result in Rd; this is explained by the boundary influence. As
a rough consequence, approximation of the form (0.10) with error estimate O(

√
ε) was

deduced. Similar results for the operator − div gε(x)∇ in a bounded domain O ⊂ Rd

with the Dirichlet or Neumann boundary conditions were obtained by G. Griso [Gr1, Gr2]
with the help of the “unfolding” method. In [Gr2], for the same operator a sharp-
order estimate (0.10) was proved. For elliptic systems similar results were independently
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obtained in [KeLiS] and in [PSu, Su5]. The further results and a detailed survey can be
found in [Su6, Su7].

For the matrix operator of the form (0.1) with the Dirichlet condition, homogenization
problems were studied by Q. Xu in [Xu1, Xu3]. The case of the Neumann boundary
condition was studied in [Xu2]. However, in the papers by Q. Xu, the operator is subject
to a rather restrictive condition of uniform ellipticity. Approximations of the generalized
resolvent of the operator (0.1) with two-parametric error estimates were obtained in the
recent paper [MSu3] (see also the brief communication [MSu4]). We focus on these results
in more detail, since they are basic for us. For ζ ∈ C \R+, |ζ| ≥ 1, and sufficiently small
ε, we have ∥∥(BD,ε − ζQε

0)
−1 − (B0

D − ζQ0)
−1

∥∥
L2(O)→L2(O)

≤ C(φ)ε|ζ|−1/2,(0.11) ∥∥(BD,ε − ζQε
0)

−1 − (B0
D − ζQ0)

−1 − εKD(ε; ζ)
∥∥
L2(O)→H1(O)

≤ C(φ)
(
ε1/2|ζ|−1/4 + ε

)
.

(0.12)

Note that the values C(φ) are controlled explicitly in terms of the problem data and
the angle φ = arg ζ. Estimates (0.11) and (0.12) are uniform with respect to φ in any
domain of the form {ζ = |ζ|eiφ ∈ C : |ζ| ≥ 1, φ0 ≤ φ ≤ 2π − φ0} with arbitrarily small
φ0 > 0. Moreover, in [MSu3], analogs of estimates (0.11) and (0.12) were proved for a
wider domain of the spectral parameter ζ.

We proceed to discussion of parabolic problems in a bounded domain. In the two-
dimensional case, some estimates of operator type for elliptic and parabolic equations
were obtained in [ChKonLe]. However, in [ChKonLe] the matrix g was assumed to
be C∞-smooth, and the initial data for a parabolic equation belonged to H2(O). In
the case of arbitrary dimension and without smoothness assumptions on coefficients,
approximation for the exponential of the operator b(D)∗gε(x)b(D) (with the Dirichlet or
Neumann conditions) was found in the paper [MSu1]:∥∥e−AD,εt − e−A0

Dt
∥∥
L2(O)→L2(O)

≤ Cε(t+ ε2)−1/2e−ct, t ≥ 0,∥∥e−AD,εt − e−A0
Dt − εKD(t; ε)

∥∥
L2(O)→H1(O)

≤ Cε1/2t−3/4e−ct, t ≥ ε2.

The method of [MSu1] was based on employing the identity

e−AD,εt = − 1

2πi

∫
γ

e−ζt(AD,ε − ζI)−1 dζ,

where γ ⊂ C is a contour enclosing the spectrum of AD,ε in positive direction. This
identity allowed us to deduce approximations for the operator exponential e−AD,εt from
the corresponding approximations of the resolvent (AD,ε − ζI)−1 with two-parametric
error estimates (with respect to ε and ζ). The required approximations for the resolvent
were found in [Su7].

The operator with coefficients periodic in the space and time variables was studied by
J. Geng and Z. Shen in [GeS]. In that paper operator error estimates were obtained for
the equation

∂tuε(x, t) = −div g(ε−1x, ε−2t)∇uε(x, t)

in a bounded domain of class C1,1. The results of [GeS] were generalized to the case of
Lipschitz domains by Q. Xu and Sh. Zhou, see [XuZ].

0.4. Method. We develop the method of the paper [MSu1]. It is based upon the
following representation for the solution uε of the first initial boundary-value problem
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(0.2): uε( · , t) = − 1
2πi

∫
γ
e−ζt(BD,ε − ζQε

0)
−1ϕ dζ, where γ ⊂ C is a suitable contour.

The solution of the effective problem (0.3) admits a similar representation. Hence,

(0.13) uε( · , t)− u0( · , t) = − 1

2πi

∫
γ

e−ζt
(
(BD,ε − ζQε

0)
−1 − (B0

D − ζQ0)
−1

)
ϕ dζ.

Using the results of [MSu3] (estimate (0.11)), we obtain approximation of the resolvent for
ζ ∈ γ and employ the representation (0.13). This leads to (0.4). Note that the dependence
of the right-hand side of (0.11) on ζ for large |ζ| is important for us. Approximation
with the corrector taken into account is obtained in a similar way.

0.5. Plan of the paper. The paper consists of five sections and Appendix (§§6–8).
In §1, we describe the class of operators BD,ε, introduce the effective operator B0

D, and
formulate the required results about approximation of the operator (BD,ε−ζQε

0)
−1. The

main results of the paper are obtained in §2. In §3, these results are applied to homoge-
nization of the solutions of the first initial boundary-value problem for nonhomogeneous
parabolic equation. §§4, 5 are devoted to applications of the general results. In §4, a
scalar elliptic operator with a singular potential of order O(ε−1) is considered. In §5, we
study an operator with a singular potential of order O(ε−2). In Appendix (§§6–8), we
prove some statements concerning removal of the smoothing operator from the corrector.
The case of additional smoothness of the boundary is considered in §7; the case of a
strictly interior subdomain is discussed in §8. The required properties of the oscillating
factors in the corrector are obtained in §6.

0.6. Notation. Let H and H∗ be complex separable Hilbert spaces. The symbols ( · , · )H
and ‖ · ‖H stand for the inner product and the norm in H; the symbol ‖ · ‖H→H∗ denotes
the norm of a continuous linear operator acting from H to H∗.

The set of natural numbers and the set of nonnegative integers are denoted by N and
Z+, respectively. We denote R+ := [0,∞). The symbols 〈 · , · 〉 and | · | denote the inner
product and the norm in Cn; 1n is the identity (n×n)-matrix. If a is an (m×n)-matrix,
then the symbol |a| denotes the norm of a viewed as an operator from C

n to C
m. If

α = (α1, . . . , αd) ∈ Zd
+ is a multiindex, |α| denotes its length: |α| =

∑d
j=1 αj . For

z ∈ C, the complex conjugate number is denoted by z∗. (We use such a nonstandard
notation because the upper bar will denote the mean value of a periodic function over the
periodicity cell.) We denote x = (x1, . . . , xd) ∈ Rd, iDj = ∂j = ∂/∂xj , j = 1, . . . , d, and
D = −i∇ = (D1, . . . , Dd). The Lp-classes of Cn-valued functions in a domain O ⊂ Rd

are denoted by Lp(O;Cn), 1 ≤ p ≤ ∞. The Sobolev classes of Cn-valued functions in
a domain O ⊂ Rd are denoted by Hs(O;Cn). By H1

0 (O;Cn) we denote the closure of
C∞

0 (O;Cn) in H1(O;Cn). If n = 1, we write simply Lp(O), Hs(O), etc., but sometimes,
if this does not lead to confusion, we use this simple notation for the spaces of vector-
valued or matrix-valued functions. The symbol Lp((0, T );H), 1 ≤ p ≤ ∞, denotes the
Lp-space of H-valued functions on the interval (0, T ).

Various constants in estimates are denoted by c, C,C, C,C (probably, with indices and
marks).

The main results of the present paper were announced in [MSu4].

§1. The results on homogenization of the Dirichlet problem

for elliptic systems

1.1. Lattices in Rd. Let Γ ⊂ Rd be a lattice generated by a basis a1, . . . , ad ∈ Rd:

Γ =
{
a ∈ R

d : a =

d∑
j=1

νjaj , νj ∈ Z

}
,
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and let Ω be the elementary cell of the lattice Γ:

Ω =
{
x ∈ R

d : x =

d∑
j=1

τjaj ,−
1

2
< τj <

1

2

}
.

By |Ω| we denote the Lebesgue measure of the cell Ω: |Ω| = measΩ. We put 2r1 :=
diam Ω.

Let rH1(Ω) denote the subspace of functions in H1(Ω) whose Γ-periodic extension to
Rd belongs to H1

loc(R
d). If Φ(x) is a Γ-periodic matrix-valued function in Rd, we put

Φε(x) := Φ(x/ε), ε > 0; Φ := |Ω|−1
∫
Ω
Φ(x) dx, Φ :=

(
|Ω|−1

∫
Ω
Φ(x)−1 dx

)−1
. Here, in

the definition of Φ it is assumed that Φ ∈ L1,loc(R
d); in the definition of Φ it is assumed

that the matrix Φ is square and nonsingular, and Φ−1 ∈ L1,loc(R
d). By [Φε] we denote

the operator of multiplication by the matrix-valued function Φε(x).

1.2. The Steklov smoothing. The Steklov smoothing operator S
(k)
ε , ε > 0, acts in

L2(R
d;Ck) (where k ∈ N) and is given by

(1.1) (S(k)
ε u)(x) = |Ω|−1

∫
Ω

u(x− εz) dz, u ∈ L2(R
d;Ck).

We shall omit the index k in the notation and write simply Sε. Obviously, SεD
αu =

DαSεu for any u ∈ Hσ(Rd;Ck) and any multiindex α such that |α| ≤ σ. Note that

(1.2) ‖Sε‖Hσ(Rd)→Hσ(Rd) ≤ 1, σ ≥ 0.

We need the following properties of the operator Sε (see [ZhPas1, Lemmas 1.1 and 1.2]
or [PSu, Propositions 3.1 and 3.2]).

Proposition 1.1. For any function u ∈ H1(Rd;Ck), we have

‖Sεu− u‖L2(Rd) ≤ εr1‖Du‖L2(Rd),

where 2r1 = diamΩ.

Proposition 1.2. Let Φ be a Γ-periodic function in R
d such that Φ ∈ L2(Ω). Then the

operator [Φε]Sε is continuous in L2(R
d) and

‖[Φε]Sε‖L2(Rd)→L2(Rd) ≤ |Ω|−1/2‖Φ‖L2(Ω).

1.3. The operator AD,ε. LetO ⊂ R
d be a bounded domain of class C1,1. In L2(O;Cn),

we consider the operator AD,ε given formally by the differential expression

Aε = b(D)∗gε(x)b(D)

with the Dirichlet condition on ∂O. Here g(x) is a Γ-periodic Hermitian (m × m)-
matrix-valued function (in general, with complex entries). It is assumed that g(x) > 0

and g, g−1 ∈ L∞(Rd). The differential operator b(D) is given by b(D) =
∑d

j=1 bjDj ,

where the bj , j = 1, . . . , d, are constant matrices of size m× n (in general, with complex

entries). Assume that m ≥ n and that the symbol b(ξ) =
∑d

j=1 bjξj of the operator b(D)

has maximal rank: rank b(ξ) = n for 0 
= ξ ∈ Rd. This condition is equivalent to the
estimates

(1.3) α01n ≤ b(θ)∗b(θ) ≤ α11n, θ ∈ S
d−1; 0 < α0 ≤ α1 < ∞,

with some positive constants α0 and α1. From (1.3) it follows that

(1.4) |bj | ≤ α
1/2
1 , j = 1, . . . , d.
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The precise definition of the operator AD,ε is given in terms of the quadratic form

(1.5) aD,ε[u,u] =

∫
O
〈gε(x)b(D)u, b(D)u〉 dx, u ∈ H1

0 (O;Cn).

Extending u ∈ H1
0 (O;Cn) by zero to R

d \ O and taking (1.3) into account, we find

(1.6) α0‖g−1‖−1
L∞

‖Du‖2L2(O) ≤ aD,ε[u,u] ≤ α1‖g‖L∞‖Du‖2L2(O), u ∈ H1
0 (O;Cn).

1.4. Lower order terms. The operator BD,ε. We study the selfadjoint operator
BD,ε whose principal part coincides with Aε. To define the lower order terms, we intro-
duce Γ-periodic (n × n)-matrix-valued functions (in general, with complex entries) aj ,
j = 1, . . . , d, such that

aj ∈ Lρ(Ω), ρ = 2 for d = 1, ρ > d for d ≥ 2, j = 1, . . . , d.(1.7)

Next, let Q and Q0 be Γ-periodic Hermitian (n× n)-matrix-valued functions (with com-
plex entries) such that

Q ∈ Ls(Ω), s = 1 for d = 1, s > d/2 for d ≥ 2;

Q0(x) > 0; Q0, Q
−1
0 ∈ L∞(Rd).

(1.8)

For the convenience of further references, the following set of variables is called the
“problem data”:

d, m, n, ρ, s; α0, α1, ‖g‖L∞ , ‖g−1‖L∞ , ‖aj‖Lρ(Ω), j = 1, . . . , d;

‖Q‖Ls(Ω); ‖Q0‖L∞ , ‖Q−1
0 ‖L∞ ; the parameters of the lattice Γ; the domain O.

(1.9)

In L2(O;Cn), we consider the operator BD,ε, 0 < ε ≤ 1, formally given by the
differential expression

(1.10) Bε = b(D)∗gε(x)b(D) +
d∑

j=1

(
aεj(x)Dj +Dja

ε
j(x)

∗)+Qε(x) + λQε
0(x)

with the Dirichlet boundary condition. Here the constant λ is chosen so that the operator
BD,ε is positive definite (see (1.16) below). The precise definition of the operator BD,ε

is given in terms of the quadratic form

bD,ε[u,u] = (gεb(D)u, b(D)u)L2(O) + 2Re
d∑

j=1

(aεjDju,u)L2(O)

+ (Qεu,u)L2(O) + λ(Qε
0u,u)L2(O), u ∈ H1

0 (O;Cn).

(1.11)

Let us check that the form bD,ε is closed. Using the Hölder inequality and the Sobolev
embedding theorem, it can be shown that for any ν > 0 there exist constants Cj(ν) > 0
such that

‖a∗ju‖2L2(Rd) ≤ ν‖Du‖2L2(Rd) + Cj(ν)‖u‖2L2(Rd), u ∈ H1(Rd;Cn),

j = 1, . . . , d; see [Su4, (5.11)–(5.14)]. By the change of variables y := ε−1x and u(x) =:
v(y), we deduce that

‖(aεj)∗u‖2L2(Rd) =

∫
Rd

|aj(ε−1x)∗u(x)|2 dx = εd
∫
Rd

|aj(y)∗v(y)|2 dy

≤ εdν

∫
Rd

|Dyv(y)|2 dy + εdCj(ν)

∫
Rd

|v(y)|2 dy

≤ ν‖Du‖2L2(Rd) + Cj(ν)‖u‖2L2(Rd), u ∈ H1(Rd;Cn), 0 < ε ≤ 1.
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Then, by (1.3), for any ν > 0 there exists a constant C(ν) > 0 such that

d∑
j=1

‖(aεj)∗u‖2L2(Rd) ≤ ν‖(gε)1/2b(D)u‖2L2(Rd) + C(ν)‖u‖2L2(Rd),

u ∈ H1(Rd;Cn), 0 < ε ≤ 1.

(1.12)

If ν is fixed, then C(ν) depends only on d, ρ, α0, the norms ‖g−1‖L∞ , ‖aj‖Lρ(Ω), j =
1, . . . , d, and the parameters of the lattice Γ.

By (1.3), for u ∈ H1(Rd;Cn) we have

(1.13) ‖Du‖2L2(Rd) ≤ c21‖(gε)1/2b(D)u‖2L2(Rd),

where c1 := α
−1/2
0 ‖g−1‖1/2L∞

. Combining this with (1.12), we obtain

2

∣∣∣∣Re d∑
j=1

(Dju, (a
ε
j)

∗u)L2(Rd)

∣∣∣∣ ≤ 1

4
‖(gε)1/2b(D)u‖2L2(Rd) + c2‖u‖2L2(Rd),

u ∈ H1(Rd;Cn), 0 < ε ≤ 1,

(1.14)

where c2 := 8c21C(ν0) with ν0 := 2−6α0‖g−1‖−1
L∞

.
Next, by condition (1.8) on Q, for any ν > 0 there exists a constant CQ(ν) > 0 such

that

|(Qεu,u)L2(Rd)| ≤ ν‖Du‖2L2(Rd) + CQ(ν)‖u‖2L2(Rd),

u ∈ H1(Rd;Cn), 0 < ε ≤ 1.
(1.15)

For fixed ν, the constant CQ(ν) is controlled in terms of d, s, ‖Q‖Ls(Ω), and the param-
eters of the lattice Γ.

We fix a constant λ in (1.10) as in [MSu2, Subsection 2.8]:

(1.16) λ := (CQ(ν∗) + c2)‖Q−1
0 ‖L∞ for ν∗ := 2−1α0‖g−1‖−1

L∞
.

We return to the form (1.11). Extending the function u ∈ H1
0 (O;Cn) by zero to Rd\O

and using (1.5), (1.13), (1.14), and (1.15) with ν = ν∗, we obtain a lower estimate for
the form (1.11):

bD,ε[u,u] ≥
1

4
aD,ε[u,u] ≥ c∗‖Du‖2L2(O), u ∈ H1(O;Cn);(1.17)

c∗ :=
1

4
α0‖g−1‖−1

L∞
.(1.18)

Next, by (1.6), (1.14), and (1.15) with ν = 1, we have

bD,ε[u,u] ≤ C∗‖u‖2H1(Rd), u ∈ H1(O;Cn),

where C∗ := max{ 5
4α1‖g‖L∞ +1;CQ(1)+λ‖Q0‖L∞ + c2}. Thus, the form bD,ε is closed.

The corresponding selfadjoint operator in L2(O;Cn) is denoted by BD,ε.
By the Friedrichs inequality, (1.17) implies that

(1.19) bD,ε[u,u] ≥ c∗(diam O)−2‖u‖2L2(O), u ∈ H1
0 (O;Cn).

Hence, the operator BD,ε is positive definite. By (1.17) and (1.19),

‖u‖H1(O) ≤ c3‖B1/2
D,εu‖L2(O), u ∈ H1

0 (O;Cn);(1.20)

c3 := c
−1/2
∗

(
1 + (diam O)2

)1/2
.(1.21)

We also need an auxiliary operator rBD,ε. We factorize the matrix Q0(x): there exists
a Γ-periodic matrix-valued function f(x) such that f , f−1 ∈ L∞(Rd) and

(1.22) Q0(x) = (f(x)∗)−1f(x)−1.
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(For instance, one can choose f(x) = Q0(x)
−1/2.) Let rBD,ε be the selfadjoint operator

in L2(O;Cn) generated by the quadratic form

(1.23) rbD,ε[u,u] := bD,ε[f
εu, fεu]

on the domain DomrbD,ε := {u ∈ L2(O;Cn) : fεu ∈ H1
0 (O;Cn)}. In other words,

rBD,ε = (fε)∗BD,εf
ε. Let rBε denote the differential expression (fε)∗Bεf

ε. Note that

(1.24) (BD,ε − ζQε
0)

−1 = fε( rBD,ε − ζI)−1(fε)∗.

1.5. The effective matrix and its properties. The effective operator for AD,ε is
given by the differential expression A0 = b(D)∗g0b(D) with the Dirichlet condition on ∂O.
Here g0 is a constant effective matrix of size m×m. The matrix g0 is expressed in terms
of the solution of an auxiliary problem on the cell. Let an (n×m)-matrix-valued function
Λ(x) be the (weak) Γ-periodic solution of the problem

(1.25) b(D)∗g(x)(b(D)Λ(x) + 1m) = 0,

∫
Ω

Λ(x) dx = 0.

Then the effective matrix is given by

g0 := |Ω|−1

∫
Ω

rg(x) dx,(1.26)

rg(x) := g(x)(b(D)Λ(x) + 1m).(1.27)

It can be checked that the matrix g0 is positive definite.
In accordance with [BSu3, (6.28) and Subsection 7.3], the solution of problem (1.25)

satisfies

(1.28) ‖Λ‖H1(Ω) ≤ M.

Here the constant M depends only on m, α0, ‖g‖L∞ , ‖g−1‖L∞ , and the parameters of
the lattice Γ.

The effective matrix satisfies the estimates known as the Voigt–Reuss bracketing (see,
e.g., [BSu2, Chapter 3, Theorem 1.5]).

Proposition 1.3. Let g0 be the effective matrix (1.26). Then

(1.29) g ≤ g0 ≤ g.

If m = n, then g0 = g.

From (1.29) it follows that

(1.30) |g0| ≤ ‖g‖L∞ , |(g0)−1| ≤ ‖g−1‖L∞ .

Now we distinguish the cases where one of the inequalities in (1.29) becomes an iden-
tity, see [BSu2, Chapter 3, Propositions 1.6 and 1.7].

Proposition 1.4. The identity g0 = g is equivalent to the relations

(1.31) b(D)∗gk(x) = 0, k = 1, . . . ,m,

where the gk(x), k = 1, . . . ,m, are the columns of the matrix g(x).

Proposition 1.5. The identity g0 = g is equivalent to the representations

(1.32) lk(x) = l0k + b(D)wk, l0k ∈ C
m, wk ∈ rH1(Ω;Cm), k = 1, . . . ,m,

where the lk(x), k = 1, . . . ,m, are the columns of the matrix g(x)−1.
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1.6. The effective operator. To describe how the lower order terms of the operator

BD,ε are homogenized, we consider a Γ-periodic (n×n)-matrix-valued function rΛ(x) that
is the (weak) solution of the problem

(1.33) b(D)∗g(x)b(D)rΛ(x) +

d∑
j=1

Djaj(x)
∗ = 0,

∫
Ω

rΛ(x) dx = 0.

By [Su4, (7.51) and (7.52)], we have

(1.34) ‖rΛ‖H1(Ω) ≤ ĂM,

where the constant ĂM depends only on n, ρ, α0, ‖g−1‖L∞ , ‖aj‖Lρ(Ω), j = 1, . . . , d, and
the parameters of the lattice Γ.

Next, we define constant matrices V and W as follows:

V := |Ω|−1

∫
Ω

(b(D)Λ(x))∗g(x)(b(D)rΛ(x)) dx,(1.35)

W := |Ω|−1

∫
Ω

(b(D)rΛ(x))∗g(x)(b(D)rΛ(x)) dx.(1.36)

In L2(O;Cn), consider the quadratic form

b0D[u,u] = (g0b(D)u, b(D)u)L2(O) + 2Re
d∑

j=1

(ajDju,u)L2(O) − 2Re(V u, b(D)u)L2(O)

− (Wu,u)L2(O) + (Qu,u)L2(O) + λ(Q0u,u)L2(O), u ∈ H1
0 (O;Cn).

The following estimates were proved in [MSu3, (2.22) and (2.23)]:

c∗‖Du‖2L2(O) ≤ b0D[u,u] ≤ c4‖u‖2H1(O), u ∈ H1
0 (O;Cn),(1.37)

b0D[u,u] ≥ c∗(diam O)−2‖u‖2L2(O), u ∈ H1
0 (O;Cn).(1.38)

Here the constant c4 depends only on the problem data (1.9). The selfadjoint operator
in L2(O;Cn) corresponding to the form b0D is denoted by B0

D. By (1.37) and (1.38),

‖u‖H1(O) ≤ c3‖(B0
D)1/2u‖L2(O), u ∈ H1

0 (O;Cn),(1.39)

where c3 is given by (1.21).
Due to the condition ∂O ∈ C1,1, the operator B0

D is given by

(1.40) B0 = b(D)∗g0b(D)− b(D)∗V − V ∗b(D) +
d∑

j=1

(aj + a∗j )Dj −W +Q+ λQ0

on the domain H2(O;Cn) ∩H1
0 (O;Cn), and we have

(1.41) ‖(B0
D)−1‖L2(O)→H2(O) ≤ ĉ.

Here the constant ĉ depends only on the problem data (1.9). To justify this, we refer the
reader to the theorems about regularity of solutions of the strongly elliptic systems (see
[McL, Chapter 4]).

Remark 1.6. Instead of the condition ∂O ∈ C1,1, one could impose the following implicit
condition: a bounded Lipschitz domain O ⊂ Rd is such that estimate (1.41) holds true.
For such domains the results of the paper remain valid. In the case of scalar elliptic
operators, wide conditions on ∂O ensuring estimate (1.41) can be found in [KoE] and
[MaSh, Chapter 7] (in particular, it suffices to assume that ∂O ∈ Cα, α > 3/2).
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Denote

(1.42) f0 :=
(
Q0

)−1/2
.

By (1.22),

(1.43) |f0| ≤ ‖f‖L∞ = ‖Q−1
0 ‖1/2L∞

, |f−1
0 | ≤ ‖f−1‖L∞ = ‖Q0‖1/2L∞

.

In what follows, we shall need the operator rB0
D := f0B

0
Df0 corresponding to the quadratic

form

(1.44) rb0D[u,u] := b0D[f0u, f0u], u ∈ H1
0 (O;Cn).

Note that (B0
D − ζQ0)

−1 = f0( rB0
D − ζI)−1f0.

1.7. Approximation of the generalized resolvent (BD,ε − ζQε
0)

−1. Now we for-
mulate the results of the paper [MSu3], where the behavior of the generalized resolvent
(BD,ε − ζQε

0)
−1 was studied. Suppose that ζ ∈ C \ R+ and |ζ| ≥ 1. The principal

term of approximation of the generalized resolvent (BD,ε − ζQε
0)

−1 was found in [MSu3,
Theorem 2.5]; approximation of this resolvent in the (L2 → H1)-norm with the corrector
taken into account was found in [MSu3, Theorem 2.6]; an appropriate approximation of
the operator gεb(D)(BD,ε−ζQε

0)
−1 (corresponding to the “flux”) was obtained in [MSu3,

Proposition 10.7].
We choose numbers ε0, ε1 ∈ (0, 1] in accordance with the following condition.

Condition 1.7. Let O ⊂ Rd be a bounded domain. Denote

(∂O)ε :=
{
x ∈ R

d : dist {x; ∂O} < ε
}
.

Suppose that there exists a number ε0 ∈ (0, 1] such that the strip (∂O)ε0 can be covered by
finitely many open sets that admit diffeomorphisms of class C0,1 rectifying the boundary
∂O. Denote ε1 := ε0(1 + r1)

−1, where 2r1 = diam Ω.

Obviously, the number ε1 depends only on the domain O and the lattice Γ. Note that
Condition 1.7 is ensured by the assumption that ∂O is Lipschitz; we have imposed a
more restrictive condition ∂O ∈ C1,1 in order to ensure estimate (1.41).

Theorem 1.8 ([MSu3]). Let O ⊂ Rd be a bounded domain of class C1,1. Suppose that
the assumptions of Subsections 1.3–1.6 are satisfied. Let

ζ = |ζ|eiφ ∈ C \ R+, |ζ| ≥ 1.

Denote

c(φ) :=

{
| sinφ|−1, φ ∈ (0, π/2) ∪ (3π/2, 2π),

1, φ ∈ [π/2, 3π/2].

Suppose that ε1 is subject to Condition 1.7. Then for 0 < ε ≤ ε1 we have∥∥(BD,ε − ζQε
0)

−1 − (B0
D − ζQ0)

−1
∥∥
L2(O)→L2(O)

≤ C1c(φ)
5ε|ζ|−1/2.

The constant C1 depends only on the problem data (1.9).

We fix a continuous linear extension operator

(1.45) PO : Hσ(O;Cn) → Hσ(Rd;Cn), σ ≥ 0.

Such a “universal” extension operator exists for any bounded Lipschitz domain (see [R]).
We have

(1.46) ‖PO‖Hσ(O)→Hσ(Rd) ≤ C
(σ)
O , σ ≥ 0,
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where the constant C
(σ)
O depends only on σ and the domain O. By RO we denote the

operator of restriction of functions in R
d to the domain O. We put

(1.47) KD(ε; ζ) := RO
(
[Λε]b(D) + [rΛε]

)
SεPO(B

0
D − ζQ0)

−1.

The corrector (1.47) is a continuous mapping of L2(O;Cn) to H1(O;Cn). This can easily

be checked with the help of Proposition 1.2 and the relations Λ, rΛ ∈ rH1(Ω). Note that
‖εKD(ε; ζ)‖L2(O)→H1(O) = O(1) for small ε and fixed ζ.

Theorem 1.9 ([MSu3]). Suppose that the assumptions of Theorem 1.8 are satisfied. Let
KD(ε; ζ) be given by (1.47). Then for ζ ∈ C \ R+, |ζ| ≥ 1, and 0 < ε ≤ ε1 we have∥∥(BD,ε − ζQε

0)
−1 − (B0

D − ζQ0)
−1 − εKD(ε; ζ)

∥∥
L2(O)→H1(O)

≤ C2c(φ)
2ε1/2|ζ|−1/4 + C3c(φ)

4ε.
(1.48)

Let rg(x) be the matrix-valued function (1.27). We put

(1.49) GD(ε; ζ) := rgεSεb(D)PO(B
0
D − ζQ0)

−1 + gε
(
b(D)rΛ

)ε
SεPO(B

0
D − ζQ0)

−1.

Then for ζ ∈ C \ R+, |ζ| ≥ 1, and 0 < ε ≤ ε1 the operator gεb(D)(BD,ε − ζQε
0)

−1

corresponding to the “flux” satisfies

(1.50)
∥∥gεb(D)(BD,ε − ζQε

0)
−1 −GD(ε; ζ)

∥∥
L2(O)→L2(O)

≤ rC2c(φ)
5/2ε1/2|ζ|−1/4.

The constants C2, C3, and rC2 depend only on the problem data (1.9).

In [MSu3, Theorem 9.2], estimates in a wider domain of the spectral parameter were
obtained. It was assumed that ζ ∈ C \ [c
,∞), where c
 is a common lower bound of the

operators rBD,ε and rB0
D. We put

(1.51) c
 := 4−1α0‖g−1‖−1
L∞

‖Q0‖−1
L∞

(diamO)−2,

using relations (1.18), (1.19), (1.22), (1.23), (1.38), (1.43), and (1.44).

Theorem 1.10 ([MSu3]). Let O ⊂ Rd be a bounded domain of class C1,1. Suppose that
the assumptions of Subsections 1.3–1.6 are satisfied. Let KD(ε; ζ) be the corrector (1.47)
and let GD(ε; ζ) be the operator (1.49). Suppose that ζ ∈ C \ [c
,∞), where c
 is given
by (1.51). Denote ψ := arg(ζ − c
), 0 < ψ < 2π, and

(1.52) �
(ζ) :=

{
c(ψ)2|ζ − c
|−2, |ζ − c
| < 1,

c(ψ)2, |ζ − c
| ≥ 1.

Suppose that the number ε1 is subject to Condition 1.7. For 0 < ε ≤ ε1 we have∥∥(BD,ε − ζQε
0)

−1 − (B0
D − ζQ0)

−1
∥∥
L2(O)→L2(O)

≤ C4ε�
(ζ),(1.53) ∥∥(BD,ε − ζQε
0)

−1 − (B0
D − ζQ0)

−1 − εKD(ε; ζ)
∥∥
L2(O)→H1(O)

≤ C5

(
ε1/2�
(ζ)

1/2 + ε|1 + ζ|1/2�
(ζ)
)
,

(1.54) ∥∥gεb(D)(BD,ε − ζQε
0)

−1 −GD(ε; ζ)
∥∥
L2(O)→L2(O)

≤ rC5

(
ε1/2�
(ζ)

1/2 + ε|1 + ζ|1/2�
(ζ)
)
.

(1.55)

The constants C4, C5, and rC5 depend only on the problem data (1.9).

Remark 1.11. 1) In (1.52), the expression c(ψ)2|ζ − c
|−2 is inverse to the square of the
distance from ζ to [c
,∞).

2) The number (1.51) in Theorem 1.10 can be replaced by any common lower bound for

the operators rBD,ε and rB0
D. Let κ > 0 be an arbitrarily small number. By (1.53) (with

ζ = 0), BD,ε converges to B0
D in the norm-resolvent sense. Therefore, for sufficiently
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small ε we can take c
 = λ0
1‖Q0‖−1

L∞
− κ, where λ0

1 is the first eigenvalue of the operator

B0
D. Under this choice of c
, the constants in estimates become dependent on κ.
3) It makes sense to use estimates (1.53)–(1.55) for bounded values of |ζ| and small

ε�
(ζ). In this case, the value ε1/2�
(ζ)
1/2 + ε|1 + ζ|1/2�
(ζ) is controlled in terms of

Cε1/2�
(ζ)
1/2. For large |ζ| and for φ separated away from the points 0 and 2π, it is

preferable to use Theorems 1.8 and 1.9.

1.8. Removal of the smoothing operator from the corrector. It turns out that
the smoothing operator in the corrector can be removed under some additional assump-

tions on the matrix-valued functions Λ(x) and rΛ(x).

Condition 1.12. Suppose that the Γ-periodic solution Λ(x) of problem (1.25) is bounded,
i.e., Λ ∈ L∞(Rd).

Some cases where Condition 1.12 is satisfied were distinguished in [BSu4, Lemma 8.7].

Proposition 1.13 ([BSu4]). Suppose that at least one of the following assumptions is
satisfied :
1◦) d ≤ 2;
2◦) the dimension d ≥ 1 is arbitrary, and the differential expression Aε is given by
Aε = D∗gε(x)D, where g(x) is a symmetric matrix with real entries;
3◦) the dimension d is arbitrary, and g0 = g, i.e., relations (1.32) are satisfied.
Then Condition 1.12 is fulfilled.

In order to remove Sε from the term of the corrector involving rΛε, it suffices to impose
the following condition.

Condition 1.14. Suppose that the Γ-periodic solution rΛ(x) of problem (1.33) is such
that

rΛ ∈ Lp(Ω), p = 2 for d = 1, p > 2 for d = 2, p = d for d ≥ 3.

The following result was checked in [Su4, Proposition 8.11].

Proposition 1.15 ([Su4]). Suppose that at least one of the following assumptions is
satisfied :
1◦) d ≤ 4;
2◦) the dimension d is arbitrary, and Aε is given by Aε = D∗gε(x)D, where g(x) is a
symmetric matrix with real entries.
Then Condition 1.14 is satisfied.

Remark 1.16. If Aε = D∗gε(x)D, where g(x) is a symmetric matrix with real entries,

then from [LaU, Chapter III, Theorem 13.1] it follows that Λ, rΛ ∈ L∞ and the norm
‖Λ‖L∞ does not exceed a constant depending on d, ‖g‖L∞ , ‖g−1‖L∞ , and Ω, while the

norm ‖rΛ‖L∞ is controlled in terms of d, ρ, ‖g‖L∞ , ‖g−1‖L∞ , ‖aj‖Lρ(Ω), j = 1, . . . , d, and
Ω. In this case, Conditions 1.12 and 1.14 are fulfilled.

In [MSu3, Theorem 7.6], the following result was obtained.

Theorem 1.17 ([MSu3]). Under the assumptions of Theorem 1.9, suppose that Λ(x) is

subject to Condition 1.12, and rΛ(x) satisfies Condition 1.14. We put

K0
D(ε; ζ) := (Λεb(D) + rΛε)(B0

D − ζQ0)
−1,(1.56)

G0
D(ε; ζ) := rgεb(D)(B0

D − ζQ0)
−1 + gε

(
b(D)rΛ

)ε
(B0

D − ζQ0)
−1.(1.57)
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Then for ζ ∈ C \ R+, |ζ| ≥ 1, and 0 < ε ≤ ε1 we have∥∥(BD,ε − ζQε
0)

−1 − (B0
D − ζQ0)

−1 − εK0
D(ε; ζ)

∥∥
L2(O)→H1(O)

≤ C2c(φ)
2ε1/2|ζ|−1/4 + C6c(φ)

4ε,∥∥gεb(D)(BD,ε − ζQε
0)

−1 −G0
D(ε; ζ)

∥∥
L2(O)→L2(O)

≤ rC2c(φ)
2ε1/2|ζ|−1/4 + rC6c(φ)

4ε.

Here the constants C2, rC2 are as in (1.48) and (1.50). The constants C6 and rC6 depend

only on the problem data (1.9), p, and the norms ‖Λ‖L∞ , ‖rΛ‖Lp(Ω).

Approximations in a wider domain of the spectral parameter were found in [MSu3,
Theorem 9.8].

Theorem 1.18 ([MSu3]). Under the assumptions of Theorem 1.10 and Conditions 1.12,
1.14, let K0

D(ε; ζ) be the corrector (1.56). Let G0
D(ε; ζ) be given by (1.57). Then for

0 < ε ≤ ε1 and ζ ∈ C \ [c
,∞) we have∥∥(BD,ε − ζQε
0)

−1 − (B0
D − ζQ0)

−1 − εK0
D(ε; ζ)

∥∥
L2(O)→H1(O)

≤ C7

(
ε1/2�
(ζ)

1/2 + ε|1 + ζ|1/2�
(ζ)
)
,∥∥gεb(D)(BD,ε − ζQε

0)
−1 −G0

D(ε; ζ)
∥∥
L2(O)→L2(O)

≤ rC7

(
ε1/2�
(ζ)

1/2 + ε|1 + ζ|1/2�
(ζ)
)
.

Here the constants C7 and rC7 depend only on the problem data (1.9), p, and the norms

‖Λ‖L∞ , ‖rΛ‖Lp(Ω).

Recalling [MSu3, Remarks 7.9 and 9.9], we observe the following.

Remark 1.19. If only Condition 1.12 (respectively, Condition 1.14) is satisfied, then the
smoothing operator Sε can be removed from the term of the corrector involving Λε

(respectively, from the term involving rΛε).

1.9. The case where the corrector is equal to zero. Suppose that g0 = g, i.e.,
relations (1.31) hold true. Then the Γ-periodic solution of problem (1.25) is equal to
zero: Λ(x) = 0. Suppose in addition that

(1.58)

d∑
j=1

Djaj(x)
∗ = 0.

Then the Γ-periodic solution of problem (1.33) is also equal to zero: rΛ(x) = 0. By
[MSu3, Propositions 7.10 and 9.12], in this case the following (L2 → H1)-estimate of
sharp order O(ε) is valid.

Proposition 1.20 ([MSu3]). Suppose that relations (1.31) and (1.58) are satisfied.
1◦. Under the assumptions of Theorem 1.8, for ζ ∈ C \ R+, |ζ| ≥ 1, and 0 < ε ≤ 1 we
have

(1.59)
∥∥(BD,ε − ζQε

0)
−1 − (B0

D − ζQ0)
−1

∥∥
L2(O)→H1(O)

≤ C8c(φ)
4ε.

2◦. Under the assumptions of Theorem 1.10, for ζ ∈ C \ [c
,∞) and 0 < ε ≤ 1 we have

(1.60)
∥∥(BD,ε − ζQε

0)
−1 − (B0

D − ζQ0)
−1

∥∥
L2(O)→H1(O)

≤ (C9 + C10|1 + ζ|1/2)ε�
(ζ).

The constants C8, C9, and C10 depend only on the problem data (1.9).
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1.10. Estimates in a strictly interior subdomain. It is possible to improve the
H1-estimates in a strictly interior subdomain O′ of the domain O. In Theorems 8.1
and 9.14 of [MSu3], the following result was obtained.

Theorem 1.21 ([MSu3]). Let O′ be a strictly interior subdomain of the domain O.
Denote

(1.61) δ := min {1; dist {O′; ∂O}} .

1◦. Under the assumptions of Theorem 1.9, for ζ ∈ C \ R+, |ζ| ≥ 1, and 0 < ε ≤ ε1 we
have∥∥(BD,ε − ζQε

0)
−1 − (B0

D − ζQ0)
−1 − εKD(ε; ζ)

∥∥
L2(O)→H1(O′)

≤ c(φ)6ε(C ′
11|ζ|−1/2δ−1 + C ′′

11),∥∥gεb(D)(BD,ε − ζQε
0)

−1 −GD(ε; ζ)
∥∥
L2(O)→L2(O′)

≤ c(φ)6ε
(

rC ′
11|ζ|−1/2δ−1 + rC ′′

11

)
.

The constants C ′
11, C

′′
11, rC ′

11, and rC ′′
11 depend only on the problem data (1.9).

2◦. Under the assumptions of Theorem 1.10, for ζ ∈ C \ [c
,∞) and 0 < ε ≤ ε1 we have∥∥(BD,ε − ζQε
0)

−1 − (B0
D − ζQ0)

−1 − εKD(ε; ζ)
∥∥
L2(O)→H1(O′)

≤ ε
(
C ′

12δ
−1�
(ζ)

1/2 + C ′′
12|1 + ζ|1/2�
(ζ)

)
,

(1.62) ∥∥gεb(D)(BD,ε − ζQε
0)

−1 −GD(ε; ζ)
∥∥
L2(O)→L2(O′)

≤ ε
(

rC ′
12δ

−1�
(ζ)
1/2 + rC ′′

12|1 + ζ|1/2�
(ζ)
)
.

(1.63)

The constants C ′
12, C

′′
12, and rC ′

12, rC ′′
12 depend only on the problem data (1.9).

If the matrix-valued functions Λ(x) and rΛ(x) satisfy some additional assumptions, this
result remains true with a simpler corrector. Approximations for ζ ∈ C \ R+, |ζ| ≥ 1,
were found in [MSu3, Theorem 8.2].

Theorem 1.22 ([MSu3]). Suppose that the assumptions of Theorem 1.21(1◦) are sat-

isfied. Suppose that the matrix-valued functions Λ(x) and rΛ(x) satisfy Conditions 1.12
and 1.14, respectively. Let K0

D(ε; ζ) and G0
D(ε; ζ) be the operators defined by (1.56) and

(1.57). Then for 0 < ε ≤ ε1 and ζ ∈ C \ R+, |ζ| ≥ 1, we have∥∥(BD,ε − ζQε
0)

−1 − (B0
D − ζQ0)

−1 − εK0
D(ε; ζ)

∥∥
L2(O)→H1(O′)

≤ c(φ)6ε(C ′
11|ζ|−1/2δ−1 + C13),∥∥gεb(D)(BD,ε − ζQε

0)
−1 −G0

D(ε; ζ)
∥∥
L2(O)→L2(O′)

≤ c(φ)6ε( rC ′
11|ζ|−1/2δ−1 + rC13).

The constants C ′
11 and rC ′

11 are as in Theorem 1.21. The constants C13 and rC13 depend

on the problem data (1.9), p, and the norms ‖Λ‖L∞ , ‖rΛ‖Lp(Ω).

Approximations in a wider domain of the parameter ζ were obtained in [MSu3, The-
orem 9.15].

Theorem 1.23 ([MSu3]). Suppose that the assumptions of Theorem 1.21(2◦) are sat-

isfied. Suppose that the matrix-valued functions Λ(x) and rΛ(x) are subject to Condi-
tions 1.12 and 1.14, respectively. Let K0

D(ε; ζ) be the corrector (1.56), and let G0
D(ε; ζ)



950 YU. M. MESHKOVA AND T. A. SUSLINA

be the operator (1.57). Then for ζ ∈ C \ [c
,∞) and 0 < ε ≤ ε1 we have∥∥(BD,ε − ζQε
0)

−1 − (B0
D − ζQ0)

−1 − εK0
D(ε; ζ)

∥∥
L2(O)→H1(O′)

≤ ε
(
C ′

12δ
−1�
(ζ)

1/2 + C14|1 + ζ|1/2�
(ζ)
)
,∥∥gεb(D)(BD,ε − ζQε

0)
−1 −G0

D(ε; ζ)
∥∥
L2(O)→L2(O′)

≤ ε
(

rC ′
12δ

−1�
(ζ)
1/2 + rC14|1 + ζ|1/2�
(ζ)

)
.

Here the constants C ′
12 and rC ′

12 are as in (1.62) and (1.63). The constants C14 and rC14

depend on the problem data (1.9), p, and the norms ‖Λ‖L∞ , ‖rΛ‖Lp(Ω).

§2. Statement of the problem. Main results

2.1. Statement of the problem. We study the behavior of the solution of the first
initial boundary-value problem

(2.1)

⎧⎪⎨⎪⎩
Qε

0(x)
∂uε

∂t (x, t) = −Bεuε(x, t), x ∈ O, t > 0;

uε( · , t)|∂O = 0, t > 0;

Qε
0(x)uε(x, 0) = ϕ(x), x ∈ O.

Here ϕ ∈ L2(O;Cn). (The solution is understood in the weak sense.) Let us find a

relationship between uε( · , t) and ϕ. By (1.22), the function sε(x, t) :=
(
fε(x)

)−1
uε(x, t)

is the solution of the problem⎧⎪⎨⎪⎩
∂sε
∂t (x, t) = − rBεsε(x, t), x ∈ O, t > 0;

sε( · , t)|∂O = 0, t > 0;

sε(x, 0) = (fε(x))∗ϕ(x), x ∈ O.

Then sε( · , t) = e−
rBD,εt(fε)∗ϕ and uε( · , t) = fεsε( · , t) = fεe−

rBD,εt(fε)∗ϕ.
Our goal is to study the behavior of the generalized solution uε of the first initial

boundary-value problem (2.1) in the small period limit. In other words, we are interested

in approximations of the sandwiched operator exponential fεe−
rBD,εt(fε)∗ for small ε.

The corresponding effective problem is given by

(2.2)

⎧⎪⎨⎪⎩
Q0

∂u0

∂t (x, t) = −B0u0(x, t), x ∈ O, t > 0;

u0( · , t)|∂O = 0, t > 0;

Q0u0(x, 0) = ϕ(x), x ∈ O.

By (1.42), the solution of the effective problem is given by

(2.3) u0( · , t) = f0e
− rB0

Dtf0ϕ( · ).

2.2. The properties of the operator exponential. We prove the following simple

statement about estimates for the operator exponentials e−
rBD,εt and e−

rB0
Dt.

Lemma 2.1. For 0 < ε ≤ 1 we have:∥∥e− rBD,εt
∥∥
L2(O)→L2(O)

≤ e−c�t, t ≥ 0,(2.4) ∥∥fεe−
rBD,εt

∥∥
L2(O)→H1(O)

≤ c3t
−1/2e−c�t/2, t > 0,(2.5) ∥∥e− rB0

Dt
∥∥
L2(O)→L2(O)

≤ e−c�t, t ≥ 0,(2.6) ∥∥f0e− rB0
Dt
∥∥
L2(O)→H1(O)

≤ c3t
−1/2e−c�t/2, t > 0,(2.7) ∥∥f0e− rB0

Dt
∥∥
L2(O)→H2(O)

≤ rct−1e−c�t/2, t > 0.(2.8)
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Here the constants c3 and c
 are given by (1.21) and (1.51). The constant rc depends only
on the problem data (1.9).

Proof. Since the number c
 defined by (1.51) is a common lower bound for the operators
rBD,ε and rB0

D, estimates (2.4) and (2.6) are obvious.
By (1.20) and (1.23),∥∥fεe−

rBD,εt
∥∥
L2(O)→H1(O)

≤ c3
∥∥B1/2

D,εf
εe−

rBD,εt
∥∥
L2(O)→L2(O)

= c3
∥∥ rB

1/2
D,εe

− rBD,εt
∥∥
L2(O)→L2(O)

.
(2.9)

Since rBD,ε ≥ c
I, we have∥∥ rB
1/2
D,εe

− rBD,εt
∥∥
L2(O)→L2(O)

≤ sup
x≥c�

x1/2e−xt

≤ e−c�t/2 sup
x≥c�

x1/2e−xt/2 ≤ t−1/2e−c�t/2.
(2.10)

Combining this with (2.9), we obtain inequality (2.5). Similarly, (1.39) and (1.44) imply
estimate (2.7).

From (1.41), (1.43), and the identity rB0
D = f0B

0
Df0 it follows that∥∥f0e− rB0

Dt
∥∥
L2(O)→H2(O)

≤ ĉ
∥∥B0

Df0e
− rB0

Dt
∥∥
L2(O)→L2(O)

≤ ĉ‖f−1‖L∞

∥∥ rB0
De−

rB0
Dt
∥∥
L2(O)→L2(O)

.

Hence, ∥∥f0e− rB0
Dt
∥∥
L2(O)→H2(O)

≤ ĉ‖f−1‖L∞ sup
x≥c�

xe−xt ≤ ĉ‖f−1‖L∞t−1e−c�t/2.

This proves estimate (2.8) with the constant rc = ĉ‖f−1‖L∞ . �

2.3. Approximation of the solution in L2(O;Cn).

Theorem 2.2. Let O ⊂ Rd be a bounded domain of class C1,1. Suppose that the as-
sumptions of Subsections 1.3–1.6 are satisfied. Let BD,ε be the operator in L2(O;Cn)
corresponding to the quadratic form (1.11). Let B0

D be the operator in L2(O;Cn) given

by the expression (1.40) on H2(O;Cn) ∩ H1
0 (O;Cn). We put rBD,ε = (fε)∗BD,εf

ε and
rB0
D = f0B

0
Df0, where the matrix-valued function f is defined by (1.22), and the matrix f0

is given by (1.42). Let uε be the solution of problem (2.1), and let u0 be the solution
of the corresponding effective problem (2.2). Suppose that the number ε1 is subject to
Condition 1.7. Then for 0 < ε ≤ ε1 we have

‖uε( · , t)− u0( · , t)‖L2(O) ≤ C15ε(t+ ε2)−1/2e−c�t/2‖ϕ‖L2(O), t ≥ 0.

In operator terms,∥∥fεe−
rBD,εt(fε)∗ − f0e

− rB0
Dtf0

∥∥
L2(O)→L2(O)

≤ C15ε(t+ ε2)−1/2e−c�t/2,

t ≥ 0.
(2.11)

Here the constant c
 is given by (1.51). The constant C15 depends only on the problem
data (1.9).

Proof. The proof is based on the results of Theorems 1.8, 1.10, and representations for

the exponentials of the operators rBD,ε, rB0
D in terms of the contour integrals of the

corresponding resolvents.
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We have (see, e.g., [Ka, Chapter IX, Section 1.6])

(2.12) e−
rBD,εt = − 1

2πi

∫
γ

e−ζt( rBD,ε − ζI)−1 dζ, t > 0.

Here γ ⊂ C is a contour enclosing the spectrum of the operator rBD,ε in positive direction.

The exponential of the operator rB0
D satisfies a similar representation. Since the constant

(1.51) is a common lower bound of the operators rBD,ε and rB0
D, it is convenient to choose

the contour of integration as follows:

γ = {ζ ∈ C : Im ζ ≥ 0, Re ζ = Im ζ + c
/2} ∪ {ζ ∈ C : Im ζ ≤ 0, Re ζ = − Im ζ + c
/2}.
Multiplying (2.12) by fε from the left and by (fε)∗ from the right and using iden-

tity (1.24), we obtain

fεe−
rBD,εt(fε)∗ = − 1

2πi

∫
γ

e−ζt(BD,ε − ζQε
0)

−1 dζ, t > 0.

Similarly,

f0e
− rB0

Dtf0 = − 1

2πi

∫
γ

e−ζt(B0
D − ζQ0)

−1 dζ, t > 0.

Hence,

fεe−
rBD,εt(fε)∗ − f0e

− rB0
Dtf0

= − 1

2πi

∫
γ

e−ζt
(
(BD,ε − ζQε

0)
−1 − (B0

D − ζQ0)
−1

)
dζ.

(2.13)

By Theorems 1.8 and 1.10, we estimate the difference of the generalized resolvents for
ζ ∈ γ uniformly in arg ζ. Recall the notation ψ = arg(ζ − c
). Note that for ζ ∈ γ and

ψ = π/2 or ψ = 3π/2 we have |ζ| =
√
5c
/2. We apply Theorem 1.10 for ζ ∈ γ with

|ζ| ≤ qc, where

(2.14) qc := max{1;
√
5c
/2}.

Obviously, ψ ∈ (π/4, 7π/4) on the contour γ, and

(2.15) ρ
(ζ) ≤ 2max{1; 8c−2

 } =: C, ζ ∈ γ.

Therefore, (1.53) implies∥∥(BD,ε − ζQε
0)

−1 − (B0
D − ζQ0)

−1
∥∥
L2(O)→L2(O)

≤ C4Cε ≤ C ′
15|ζ|−1/2ε,

ζ ∈ γ, |ζ| ≤ qc, 0 < ε ≤ ε1; C ′
15 := C4Cqc1/2.

(2.16)

For the other ζ ∈ γ, we have

(2.17) | sinφ| ≥ 5−1/2, ζ ∈ γ, |ζ| > qc,

and, by Theorem 1.8,∥∥(BD,ε − ζQε
0)

−1 − (B0
D − ζQ0)

−1
∥∥
L2(O)→L2(O)

≤ C ′′
15|ζ|−1/2ε,

ζ ∈ γ, |ζ| > qc, 0 < ε ≤ ε1,
(2.18)

where C ′′
15 := 55/2C1. As a result, combining (2.16) and (2.18), for 0 < ε ≤ ε1 we have

(2.19)
∥∥(BD,ε − ζQε

0)
−1 − (B0

D − ζQ0)
−1

∥∥
L2(O)→L2(O)

≤ Ĉ15|ζ|−1/2ε, ζ ∈ γ,

where Ĉ15 := max{C ′
15;C

′′
15}.

From (2.13) and (2.19) it follows that∥∥fεe−
rBD,εt(fε)∗ − f0e

− rB0
Dtf0

∥∥
L2(O)→L2(O)

≤ 2π−1Ĉ15εt
−1/2Γ(1/2)e−c�t/2.
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Taking into account that Γ(1/2) = π1/2, we find∥∥fεe−
rBD,εt(fε)∗ − f0e

− rB0
Dtf0

∥∥
L2(O)→L2(O)

≤ 2π−1/2Ĉ15εt
−1/2e−c�t/2

≤ qC15ε(t+ ε2)−1/2e−c�t/2, t ≥ ε2,
(2.20)

where qC15 := 2
√
2π−1/2Ĉ15. For t ≤ ε2 we use the rough estimate∥∥fεe−

rBD,εt(fε)∗ − f0e
− rB0

Dtf0
∥∥
L2(O)→L2(O)

≤ 2‖f‖2L∞e−c�t

≤ 2
√
2‖f‖2L∞ε(t+ ε2)−1/2e−c�t/2, t ≤ ε2.

(2.21)

Relations (2.20) and (2.21) imply the required inequality (2.11) with the constant C15 :=

max{ qC15; 2
√
2‖f‖2L∞

}. �

2.4. Approximation of the solution in H1(O;Cn). We introduce a corrector

(2.22) KD(t; ε) := RO
(
[Λε]Sεb(D) + [rΛε]Sε

)
POf0e

− rB0
Dtf0.

For t > 0 the operator (2.22) is a continuous mapping of L2(O;Cn) to H1(O;Cn).

Indeed, by (2.8), for t > 0 the operator f0e
− rB0

Dtf0 acts continuously from L2(O;Cn)

to H2(O;Cn). Hence, the operator b(D)POf0e
− rB0

Dtf0 is continuous from L2(O;Cn) to

H1(Rd;Cm). Obviously, the operator POf0e
− rB0

Dtf0 is also continuous from L2(O;Cn)
to H1(Rd;Cn). It remains to use the continuity of the operators [Λε]Sε : H

1(Rd;Cm) →
H1(Rd;Cn) and [rΛε]Sε : H

1(Rd;Cn) → H1(Rd;Cn), which follows from Proposition 1.2

and the relations Λ, rΛ ∈ rH1(Ω).
We put ru0( · , t) := POu0( · , t). By vε we denote the first order approximation of the

solution uε of problem (2.1):

rvε( · , t) = ru0( · , t) + εΛεSεb(D)ru0( · , t) + εrΛεSεru0( · , t),
vε( · , t) := rvε( · , t)|O.

(2.23)

So, vε( · , t) = f0e
− rB0

Dtf0ϕ( · ) + εKD(t; ε)ϕ( · ).

Theorem 2.3. Under the assumptions of Theorem 2.2, suppose that the matrix-valued

functions Λ(x) and rΛ(x) are Γ-periodic solutions of the problems (1.25) and (1.33),
respectively. Let Sε be the Steklov smoothing operator (1.1), and let PO be the extension
operator (1.45). We put ru0( · , t) = POu0( · , t). Let vε be defined by (2.23). Then for
0 < ε ≤ ε1 and t > 0 we have

‖uε( · , t)− vε( · , t)‖H1(O) ≤ C16(ε
1/2t−3/4 + εt−1)e−c�t/2‖ϕ‖L2(O).

In the operator terms,∥∥fεe−
rBD,εt(fε)∗ − f0e

− rB0
Dtf0 − εKD(t; ε)

∥∥
L2(O)→H1(O)

≤ C16(ε
1/2t−3/4 + εt−1)e−c�t/2,

(2.24)

where KD(t; ε) is the corrector (2.22). Suppose that the matrix-valued function rg(x) is
defined by (1.27). For 0 < ε ≤ ε1 and t > 0, the flux pε := gεb(D)uε satisfies∥∥pε( · , t)− rgεSεb(D)ru0( · , t)− gε

(
b(D)rΛ

)ε
Sεru0( · , t)

∥∥
L2(O)

≤ rC16ε
1/2t−3/4e−c�t/2‖ϕ‖L2(O).

In the operator terms,

(2.25)
∥∥gεb(D)fεe−

rBD,εt(fε)∗ − GD(t; ε)
∥∥
L2(O)→L2(O)

≤ rC16ε
1/2t−3/4e−c�t/2.
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Here

GD(t; ε) := rgεSεb(D)POf0e
− rB0

Dtf0 + gε
(
b(D)rΛ

)ε
SεPOf0e

− rB0
Dtf0.

The constants C16 and rC16 depend only on the problem data (1.9).

Proof. As in the proof of Theorem 2.2, we use representations for the sandwiched operator
exponentials in terms of the contour integrals of the corresponding generalized resolvents.
We have

fεe−
rBD,εt(fε)∗ − f0e

− rB0
Dtf0 − εKD(t; ε)

= − 1

2πi

∫
γ

e−ζt
(
(BD,ε − ζQε

0)
−1 − (B0

D − ζQ0)
−1 − εKD(ε; ζ)

)
dζ.

(2.26)

Here KD(ε; ζ) is the operator (1.47).
As in (2.16)–(2.19), using Theorems 1.9 and 1.10, we get∥∥(BD,ε − ζQε

0)
−1 − (B0

D − ζQ0)
−1 − εKD(ε; ζ)

∥∥
L2(O)→H1(O)

≤ Ĉ16

(
ε1/2|ζ|−1/4 + ε

)
, ζ ∈ γ, 0 < ε ≤ ε1,

(2.27)

with the constant Ĉ16 := max{C ′
16;C

′′
16}, where C ′

16 := (1 + qc)1/2C5C and C ′′
16 :=

max{5C2; 25C3}. Relations (2.26) and (2.27) imply the required estimate (2.24) with

the constant C16 := 2π−1Γ(3/4)Ĉ16.
Similarly, the identity

gεb(D)fεe−
rBD,εt(fε)∗ − GD(t; ε)

= − 1

2πi

∫
γ

e−ζt
(
gεb(D)(BD,ε − ζQε

0)
−1 −GD(ε; ζ)

)
dζ

(2.28)

and estimates (1.50), (1.55) yield inequality (2.25) with the constant

rC16 := 2π−1Γ(3/4)max
{
55/4 rC2; 2qc1/4(1 + qc)1/2 rC5C

}
. �

Remark 1.11(2) leads to the following statement.

Remark 2.4. Let λ0
1 be the first eigenvalue of the operator B0

D, and let κ > 0 be an
arbitrarily small number. Due to the norm-resolvent convergence, for sufficiently small

ε◦ the number λ0
1‖Q0‖−1

L∞
− κ/2 is a common lower bound for the operators rBD,ε for

all 0 < ε ≤ ε◦. Therefore, we can shift the integration contour so that it will intersect
the real axis at the point c := λ0

1‖Q0‖−1
L∞

− κ instead of c
/2. In this way, we obtain

estimates (2.11), (2.24), and (2.25) with e−c�t/2 replaced by e−ct on the right-hand sides.
The constants in estimates become dependent on κ.

2.5. Estimates for small time. Note that for 0 < t < ε2 it makes no sense to apply
estimates (2.24) and (2.25), because it is better to use the following simple statement
(which is valid, however, for all t > 0).

Proposition 2.5. Under the assumptions of Theorem 2.2, for t > 0 and 0 < ε ≤ 1 we
have ∥∥fεe−

rBD,εt(fε)∗ − f0e
− rB0

Dtf0
∥∥
L2(O)→H1(O)

≤ C17t
−1/2e−c�t/2,(2.29) ∥∥gεb(D)fεe−

rBD,εt(fε)∗
∥∥
L2(O)→L2(O)

≤ rC17t
−1/2e−c�t/2,(2.30) ∥∥g0b(D)f0e

− rB0
Dtf0

∥∥
L2(O)→L2(O)

≤ rC17t
−1/2e−c�t/2,(2.31)

where the constants C17 := 2c3‖f‖L∞ and rC17 := ‖g‖1/2L∞
‖f‖L∞ depend only on the

problem data (1.9).



HOMOGENIZATION OF THE FIRST INITIAL BOUNDARY-VALUE PROBLEM 955

Proof. Inequality (2.29) follows from (1.43), (2.5), and (2.7).
Next, by (1.23),∥∥gεb(D)fεe−

rBD,εt(fε)∗
∥∥
L2(O)→L2(O)

≤ ‖g‖1/2L∞
‖f‖L∞

∥∥ rB
1/2
D,εe

− rBD,εt
∥∥
L2(O)→L2(O)

.

Together with (2.10), this yields (2.30). By (1.43) and (1.44), estimate (2.31) is checked
similarly. �
2.6. Removal of the smoothing operator Sε from the corrector. It is possible to
remove the smoothing operator from the corrector if the matrix-valued functions Λ(x)

and rΛ(x) satisfy Conditions 1.12 and 1.14, respectively. The following result is checked
like in Theorem 2.3 by using Theorems 1.17 and 1.18.

Theorem 2.6. Under the assumptions of Theorem 2.3, suppose that the matrix-valued

functions Λ(x) and rΛ(x) satisfy Conditions 1.12 and 1.14, respectively. Put

K0
D(t; ε) := (Λεb(D) + rΛε)f0e

− rB0
Dtf0,(2.32)

G0
D(t; ε) := rgεb(D)f0e

− rB0
Dtf0 + gε

(
b(D)rΛ

)ε
f0e

− rB0
Dtf0.(2.33)

Then for t > 0 and 0 < ε ≤ ε1 we have∥∥fεe−
rBD,εt(fε)∗ − f0e

− rB0
Dtf0 − εK0

D(t; ε)
∥∥
L2(O)→H1(O)

≤ C18

(
ε1/2t−3/4 + εt−1

)
e−c�t/2,∥∥gεb(D)fεe−

rBD,εt(fε)∗ − G0
D(t; ε)

∥∥
L2(O)→L2(O)

≤ rC18

(
ε1/2t−3/4 + εt−1

)
e−c�t/2.

The constants C18 and rC18 depend on the problem data (1.9), p, and the norms ‖Λ‖L∞

and ‖rΛ‖Lp(Ω).

Using Remark 1.19, we observe the following.

Remark 2.7. If only Condition 1.12 (respectively, Condition 1.14) is satisfied, then the
smoothing operator Sε can be removed from the term of the corrector involving Λε

(respectively, rΛε).

2.7. The case of smooth boundary. It is also possible to remove the smoothing oper-
ator Sε from the corrector by increasing smoothness of the boundary. In this subsection,
we consider the case where d ≥ 3, because for d ≤ 2 we can apply Theorem 2.6 (see
Propositions 1.13 and 1.15).

Lemma 2.8. Let k ≥ 2 be an integer. Let O ⊂ R
d be a bounded domain with boundary

∂O of class Ck−1,1. Then for t > 0 the operator e−
rB0
Dt is a continuous mapping from

L2(O;Cn) to Hq(O;Cn), 0 ≤ q ≤ k, and

(2.34)
∥∥e− rB0

Dt
∥∥
L2(O)→Hq(O)

≤ Ĉqt
−q/2e−c�t/2, t > 0.

The constant Ĉq depends only on q and the problem data (1.9).

Proof. It suffices to check estimate (2.34) in the case where q ∈ [0, k] is an integer; then
the result for nonintegral q follows by interpolation. For q = 0, 1, 2 estimate (2.34) was
already proved (see Lemma 2.1).

So, let q be an integer such that 2 ≤ q ≤ k. By theorems about regularity of so-

lutions of strongly elliptic systems (see, e.g., [McL, Chapter 4]), the operator ( rB0
D)−1

acts continuously from Hσ(O;Cn) to Hσ+2(O;Cn) under the assumption ∂O ∈ Cσ+1,1,

where σ ∈ Z+. We also take into account that the operator ( rB0
D)−1/2 is continuous
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from L2(O;Cn) to H1(O;Cn). It follows that, under the assumptions of the lemma, for

an integer q ∈ [2, k] the operator ( rB0
D)−q/2 is a continuous mapping from L2(O;Cn) to

Hq(O;Cn). We have

(2.35)
∥∥( rB0

D)−q/2
∥∥
L2(O)→Hq(O)

≤ qCq,

where the constant qCq depends on q and the problem data (1.9). From (2.35) it follows
that ∥∥e− rB0

Dt
∥∥
L2(O)→Hq(O)

≤ qCq

∥∥( rB0
D)q/2e−

rB0
Dt
∥∥
L2(O)→L2(O)

≤ qCq sup
x≥c�

xq/2e−xt

≤ qCqt
−q/2e−c�t/2 sup

x≥0
xq/2e−x/2 ≤ Ĉqt

−q/2e−c�t/2,

where Ĉq := qCq(q/e)
q/2. �

Using Lemma 2.8, the properties of the matrix-valued functions Λ(x) and rΛ(x), and
the properties of the operator Sε, we can estimate the difference of the correctors (2.22)
and (2.32).

Lemma 2.9. Let d ≥ 3. Let O ⊂ Rd be a bounded domain of class Cd/2,1 if d is even
and of class C(d+1)/2,1 if d is odd. Let KD(t; ε) be the operator (2.22), and let K0

D(t; ε)
be the operator (2.32). Then for 0 < ε ≤ 1 and t > 0 we have

(2.36) ‖KD(t; ε)−K0
D(t; ε)‖L2(O)→H1(O) ≤ Ĉd(t−1 + t−d/4−1/2)e−c�t/2.

The constant Ĉd depends only on the problem data (1.9).

Lemma 2.9 and Theorem 2.3 imply the following result.

Theorem 2.10. Under the assumptions of Theorem 2.2, suppose that d ≥ 3 and that
the domain O is as in Lemma 2.9. Let K0

D(t; ε) be the corrector (2.32). Let G0
D(t; ε) be

the operator (2.33). Then for t > 0 and 0 < ε ≤ ε1 we have∥∥fεe−
rBD,εt(fε)∗ − f0e

− rB0
Dtf0 − εK0

D(t; ε)
∥∥
L2(O)→H1(O)

≤ Cd(ε1/2t−3/4 + εt−d/4−1/2)e−c�t/2,
(2.37)

∥∥gεb(D)fεe−
rBD,εt(fε)∗ − G0

D(t; ε)
∥∥
L2(O)→L2(O)

≤ rCd(ε1/2t−3/4 + εt−d/4−1/2)e−c�t/2.
(2.38)

The constants Cd and rCd depend only on the problem data (1.9).

The proofs of Lemma 2.9 and Theorem 2.10 are presented in the Appendix (see
§7) in order not to overload the main presentation. Clearly, it is convenient to apply
Theorem 2.10 if t is separated away from zero. For small t the order of the factor
(ε1/2t−3/4 + εt−d/4−1/2) grows with dimension. This is the “price” for the removal of
the smoothing operator.

Remark 2.11. Instead of the smoothness assumption on ∂O as in Lemma 2.9, we could
impose the following implicit condition: a bounded domain O with Lipschitz boundary
is such that estimate (2.34) is fulfilled for q = d/2 + 1. In such domains the statements
of Lemma 2.9 and Theorem 2.10 remain valid.
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2.8. The case of zero corrector. Suppose that g0 = g, i.e., relations (1.31) are true.
Suppose also that condition (1.58) is satisfied. Then the Γ-periodic solutions of problems

(1.25) and (1.33) are equal to zero: Λ(x) = 0 and rΛ(x) = 0. Using Proposition 1.20, we
obtain the following result.

Proposition 2.12. Suppose that relations (1.31) and (1.58) are satisfied. Then, under
the assumptions of Theorem 2.2, for 0 < ε ≤ 1 we have

(2.39)
∥∥fεe−

rBD,εt(fε)∗ − f0e
− rB0

Dtf0
∥∥
L2(O)→H1(O)

≤ C19εt
−1e−c�t/2, t > 0,

where the constant C19 depends only on the problem data (1.9).

Proof. We use identity (2.13). For |ζ| ≤ qc, where qc is the constant (2.14), we em-
ploy (1.60) and (2.15). For |ζ| > qc we apply (1.59) and (2.17). As a result, we see that,
for 0 < ε ≤ 1,∥∥(BD,ε − ζQε

0)
−1 − (B0

D − ζQ0)
−1

∥∥
L2(O)→H1(O)

≤ Ĉ19ε, ζ ∈ γ;

Ĉ19 := max
{(

C9 + C10(1 + qc)1/2
)
C; 25C8

}
.

Together with (2.13), this yields (2.39) with the constant C19 := 2π−1Ĉ19. �

2.9. Special case. Now, we assume that g0 = g, i.e., relations (1.32) are satisfied.
Then, by Proposition 1.13(3◦), Condition 1.12 is fulfilled. By [BSu3, Remark 3.5], the
matrix-valued function (1.27) is constant and coincides with g0, i.e., rg(x) = g0 = g.

Thus, rgεb(D)f0e
− rB0

Dtf0 = g0b(D)f0e
− rB0

Dtf0.

Suppose moreover that (1.58) is true. Then rΛ(x) = 0. The following result can be
deduced from Theorem 2.3 and Proposition 1.1.

Proposition 2.13. Suppose that relations (1.32) and (1.58) are satisfied. Then, under
the assumptions of Theorem 2.2, for 0 < ε ≤ ε1 and t > 0 we have

(2.40)
∥∥gεb(D)fεe−

rBD,εt(fε)∗ − g0b(D)f0e
− rB0

Dtf0
∥∥
L2(O)→L2(O)

≤ rC ′
16ε

1/2t−3/4e−c�t/2.

The constant rC ′
16 depends only on the problem data (1.9).

Proof. From Theorem 2.3 it follows that∥∥gεb(D)fεe−
rBD,εt(fε)∗ − g0Sεb(D)POf0e

− rB0
Dtf0

∥∥
L2(O)→L2(O)

≤ rC16ε
1/2t−3/4e−c�t/2.

(2.41)

On the one hand, Proposition 1.1 and relations (1.3), (1.30), (1.43), (1.46), (2.8) imply
that ∥∥g0(Sε − I)b(D)POf0e

− rB0
Dtf0

∥∥
L2(O)→L2(Rd)

≤ ε‖g‖L∞r1α
1/2
1 ‖POf0e

− rB0
Dtf0‖L2(O)→H2(Rd)

≤ ε‖g‖L∞‖f‖L∞r1α
1/2
1 C

(2)
O rct−1e−c�t/2.

(2.42)

On the other hand, from (1.2), (1.3), (1.30), (1.43), (1.46), and (2.7) it follows that∥∥g0(Sε − I)b(D)POf0e
− rB0

Dtf0
∥∥
L2(O)→L2(Rd)

≤ 2‖g‖L∞α
1/2
1 ‖POf0e

− rB0
Dtf0‖L2(O)→H1(Rd)

≤ 2‖g‖L∞‖f‖L∞α
1/2
1 C

(1)
O c3t

−1/2e−c�t/2.

(2.43)
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By (2.42) and (2.43),∥∥g0(Sε − I)b(D)POf0e
− rB0

Dtf0
∥∥
L2(O)→L2(Rd)

≤ qC16ε
1/2t−3/4e−c�t/2,

where qC16 := ‖g‖L∞‖f‖L∞α
1/2
1

(
2r1C

(1)
O C

(2)
O rcc3

)1/2
. Combining this with (2.41), we

obtain estimate (2.40) with the constant rC ′
16 := rC16 + qC16. �

2.10. Estimates in a strictly interior subdomain. Using Theorem 1.21, we improve
error estimates in a strictly interior subdomain.

Theorem 2.14. Under the assumptions of Theorem 2.3, let O′ be a strictly interior
subdomain of the domain O, and let δ be defined as in (1.61). Then for 0 < ε ≤ ε1 and
t > 0 we have ∥∥fεe−

rBD,εt(fε)∗ − f0e
− rB0

Dtf0 − εKD(t; ε)
∥∥
L2(O)→H1(O′)

≤ ε(C20t
−1/2δ−1 + C21t

−1)e−c�t/2,
(2.44)

∥∥gεb(D)fεe−
rBD,εt(fε)∗ − GD(t; ε)

∥∥
L2(O)→L2(O′)

≤ ε( rC20t
−1/2δ−1 + rC21t

−1)e−c�t/2.

The constants C20, C21, rC20, and rC21 depend only on the problem data (1.9).

Proof. The proof is based on application of Theorem 1.21 and relations (2.26), (2.28).
Also, estimates (2.15) and (2.17) are used. We omit the details. �

The following result is checked similarly with the help of Theorems 1.22 and 1.23.

Theorem 2.15. Under the assumptions of Theorem 2.14, suppose that the matrix-valued

functions Λ(x) and rΛ(x) satisfy Conditions 1.12 and 1.14, respectively. Let K0
D(t; ε)

be the corrector (2.32), and let G0
D(t; ε) be the operator (2.33). Then for t > 0 and

0 < ε ≤ ε1 we have∥∥fεe−
rBD,εt(fε)∗ − f0e

− rB0
Dtf0 − εK0

D(t; ε)
∥∥
L2(O)→H1(O′)

≤ ε(C20t
−1/2δ−1 + C22t

−1)e−c�t/2,∥∥gεb(D)fεe−
rBD,εt(fε)∗ − G0

D(t; ε)
∥∥
L2(O)→L2(O′)

≤ ε( rC20t
−1/2δ−1 + rC22t

−1)e−c�t/2.

The constants C20 and rC20 are the same as in Theorem 2.14. The constants C22 and rC22

depend on the problem data (1.9), p, and the norms ‖Λ‖L∞ , ‖rΛ‖Lp(Ω).

Note that it is possible to remove the smoothing operator Sε from the corrector in
estimates of Theorem 2.14 without any additional assumptions on the matrix-valued

functions Λ(x) and rΛ(x). For this, the additional smoothness of the boundary is not
required. We consider the case where d ≥ 3 (otherwise, by Propositions 1.13 and 1.15, we

can apply Theorem 2.15). We know that for t > 0 the operator e−
rB0
Dt acts continuously

from L2(O;Cn) to H2(O;Cn) and estimate (2.8) is fulfilled. Moreover, the following
property of “regularity improvement” inside the domain is valid: for t > 0 the operator

e−
rB0
Dt acts continuously from L2(O;Cn) to Hσ(O′;Cn) for any integer σ ≥ 3. We have∥∥e− rB0

Dt
∥∥
L2(O)→Hσ(O′)

≤ C′
σt

−1/2(δ−2 + t−1)(σ−1)/2e−c�t/2,

t > 0, σ ∈ N, σ ≥ 3.
(2.45)

The constant C′
σ depends on σ and the problem data (1.9). For the scalar parabolic

equations, the “regularity improvement” property inside the domain was obtained in
[LaSoU, Chapter 3, § 12].
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In a similar way, the “regularity improvement” can be checked for the operator rB0
D.

It is easy to deduce the qualified estimates (2.45), observing that the derivatives Dαu0

(where u0 is the function (2.3) with ϕ ∈ L2(O;Cn)) are solutions of the parabolic
equation Q0∂tD

αu0 = −B0Dαu0. We multiply this equation by χ2Dαu0 and integrate
over the cylinder O × (0, t). Here χ is a smooth cut-off function equal to zero near the
lateral surface and the bottom of the cylinder. The standard analysis of the corresponding
integral identity together with the already known inequalities of Lemma 2.1 leads to
estimates (2.45).

Using the properties of Λ(x) and rΛ(x), and also the properties of Sε, we can deduce
the following statement from (2.45).

Lemma 2.16. Under the assumptions of Theorem 2.14, let d ≥ 3, and let K0
D(t; ε) be

the operator (2.32). Denote

(2.46) hd(δ; t) := t−1 + t−1/2(δ−2 + t−1)d/4.

Let 2r1 = diam Ω. Then for 0 < ε ≤ (4r1)
−1δ and t > 0 we have

(2.47) ‖KD(t; ε)−K0
D(t; ε)‖L2(O)→H1(O′) ≤ C′′

dhd(δ; t)e
−c�t/2.

The constant C′′
d depends only on the problem data (1.9).

From Lemma 2.16 and Theorem 2.14 we deduce the following result.

Theorem 2.17. Under the assumptions of Theorem 2.14, let d ≥ 3, let K0
D(t; ε) be the

corrector (2.32), and let G0
D(t; ε) be the operator (2.33). Let 2r1 = diam Ω. Then for

0 < ε ≤ min{ε1; (4r1)−1δ} and t > 0 we have∥∥fεe−
rBD,εt(fε)∗ − f0e

− rB0
Dtf0 − εK0

D(t; ε)
∥∥
L2(O)→H1(O′)

≤ εCdhd(δ; t)e
−c�t/2,(2.48) ∥∥gεb(D)fεe−

rBD,εt(fε)∗ − G0
D(t; ε)

∥∥
L2(O)→L2(O′)

≤ εrCdhd(δ; t)e
−c�t/2.(2.49)

Here hd(δ; t) is given by (2.46), the constants Cd and rCd depend only on the problem
data (1.9).

The proofs of Lemma 2.16 and Theorem 2.17 are presented in the Appendix (see §8)
in order not to overload the main presentation. Clearly, it is convenient to apply The-
orem 2.17 if t is separated away from zero. For small t the order of the factor hd(δ; t)
grows with dimension. This is the “price” for removal of the smoothing operator.

§3. Homogenization of the first initial boundary-value problem

for a nonhomogeneous equation

3.1. The principal term of approximation. In this section, we study the behavior of
the solution of the first initial boundary-value problem for a nonhomogeneous parabolic
equation:

(3.1)

⎧⎪⎨⎪⎩
Qε

0(x)
∂uε

∂t (x, t) = −Bεuε(x, t) + F(x, t), x ∈ O, t > 0;

uε( · , t)|∂O = 0, t > 0;

Qε
0(x)uε(x, 0) = ϕ(x), x ∈ O.

Here F ∈ Hr(T ) := Lr((0, T );L2(O;Cn)), 0 < T ≤ ∞, with some 1 ≤ r ≤ ∞. Then

(3.2) uε( · , t) = fεe−
rBD,εt(fε)∗ϕ( · ) +

∫ t

0

fεe−
rBD,ε(t−rt)(fε)∗F( · ,rt) drt.
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The corresponding effective problem takes the form

(3.3)

⎧⎪⎨⎪⎩
Q0

∂u0

∂t (x, t) = −B0u0(x, t) + F(x, t), x ∈ O, t > 0;

u0( · , t)|∂O = 0, t > 0;

Q0u0(x, 0) = ϕ(x), x ∈ O.

The solution of this problem is given by

(3.4) u0( · , t) = f0e
− rB0

Dtf0ϕ( · ) +
∫ t

0

f0e
− rB0

D(t−rt)f0F( · ,rt) drt.

Subtracting (3.4) from (3.2) and using Theorem 2.2 (see (2.11)), we conclude that, for
0 < ε ≤ ε1 and t > 0,

‖uε( · , t)− u0( · , t)‖L2(O) ≤ C15ε(t+ ε2)−1/2e−c�t/2‖ϕ‖L2(O) + C15εL(ε; t;F),

where

L(ε; t;F) :=
∫ t

0

e−c�(t−rt)/2(ε2 + t− rt)−1/2‖F( · ,rt)‖L2(O) drt.

Estimating the term L(ε; t;F) for the case where 1 < r ≤ ∞, we obtain the following
result. Its proof is completely similar to that of Theorem 5.1 in [MSu1].

Theorem 3.1. Suppose that O ⊂ R
d is a bounded domain of class C1,1. Under the

assumptions of Subsections 1.3–1.6, let uε be the solution of problem (3.1), and let u0

be the solution of the effective problem (3.3) with ϕ ∈ L2(O;Cn) and F ∈ Hr(T ), where
0 < T ≤ ∞, with some 1 < r ≤ ∞. Then for 0 < ε ≤ ε1 and 0 < t < T we have

‖uε( · , t)− u0( · , t)‖L2(O) ≤ C15ε(t+ ε2)−1/2e−c�t/2‖ϕ‖L2(O) + crθ(ε, r)‖F‖Hr(T ).

Here θ(ε, r) is given by

(3.5) θ(ε, r) =

⎧⎪⎨⎪⎩
ε2−2/r, 1 < r < 2,

ε(| ln ε|+ 1)1/2, r = 2,

ε, 2 < r ≤ ∞.

The constant cr depends only on r and the problem data (1.9).

By analogy with the proof of Theorem 5.2 in [MSu1], we can deduce approximation
of the solution of problem (3.1) in Hr(T ) from Theorem 2.2.

Theorem 3.2. Under the assumptions of Theorem 3.1, let uε and u0 be the solutions of
problems (3.1) and (3.3), respectively, with ϕ ∈ L2(O;Cn) and F ∈ Hr(T ), 0 < T ≤ ∞,
for some 1 ≤ r < ∞. Then for 0 < ε ≤ ε1 we have

‖uε − u0‖Hr(T ) ≤ cr′θ(ε, r
′)‖ϕ‖L2(O) + C23ε‖F‖Hr(T ).

Here θ(ε, · ) is given by (3.5), r−1 + (r′)−1 = 1. The constant C23 depends only on the
problem data (1.9), and the constant cr′ depends on the same parameters and r.

Remark 3.3. For the case where ϕ = 0 and F ∈ H∞(T ), Theorem 3.1 implies that

‖uε − u0‖H∞(T ) ≤ c∞ε‖F‖H∞(T ), 0 < ε ≤ ε1.
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3.2. Approximation of the solution in H1(O;Cn). Now, we obtain approximation
of the solution of problem (3.1) in the H1(O;Cn)-norm with the help of Theorem 2.3.
Some difficulties arise when we treat the integral term in (3.2), because estimate (2.24)
“deteriorates” for small t. Assuming that t ≥ ε2, we divide the integration interval in
(3.2) into two parts: (0, t− ε2) and (t− ε2, t). On the interval (0, t− ε2) we apply (2.24),
and on (t− ε2, t) we use (2.29).

Denote

(3.6) wε( · , t) := f0e
− rB0

Dε2f−1
0 u0( · , t− ε2),

where u0 is the solution of problem (3.3). By (3.4),

wε( · , t) = f0e
− rB0

Dtf0ϕ( · ) +
∫ t−ε2

0

f0e
− rB0

D(t−rt)f0F( · ,rt) drt.

The following statement can be checked much in the same way as Theorem 5.4
in [MSu1].

Theorem 3.4. Under the assumptions of Theorem 3.1, suppose that uε and u0 are the
solutions of problems (3.1) and (3.3), respectively, with ϕ ∈ L2(O;Cn) and F ∈ Hr(T ),

0 < T ≤ ∞, for some 2 < r ≤ ∞. Let wε( · , t) be given by (3.6). Let Λ(x) and rΛ(x) be
the Γ-periodic matrix solutions of problems (1.25) and (1.33), respectively. Let PO be the
continuous linear extension operator (1.45) and Sε the Steklov smoothing operator (1.1).
We put rwε( · , t) := POwε( · , t) and denote

vε( · , t) := u0( · , t) + εΛεSεb(D)rwε( · , t) + εrΛεSε rwε( · , t).

Let pε( · , t) := gεb(D)uε( · , t), and let rg(x) be the matrix-valued function (1.27). We put

qε( · , t) := rgεSεb(D)rwε( · , t) + gε
(
b(D)rΛ

)ε
Sε rwε( · , t).

Then for 0 < ε ≤ ε1 and ε2 ≤ t < T we have

‖uε( · , t)− vε( · , t)‖H1(O) ≤ 2C16ε
1/2t−3/4e−c�t/2‖ϕ‖L2(O) + qcrω(ε, r)‖F‖Hr(T ),

‖pε( · , t)− qε( · , t)‖L2(O) ≤ rC16ε
1/2t−3/4e−c�t/2‖ϕ‖L2(O) + rcrω(ε, r)‖F‖Hr(T ).

Here

(3.7) ω(ε, r) :=

⎧⎪⎨⎪⎩
ε1−2/r, 2 < r < 4,

ε1/2(| ln ε|+ 1)3/4, r = 4,

ε1/2, 4 < r ≤ ∞,

where the constants qcr and rcr depend only on the problem data (1.9) and r.

Since the right-hand side in (2.25) grows slower than the right-hand side in (2.24) as
t → 0, for r > 4 we can approximate the flux pε in terms of

(3.8) hε( · , t) := rgεSεb(D)ru0( · , t) + gε
(
b(D)rΛ

)ε
Sεru0( · , t).

Proposition 3.5. Under the assumptions of Theorem 3.1, suppose that uε and u0 are the
solutions of problems (3.1) and (3.3), respectively, with ϕ ∈ L2(O;Cn) and F ∈ Hr(T ),
0 < T ≤ ∞, for some r with 4 < r ≤ ∞. Let pε( · , t) = gεb(D)uε( · , t) and let hε( · , t)
be given by (3.8). Then for 0 < t < T and 0 < ε ≤ ε1 we have

‖pε( · , t)− hε( · , t)‖L2(O) ≤ rC16ε
1/2t−3/4e−c�t/2‖ϕ‖L2(O) + C

(r)
24 ε1/2‖F‖Hp(t).(3.9)

The constant C
(r)
24 depends only on the problem data (1.9) and r.
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Proof. To check (3.9), we use inequality (2.25) and identities (3.2), (3.4). If r = ∞,

we deduce (3.9) with C
(∞)
24 := (2/c
)

1/4Γ(1/4) rC16. If 4 < r < ∞, we apply the Hölder
inequality:

‖pε( · , t)− hε( · , t)‖L2(O) ≤ rC16ε
1/2t−3/4e−c�t/2‖ϕ‖L2(O) + rC16ε

1/2‖F‖Hr(t)Ir(ε, t)
1/r′ ,

r−1 + (r′)−1 = 1.

Here

Ir(ε, t) :=

∫ t

0

τ−3r′/4e−c�r
′τ/2 dτ ≤ (c
r

′/2)3r
′/4−1Γ(1− 3r′/4).

This implies (3.9) with the constant C
(r)
24 := (c
r

′/2)3/4−1/r′Γ(1− 3r′/4)1/r
′

rC16. �
Combining Proposition 2.5 and Theorem 2.6, we deduce the following result.

Theorem 3.6. Under the assumptions of Theorem 3.4, suppose that the matrix-valued

functions Λ(x) and rΛ(x) satisfy Conditions 1.12 and 1.14, respectively. Denote

qvε( · , t) := u0( · , t) + εΛεb(D)wε( · , t) + εrΛεwε( · , t),(3.10)

qqε( · , t) := rgεb(D)wε( · , t) + gε
(
b(D)rΛ

)ε
wε( · , t).(3.11)

Then for 0 < ε ≤ ε1 and ε2 ≤ t < T we have

‖uε( · , t)− qvε( · , t)‖H1(O) ≤ 2C18ε
1/2t−3/4e−c�t/2‖ϕ‖L2(O) + c′rω(ε, r)‖F‖Hr(t),

‖pε( · , t)− qqε( · , t)‖L2(O) ≤ 2 rC18ε
1/2t−3/4e−c�t/2‖ϕ‖L2(O) + c′′rω(ε, r)‖F‖Hr(t).

The constants c′r and c′′r depend only on the initial data (1.9), r, p, and the norms ‖Λ‖L∞ ,

‖rΛ‖Lp(Ω).

For the case of sufficiently smooth boundary, we could apply Theorem 2.10. However,
because of the strong growth of the right-hand side in estimates (2.37), (2.38) for small
t, we obtain a substantial result only in the three-dimensional case and only for r > 4.

Proposition 3.7. Suppose that the assumptions of Theorem 3.4 are satisfied with d = 3
and r > 4. Suppose that ∂O ∈ C2,1. Let qvε and qqε be given by (3.10) and (3.11). Then
for 0 < ε ≤ ε1 and ε2 ≤ t < T we have

‖uε( · , t)− qvε( · , t)‖H1(O) ≤ C3(ε1/2t−3/4+εt−5/4)e−c�t/2‖ϕ‖L2(O)+ rc′rε
1/2−2/r‖F‖Hr(t),

‖pε( · , t)− qqε( · , t)‖L2(O) ≤ rC3(ε1/2t−3/4+εt−5/4)e−c�t/2‖ϕ‖L2(O)+ rc′′r ε
1/2−2/r‖F‖Hr(t).

The constants rc′r and rc′′r depend only on the problem data (1.9) and r.

3.3. Approximation of the solution in a strictly interior subdomain. From
Theorem 2.14 and Proposition 2.5 we deduce the following result.

Theorem 3.8. Under the assumptions of Theorem 3.4, let O′ be a strictly interior
subdomain of O. Let δ be given by (1.61). Then for 0 < ε ≤ ε1 and ε2 ≤ t < T we have

‖uε( · , t)− vε( · , t)‖H1(O′)

≤ ε(C20t
−1/2δ−1 + C21t

−1)e−c�t/2‖ϕ‖L2(O) + krϑ(ε, δ, r)‖F‖Hr(t),

‖pε( · , t)− qε( · , t)‖L2(O′)

≤ ε( rC20t
−1/2δ−1 + rC21t

−1)e−c�t/2‖ϕ‖L2(O) + rkrϑ(ε, δ, r)‖F‖Hr(t).

Here the constants kr and rkr depend only on the problem data (1.9) and r, and

ϑ(ε, δ, r) :=

{
εδ−1 + ε1−2/r, 2 < r < ∞,

εδ−1 + ε(| ln ε|+ 1), r = ∞.
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Finally, if Conditions 1.12 and 1.14 are fulfilled, then Theorem 2.15 implies the fol-
lowing result.

Theorem 3.9. Under the assumtions of Theorem 3.8, suppose that the matrix-valued

functions Λ(x) and rΛ(x) satisfy Conditions 1.12 and 1.14, respectively. Suppose that qvε

and qqε are given by (3.10) and (3.11). Then for 0 < ε ≤ ε1 and ε2 ≤ t < T we have

‖uε( · , t)− qvε( · , t)‖H1(O′)

≤ ε(C20t
−1/2δ−1 + C22t

−1)e−c�t/2‖ϕ‖L2(O) + qkrϑ(ε, δ, r)‖F‖Hr(t),

‖pε( · , t)− qqε( · , t)‖L2(O′)

≤ ε( rC20t
−1/2δ−1 + rC22t

−1)e−c�t/2‖ϕ‖L2(O) + k̂rϑ(ε, δ, r)‖F‖Hr(t).

The constants qkr and k̂r depend only on the problem data (1.9) and also on r, p, and the

norms ‖Λ‖L∞ , ‖rΛ‖Lp(Ω).

Applications

For elliptic systems in the entire space Rd, the examples considered below were studied
in [Su4, MSu2]. For elliptic systems in a bounded domain, these examples were considered
in [MSu3].

§4. Scalar elliptic operator with a singular potential

4.1. Description of the operator. We consider the case where n = 1, m = d,
b(D) = D, and g(x) is a Γ-periodic symmetric (d × d)-matrix-valued function with real
entries such that g, g−1 ∈ L∞ and g(x) > 0. Obviously (see (1.3)), α0 = α1 = 1 and
b(D)∗gε(x)b(D) = −div gε(x)∇.

Next, let A(x) = col{A1(x), . . . , Ad(x)}, where the Aj(x), j = 1, . . . , d, are Γ-periodic
real-valued functions such that

(4.1) Aj ∈ Lρ(Ω), ρ = 2 for d = 1, ρ > d for d ≥ 2; j = 1, . . . , d.

Let v(x) and V(x) be real-valued Γ-periodic functions such that

(4.2) v,V ∈ Ls(Ω), s = 1 for d = 1, s > d/2 for d ≥ 2;

∫
Ω

v(x) dx = 0.

In L2(O), we consider the operator BD,ε given formally by the differential expression

(4.3) Bε = (D−Aε(x))∗gε(x)(D−Aε(x)) + ε−1vε(x) + Vε(x)

with the Dirichlet condition on ∂O. The precise definition of the operator BD,ε is given
in terms of the quadratic form

bD,ε[u, u] =

∫
O

(
〈gε(D−Aε)u, (D−Aε)u〉+ (ε−1vε + Vε)|u|2

)
dx, u ∈ H1

0 (O).

It is easily seen (cf. [Su4, Subsection 13.1]) that (4.3) can be written as

(4.4) Bε = D∗gε(x)D+

d∑
j=1

(
aεj(x)Dj +Dj(a

ε
j(x))

∗)+Qε(x).

Here Q(x) is a real-valued function defined by

(4.5) Q(x) = V(x) + 〈g(x)A(x),A(x)〉.
The complex-valued functions aj(x) are given by

(4.6) aj(x) = −ηj(x) + iξj(x), j = 1, . . . , d.
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Here the ηj(x) are the components of the vector-valued function η(x) = g(x)A(x), and
the functions ξj(x) are defined by ξj(x) = −∂jΦ(x), where Φ(x) is the Γ-periodic solution
of the problem ΔΦ(x) = v(x),

∫
Ω
Φ(x) dx = 0. We have

(4.7) v(x) = −
d∑

j=1

∂jξj(x).

It is easy to check that the functions (4.6) satisfy condition (1.7) with a suitable ρ′

depending on ρ and s, and that the norms ‖aj‖Lρ′ (Ω) are controlled in terms of ‖g‖L∞ ,

‖A‖Lρ(Ω), ‖v‖Ls(Ω), and the parameters of the lattice Γ. (See [Su4, Subsection 13.1].)
The function (4.5) satisfies condition (1.8) with a suitable s′ = min{s; ρ/2}.

Let Q0(x) be a positive definite and bounded Γ-periodic function. As in (1.10), we
introduce a positive definite operator BD,ε := BD,ε+λQε

0. Here the constant λ is chosen
in accordance with condition (1.16) for the operator BD,ε with the coefficients g, aj ,
j = 1, . . . , d, Q, and Q0 defined above. The operator BD,ε is given by

(4.8) Bε = (D−Aε(x))∗gε(x)(D−Aε(x)) + ε−1vε(x) + Vε(x) + λQε
0(x).

We are interested in the behavior of the exponential of the operator rBD,ε := fεBD,εf
ε,

where f(x) := Q0(x)
−1/2.

For the scalar elliptic operator (4.8), the problem data (1.9) reduce to the following
set of parameters:

d, ρ, s; ‖g‖L∞ , ‖g−1‖L∞ , ‖A‖Lρ(Ω), ‖v‖Ls(Ω), ‖V‖Ls(Ω),

‖Q0‖L∞ , ‖Q−1
0 ‖L∞ ; the parameters of the lattice Γ; the domain O.

(4.9)

4.2. The effective operator. Let us write out the effective operator. In the case
under consideration, the Γ-periodic solution of problem (1.25) is a row: Λ(x) = iΨ(x),

Ψ(x) =
(
ψ1(x), . . . , ψd(x)

)
, where ψj ∈ rH1(Ω) is the solution of the problem

div g(x)(∇ψj(x) + ej) = 0,

∫
Ω

ψj(x) dx = 0.

Here the ej , j = 1, . . . , d, form the standard orthonormal basis in R
d. Clearly, the

functions ψj(x) are real-valued, and the entries of Λ(x) are purely imaginary. By (1.27),
the columns of the (d × d)-matrix-valued function rg(x) are the vector-valued functions
g(x)(∇ψj(x) + ej), j = 1, . . . , d. The effective matrix is defined as in (1.26): g0 =
|Ω|−1

∫
Ω

rg(x) dx. Clearly, rg(x) and g0 have real entries.

By (4.6) and (4.7), the periodic solution of problem (1.33) is represented as rΛ(x) =
rΛ1(x) + irΛ2(x), where the real-valued Γ-periodic functions rΛ1(x) and rΛ2(x) are the
solutions of the problems

− div g(x)∇rΛ1(x) + v(x) = 0,

∫
Ω

rΛ1(x) dx = 0;

− div g(x)∇rΛ2(x) + div g(x)A(x) = 0,

∫
Ω

rΛ2(x) dx = 0.

The column V (see (1.35)) has the form V = V1 + iV2, where V1, V2 are the columns
with real entries defined by

V1 = |Ω|−1

∫
Ω

(∇Ψ(x))tg(x)∇rΛ2(x) dx, V2 = −|Ω|−1

∫
Ω

(∇Ψ(x))tg(x)∇rΛ1(x) dx.

By (1.36), the constant W is given by

W = |Ω|−1

∫
Ω

(
〈g(x)∇rΛ1(x),∇rΛ1(x)〉+ 〈g(x)∇rΛ2(x),∇rΛ2(x)〉

)
dx.
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The effective operator for BD,ε acts as follows:

B0
Du = − div g0∇u+ 2i〈∇u, V1 + η〉+ (−W +Q+ λQ0)u, u ∈ H2(O) ∩H1

0 (O).

The corresponding differential expression can be written as

(4.10) B0 = (D−A0)∗g0(D−A0) + V0 + λQ0,

where

A0 = (g0)−1(V1 + gA), V0 = V + 〈gA,A〉 − 〈g0A0,A0〉 −W.

Let f0 := (Q0)
−1/2. Denote rB0

D := f0B0
Df0.

4.3. Approximation of the sandwiched operator exponential. In accordance
with Remark 1.16, Conditions 1.12 and 1.14 are satisfied in the case under consider-

ation, and the norms ‖Λ‖L∞ and ‖rΛ‖L∞ are estimated in terms of the problem data
(4.9). Therefore, we can use a corrector that involves no smoothing operator:

(4.11) K0
D(t; ε) :=

(
[Λε]D+ [rΛε]

)
f0e

− rB0
Dtf0 =

(
[Ψε]∇+ [rΛε]

)
f0e

− rB0
Dtf0.

The operator (2.33) takes the form G0
D(t; ε) = −iG0

D(t; ε), where

(4.12) G
0
D(t; ε) = rgε∇f0e

− rB0
Dtf0 + gε(∇rΛ)εf0e

− rB0
Dtf0.

Theorems 2.2 and 2.6 imply the following result.

Proposition 4.1. Under the assumptions of Subsections 4.1 and 4.2, suppose that the
operators K0

D(t; ε) and G0
D(t; ε) are given by (4.11) and (4.12), respectively. Suppose that

the number ε1 is subject to Condition 1.7. Then for 0 < ε ≤ ε1 we have∥∥fεe−
rBD,εtfε − f0e

− rB0
Dtf0

∥∥
L2(O)→L2(O)

≤ C15ε(t+ ε2)−1/2e−c�t/2, t ≥ 0;∥∥fεe−
rBD,εtfε − f0e

− rB0
Dtf0 − εK0

D(t; ε)
∥∥
L2(O)→H1(O)

≤ C18(ε
1/2t−3/4 + εt−1)e−c�t/2,

t > 0;∥∥gε∇fεe−
rBD,εtfε −G

0
D(t; ε)

∥∥
L2(O)→L2(O)

≤ rC18(ε
1/2t−3/4 + εt−1)e−c�t/2, t > 0.

The constants C15, C18, and rC18 depend only on the problem data (4.9).

4.4. Homogenization of the first initial boundary-value problem for a par-
abolic equation with singular potential. Consider the first initial boundary-value
problem for a nonhomogeneous parabolic equation with singular potential:⎧⎪⎪⎪⎨⎪⎪⎪⎩

Qε
0(x)

∂uε

∂t (x, t) = −(D−Aε(x))∗gε(x)(D−Aε(x))uε(x, t)

−
(
ε−1vε(x) + Vε(x) + λQε

0(x)
)
uε(x, t) + F (x, t), x ∈ O, t > 0;

uε( · , t)|∂O = 0, t > 0;

Qε
0(x)uε(x, 0) = ϕ(x), x ∈ O.

Here ϕ ∈ L2(O) and F ∈ Hr(T ) := Lr((0, T );L2(O)), 0 < T ≤ ∞, for some 1 ≤ r ≤ ∞.
By (3.3) and (4.10), the effective problem takes the form⎧⎪⎪⎪⎨⎪⎪⎪⎩

Q0
∂u0

∂t (x, t) = −(D−A0)∗g0(D−A0)u0(x, t)

−
(
V0 + λQ0

)
u0(x, t) + F (x, t), x ∈ O, t > 0;

u0( · , t)|∂O = 0, t > 0;

Q0u0(x, 0) = ϕ(x), x ∈ O.

Applying Theorems 3.1 and 3.6, we arrive at the following result.
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Proposition 4.2. Suppose that the number ε1 is subject to Condition 1.7. Under the
assumptions of Subsection 4.4, let 1 < r ≤ ∞. Then for 0 < ε ≤ ε1 and 0 < t < T we
have

‖uε( · , t)− u0( · , t)‖L2(O) ≤ C15ε(t+ ε2)−1/2e−c�t/2‖ϕ‖L2(O) + crθ(ε, r)‖F‖Hr(T ).

Here θ(ε, r) is given by (3.5).

Assuming that t ≥ ε2, we put wε( · , t) := f0e
− rB0

Dε2f−1
0 u0( · , t−ε2). Denote qvε( · , t) :=

u0( · , t) + εΨε∇wε( · , t) + εrΛεwε( · , t) and qqε( · , t) := rgε∇wε( · , t) + gε
(
∇rΛ

)ε
wε( · , t).

Moreover, assume that 2 < r ≤ ∞. Then for 0 < ε ≤ ε1 and ε2 ≤ t < T we have

‖uε( · , t)− qvε( · , t)‖H1(O) ≤ 2C18ε
1/2t−3/4e−c�t/2‖ϕ‖L2(O) + c′rω(ε, r)‖F‖Hr(t),

‖gε∇uε( · , t)− qqε( · , t)‖L2(O) ≤ 2 rC18ε
1/2t−3/4e−c�t/2‖ϕ‖L2(O) + c′′rω(ε, r)‖F‖Hr(t).

Here ω(ε, r) is given by (3.7). The constants C15, C18, and rC18 depend only on the
problem data (4.9). The constants cr, c′r, and c′′r depend on the same parameters and
also on r.

§5. The scalar operator with a strongly singular

potential of order ε−2

Homogenization of the first initial boundary-value problem for parabolic equation with
a strongly singular potential was studied in [AlCPiSiVa]. Some motivations can be found
in [AlCPiSiVa, §1]). However, the results of [AlCPiSiVa] cannot be formulated in the
uniform operator topology.

5.1. Description of the operator. Let qg(x) be a Γ-periodic symmetric (d×d)-matrix-
valued function in Rd with real entries such that qg, qg−1 ∈ L∞ and qg(x) > 0. Let qv(x) be
a real-valued Γ-periodic function such that

qv ∈ Ls(Ω), s = 1 for d = 1, s > d/2 for d ≥ 2.

Let qA denote the operator in L2(R
d) that corresponds to the quadratic form∫

Rd

(
〈qg(x)Du,Du〉+ qv(x)|u|2

)
dx, u ∈ H1(Rd).

Adding a constant to the potential qv(x), we assume that the bottom of the spectrum

of qA is the point zero. Then the operator qA admits a factorization with the help of
the eigenfunction of the operator D∗

qg(x)D+qv(x) on the cell Ω (with periodic boundary
conditions) corresponding to the eigenvalue λ = 0 (see [BSu2, Chapter 6, Subsection 1.1]).
Apparently, this factorization trick was used in homogenization problems for the first time
in [Zh1, K].

In L2(O), we consider the operator qAD given by the expression D∗
qg(x)D+ qv(x) with

the Dirichlet condition on ∂O. The precise definition of qAD is given in terms of the
quadratic form

(5.1) qaD[u, u] =

∫
O

(
〈qg(x)Du,Du〉+ qv(x)|u|2

)
dx, u ∈ H1

0 (O).

The operator qAD inherits factorization of the operator qA. To describe this factorization,
we consider the equation

(5.2) D∗
qg(x)Dω(x) + qv(x)ω(x) = 0.
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There exists a Γ-periodic solution ω ∈ rH1(Ω) of this equation defined up to a constant
factor. We can fix this factor so that ω(x) > 0 and

(5.3)

∫
Ω

ω2(x) dx = |Ω|.

Moreover, the solution is positive definite and bounded: 0 < ω0 ≤ ω(x) ≤ ω1 < ∞. The
norms ‖ω‖L∞ and ‖ω−1‖L∞ are controlled in terms of ‖qg‖L∞ , ‖qg−1‖L∞ , and ‖qv‖Ls(Ω).

Note that ω and ω−1 are multipliers in H1
0 (O).

Substituting u = ωz and taking (5.2) into account, we represent the form (5.1) as

qaD[u, u] =

∫
O
ω(x)2〈qg(x)Dz,Dz〉 dx, u = ωz, z ∈ H1

0 (O).

Hence, the differential expression for the operator qAD admits the factorization

(5.4) qA = ω−1D∗gDω−1, g = ω2
qg.

Now, we consider the operator qAD,ε with rapidly oscillating coefficients acting in
L2(O) and given by

(5.5) qAε = (ωε)−1D∗gεD(ωε)−1, g = ω2
qg,

with the Dirichlet boundary condition. In the initial terms, (5.5) takes the form

(5.6) qAε = D∗
qgεD+ ε−2

qvε.

Next, let A(x) = col {A1(x), . . . , Ad(x)}, where the Aj(x) are Γ-periodic real-valued

functions satisfying (4.1). Let v̂(x) and qV(x) be Γ-periodic real-valued functions such
that

(5.7) v̂, qV ∈ Ls(Ω), s = 1 for d = 1, s > d/2 for d ≥ 2;

∫
Ω

v̂(x)ω2(x) dx = 0.

In L2(O), we consider the operator rBD,ε given formally by the differential expression

rBε = (D−Aε)∗qgε(D−Aε) + ε−2
qvε + ε−1v̂ε + qVε

with the Dirichlet condition on ∂O. The precise definition is given in terms of a quadratic
form.

We put

(5.8) v(x) := v̂(x)ω2(x), V(x) := qV(x)ω2(x).

By (5.5) and (5.6), we have rBD,ε = (ωε)−1BD,ε(ω
ε)−1, where the operator BD,ε is given

by (4.3) with the Dirichlet condition on ∂O; g is defined by (5.4), and v, V are given
by (5.8). By (5.7) and the properties of ω, the coefficients v and V satisfy (4.2). Then
the operator BD,ε can be represented as in (4.4), where the aj , j = 1, . . . , d, and Q are
constructed in terms of g, A, v, and V in accordance with (4.5), (4.6).

The constant λ is chosen as in (1.16) for the operator with the same coefficients g,
aj , j = 1, . . . , d, and Q as the coefficients of BD,ε, and with Q0(x) := ω2(x). Then

the operators rBD,ε := rBD,ε + λI and BD,ε := BD,ε + λQε
0 are related by rBD,ε =

(ωε)−1BD,ε(ω
ε)−1.

The following set of parameters is called the “problem data”:

d, ρ, s; ‖qg‖L∞ , ‖qg−1‖L∞ , ‖A‖Lρ(Ω), ‖qv‖Ls(Ω), ‖v̂‖Ls(Ω), ‖qV‖Ls(Ω);

the parameters of the lattice Γ; the domain O.
(5.9)
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5.2. Homogenization of the first initial boundary-value problem for the par-
abolic equation with strongly singular potential. We apply Proposition 4.1 to the

operator rBD,ε described in Subsection 5.1. We have f(x) = ω(x)−1, whence, by (5.3),

f0 = 1 and rB0
D = B0

D. The coefficients g0, A0, and V0 of the effective operator are con-
structed in terms of g, A, v, and V (see (5.5) and (5.8)), as described in Subsection 4.2.
We apply the results to homogenization of the solution of the first initial boundary-value
problem⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂uε

∂t (x, t) = −(D−Aε(x))∗qgε(x)(D−Aε(x))uε(x, t)

−
(
ε−2

qvε + ε−1v̂ε(x) + qVε(x) + λI
)
uε(x, t), x ∈ O, t > 0;

uε( · , t)|∂O = 0, t > 0;

uε(x, 0) = ωε(x)−1ϕ(x), x ∈ O.

Here ϕ ∈ L2(O). (For simplicity, we consider a homogeneous equation.) Then uε( · , t) =
e−

rBD,εt(ωε)−1ϕ.
Let u0 be the solution of the homogenized problem⎧⎪⎨⎪⎩

∂u0

∂t (x, t) = −(D−A0)∗g0(D−A0)u0(x, t)−
(
V0 + λ

)
u0(x, t), x ∈ O, t > 0;

u0( · , t)|∂O = 0, t > 0;

u0(x, 0) = ϕ(x), x ∈ O.

Proposition 4.1 implies the following result.

Proposition 5.1. Under the assumptions of Subsection 5.2, denote

qvε( · , t) := u0( · , t) + εΨε∇u0( · , t) + εrΛεu0( · , t),
qqε( · , t) := rgε∇u0( · , t) + gε(∇rΛ)εu0( · , t).

Then for 0 < ε ≤ ε1 we have

‖(ωε)−1uε( · , t)− u0( · , t)‖L2(O) ≤ C15ε(t+ ε2)−1/2e−c�t/2‖ϕ‖L2(O), t ≥ 0;

‖(ωε)−1uε( · , t)− qvε( · , t)‖H1(O) ≤ C18(ε
1/2t−3/4 + εt−1)e−c�t/2‖ϕ‖L2(O),

‖gε∇(ωε)−1uε( · , t)− qqε( · , t)‖L2(O) ≤ rC18(ε
1/2t−3/4 + εt−1)e−c�t/2‖ϕ‖L2(O),

t > 0. The constants C15, C18, and rC18 depend on the problem data (5.9).

Note that, in the presence of a strongly singular potential in the equation, not the
solution uε itself, but rather the product (ω

ε)−1uε admits a “good approximation”. This
shows that the nature of the results of §5 differs from that of §4.

Appendix

In the Appendix, we consider the case where d ≥ 3 and justify the removal of the
smoothing operator Sε in the case of sufficiently smooth boundary (Lemma 2.9 and
Theorem 2.10) and in the case of a strictly interior subdomain (Lemma 2.16 and Theo-
rem 2.17).

§6. The properties of the matrix-valued functions Λ and rΛ

We need the following results; see [PSu, Lemma 2.3] and [MSu2, Lemma 3.4].

Lemma 6.1. Let Λ be the Γ-periodic solution of problem (1.25). Then for any function
u ∈ C∞

0 (Rd) and ε > 0 we have∫
Rd

|(DΛ)ε(x)|2|u(x)|2 dx ≤ β1‖u‖2L2(Rd) + β2ε
2

∫
Rd

|Λε(x)|2|Du(x)|2 dx.
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The constants β1 and β2 depend on m, d, α0, α1, ‖g‖L∞ , and ‖g−1‖L∞ .

Lemma 6.2. Let rΛ be the Γ-periodic solution of problem (1.33). Then for any function
u ∈ C∞

0 (Rd) and 0 < ε ≤ 1 we have∫
Rd

|(DrΛ)ε(x)|2|u(x)|2 dx ≤ rβ1‖u‖2H1(Rd) +
rβ2ε

2

∫
Rd

|rΛε(x)|2|Du(x)|2 dx.

The constants rβ1 and rβ2 depend only on n, d, α0, α1, ρ, ‖g‖L∞ , ‖g−1‖L∞ , the norms
‖aj‖Lρ(Ω), j = 1, . . . , d, and the parameters of the lattice Γ.

Below in §7 we shall need the following multiplier properties of the matrix-valued

functions Λ(x) and rΛ(x).

Lemma 6.3. Suppose that a matrix-valued function Λ(x) is the Γ-periodic solution of
problem (1.25). Let d ≥ 3 and put l = d/2.
1◦. For 0 < ε ≤ 1 and u ∈ H l−1(Rd;Cm) we have Λεu ∈ L2(R

d;Cn) and

(6.1) ‖Λεu‖L2(Rd) ≤ C(0)‖u‖Hl−1(Rd).

2◦. For 0 < ε ≤ 1 and u ∈ H l(Rd;Cm) we have Λεu ∈ H1(Rd;Cn) and

(6.2) ‖Λεu‖H1(Rd) ≤ C(1)ε−1‖u‖L2(Rd) + C(2)‖u‖Hl(Rd).

The constants C(0), C(1), and C(2) depend on m, d, α0, α1, ‖g‖L∞ , ‖g−1‖L∞ , and the
parameters of the lattice Γ.

Proof. It suffices to check (6.1) and (6.2) for u ∈ C∞
0 (Rd;Cm). Substituting x = εy,

εd/2u(x) = U(y), we obtain

‖Λεu‖2L2(Rd) ≤
∫
Rd

|Λ(ε−1x)|2|u(x)|2 dx =

∫
Rd

|Λ(y)|2|U(y)|2 dy

=
∑
a∈Γ

∫
Ω+a

|Λ(y)|2|U(y)|2 dy ≤
∑
a∈Γ

‖Λ‖2L2ν(Ω)‖U‖2L2ν′(Ω+a),
(6.3)

where ν−1 + (ν′)−1 = 1. We choose ν so that the embedding H1(Ω) ↪→ L2ν(Ω) is
continuous, i.e., ν = d(d− 2)−1. Then

(6.4) ‖Λ‖2L2ν(Ω) ≤ cΩ‖Λ‖2H1(Ω),

where the constant cΩ depends only on the dimension d and the lattice Γ. We have
2ν′ = d. Since the embedding H l−1(Ω) ↪→ Ld(Ω) is continuous, we have

(6.5) ‖U‖2Ld(Ω+a) ≤ c′Ω‖U‖2Hl−1(Ω+a),

where the constant c′Ω depends only on the dimension d and the lattice Γ. Now, from
(6.3)–(6.5) it follows that

(6.6)

∫
Rd

|Λε(x)|2|u(x)|2 dx ≤ cΩc
′
Ω‖Λ‖2H1(Ω)‖U‖2Hl−1(Rd).

Obviously, for 0 < ε ≤ 1 we have ‖U‖Hl−1(Rd) ≤ ‖u‖Hl−1(Rd). Combining this with
(1.28) and (6.6), we see that

(6.7)

∫
Rd

|Λε(x)|2|u(x)|2 dx ≤ cΩc
′
ΩM

2‖u‖2Hl−1(Rd), u ∈ C∞
0 (Rd;Cm),

which proves estimate (6.1) with the constant C(0) := (cΩc
′
Ω)

1/2M .
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Next, by Lemma 6.1,

‖D(Λεu)‖2L2(Rd) ≤ 2ε−2

∫
Rd

|(DΛ)ε(x)u(x)|2 dx+ 2

∫
Rd

|Λε(x)|2|Du(x)|2 dx

≤ 2β1ε
−2

∫
Rd

|u(x)|2 dx+ 2(1 + β2)

∫
Rd

|Λε(x)|2|Du(x)|2 dx.
(6.8)

From (6.7) (with u replaced by the derivatives ∂ju) it follows that

(6.9)

∫
Rd

|Λε(x)|2|Du(x)|2 dx ≤ cΩc
′
ΩM

2‖u‖2Hl(Rd), u ∈ C∞
0 (Rd;Cm).

As a result, relations (6.7)–(6.9) imply inequality (6.2) with the constants C(1) :=
(2β1)

1/2 and C(2) := M(3 + 2β2)
1/2(cΩc

′
Ω)

1/2. �
Using the extension operator PO satisfying estimates (1.46), we deduce the following

statement from Lemma 6.3(1◦).

Corollary 6.4. Under the assumptions of Lemma 6.3, the operator [Λε] acts continu-
ously from H l−1(O;Cm) to L2(O;Cn), and

‖[Λε]‖Hl−1(O)→L2(O) ≤ C(0)C
(l−1)
O .

The following statement can be checked much as Lemma 6.3, by using Lemma 6.2 and
estimate (1.34).

Lemma 6.5. Suppose that a matrix-valued function rΛ(x) is the Γ-periodic solution of
problem (1.33). Let d ≥ 3 and l = d/2.

1◦. For 0 < ε ≤ 1 and u ∈ H l−1(Rd;Cn), we have rΛεu ∈ L2(R
d;Cn) and

‖rΛεu‖L2(Rd) ≤ rC(0)‖u‖Hl−1(Rd).

2◦. For 0 < ε ≤ 1 and u ∈ H l(Rd;Cn), we have rΛεu ∈ H1(Rd;Cn) and

‖rΛεu‖H1(Rd) ≤ rC(1)ε−1‖u‖H1(Rd) + rC(2)‖u‖Hl(Rd).

The constants

rC(0) := (cΩc
′
Ω)

1/2
ĂM, rC(1) := (2rβ1)

1/2, rC(2) :=
√
2(rβ2 + 1)1/2(cΩc

′
Ω)

1/2
ĂM

depend only on the problem data (1.9).

The extension operator PO allows us to deduce the following corollary from Lem-
ma 6.5(1◦).

Corollary 6.6. Under the assumptions of Lemma 6.5, the operator [rΛε] acts continu-
ously from H l−1(O;Cn) to L2(O;Cn), and

‖[rΛε]‖Hl−1(O)→L2(O) ≤ rC(0)C
(l−1)
O .

§7. Removal of the smoothing operator from the corrector

in the case of sufficiently smooth boundary

7.1. Proof of Theorem 2.10. Suppose that the assumptions of Lemma 2.9 are satisfied.
Let u0 be given by (2.3), where ϕ ∈ L2(O;Cn). We put

ru0( · , t) = POu0( · , t).
By (2.22) and (2.32), we have

KD(t; ε)ϕ =
(
ΛεSεb(D) + rΛεSε

)
ru0( · , t),(7.1)

K0
D(t; ε)ϕ =

(
Λεb(D) + rΛε

)
u0( · , t).(7.2)
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We need to estimate the following quantity:

‖KD(t; ε)ϕ−K0
D(t; ε)ϕ‖H1(O)

≤ ‖Λε
(
(Sε − I)b(D)ru0

)
( · , t)‖H1(Rd) + ‖rΛε

(
(Sε − I)ru0

)
( · , t)‖H1(Rd).

(7.3)

Under the above assumptions, Lemma 2.8 shows that u0 ∈ H l+1(O;Cn), whence ru0 ∈
H l+1(Rd;Cn). This makes it possible to apply Lemma 6.3(2◦) to estimate the first
summand on the right-hand side of (7.3):

‖Λε
(
(Sε − I)b(D)ru0

)
( · , t)‖H1(Rd)

≤ C(1)ε−1‖
(
(Sε − I)b(D)ru0

)
( · , t)‖L2(Rd) + C(2)‖

(
(Sε − I)b(D)ru0

)
( · , t)‖Hl(Rd),

(7.4)

where l = d/2. The first term on the right-hand side of (7.4) is estimated with the help
of Proposition 1.1 and formulas (1.3), (1.43), (1.46), (2.3), and (2.8):

ε−1‖
(
(Sε − I)b(D)ru0

)
( · , t)‖L2(Rd) ≤ r1‖Db(D)ru0( · , t)‖L2(Rd)

≤ r1α
1/2
1 C

(2)
O ‖u0( · , t)‖H2(O) ≤ C(3)t−1e−c�t/2‖ϕ‖L2(O),

(7.5)

where C(3) := r1α
1/2
1 C

(2)
O rc‖f‖L∞ . To estimate the second term on the right-hand side

of (7.4), we apply (1.2) and (1.3):∥∥((Sε − I)b(D)ru0

)
( · , t)

∥∥
Hl(Rd)

≤ 2α
1/2
1 ‖ru0( · , t)‖Hl+1(Rd).(7.6)

By (1.43), (1.46), (2.3), and Lemma 2.8, we have

(7.7) ‖ru0( · , t)‖Hl+1(Rd) ≤ C
(l+1)
O Ĉl+1‖f‖2L∞t−(l+1)/2e−c�t/2‖ϕ‖L2(O).

From (7.6) and (7.7) it follows that

(7.8)
∥∥((Sε − I)b(D)ru0

)
( · , t)

∥∥
Hl(Rd)

≤ C(4)t−(l+1)/2e−c�t/2‖ϕ‖L2(O),

where C(4) := 2α
1/2
1 C

(l+1)
O Ĉl+1‖f‖2L∞

.
Now we estimate the second term on the right-hand side of (7.3). By Lemma 6.5(2◦),∥∥rΛε

(
(Sε − I)ru0

)
( · , t)

∥∥
H1(Rd)

≤ rC(1)ε−1‖(Sε − I)ru0( · , t)‖H1(Rd) + rC(2)‖(Sε − I)ru0( · , t)‖Hl(Rd), l = d/2.
(7.9)

The first summand on the right-hand side of (7.9) is estimated by using Proposition 1.1
and relations (1.43), (1.46), (2.3), (2.8):

ε−1‖(Sε − I)ru0( · , t)‖H1(Rd) ≤ r1C
(2)
O ‖u0( · , t)‖H2(O) ≤ C(5)t−1e−c�t/2‖ϕ‖L2(O);

C(5) := r1C
(2)
O rc‖f‖L∞ .

(7.10)

The second summand in (7.9) is estimated with the help of (1.2) and (7.7):

‖(Sε − I)ru0( · , t)‖Hl(Rd) ≤ 2‖ru0( · , t)‖Hl(Rd) ≤ 2‖ru0( · , t)‖Hl+1(Rd)

≤ C(6)t−(l+1)/2e−c�t/2‖ϕ‖L2(O);

C(6) := 2C
(l+1)
O Ĉl+1‖f‖2L∞ .

(7.11)

As a result, relations (7.3)–(7.5) and (7.8)–(7.11) imply the inequality

‖KD(t; ε)ϕ−K0
D(t; ε)ϕ‖H1(O) ≤ (C(7)t−1 + C(8)t−(l+1)/2)e−c�t/2‖ϕ‖L2(O),

where l = d/2, C(7) := C(1)C(3)+ rC(1)C(5), and C(8) := C(2)C(4)+ rC(2)C(6). This proves

(2.36) with the constant Ĉd := max{C(7);C(8)}. �
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7.2. Proof of Theorem 2.10. Inequality (2.37) follows directly from (2.24) and (2.36).

Here, Cd := 2(Ĉd + C16). We have taken into account the fact that for t > 1 the term
εt−1 does not exceed ε1/2t−3/4, and for t ≤ 1 it does not exceed εt−d/4−1/2 because
d ≥ 3.

Now we check (2.38). By (1.4) and (2.37),∥∥gεb(D)
(
fεe−

rBD,εt(fε)∗ − f0e
− rB0

Dtf0 − ε
(
Λεb(D) + rΛε

)
f0e

− rB0
Dtf0

)∥∥
L2→L2

≤ ‖g‖L∞(dα1)
1/2Cd(ε1/2t−3/4 + εt−d/4−1/2)e−c�t/2.

(7.12)

We have

εgεb(D)
(
Λεb(D) + rΛε

)
f0e

− rB0
Dtf0 = gε

(
(b(D)Λ)ε +

(
b(D)rΛ

)ε)
f0e

− rB0
Dtf0

+ ε
d∑

k,j=1

gεbkΛ
εbjDkDjf0e

− rB0
Dtf0 + ε

d∑
j=1

gεbj rΛεDjf0e
− rB0

Dtf0.
(7.13)

The norm of the second summand on the right-hand side of (7.13) is estimated with the
help of (1.4), (1.43), Lemma 2.8, and Corollary 6.4:

ε

∥∥∥∥ d∑
k,j=1

gεbkΛ
εbjDkDjf0e

− rB0
Dtf0

∥∥∥∥
L2(O)→L2(O)

≤ C(9)εt−(l+1)/2e−c�t/2,(7.14)

where l = d/2, C(9) := α1dC
(0)C

(l−1)
O Ĉl+1‖g‖L∞‖f‖2L∞

. The third summand on the
right-hand side of (7.13) is estimated by using (1.4), (1.43), Lemma 2.8, and Corollary 6.6:

(7.15) ε

∥∥∥∥ d∑
j=1

gεbj rΛεDjf0e
− rB0

Dtf0

∥∥∥∥
L2(O)→L2(O)

≤ C(10)εt−(l+1)/2e−c�t/2,

where l = d/2 and

C(10) := (dα1)
1/2

rC(0)C
(l−1)
O Ĉl+1‖g‖L∞‖f‖2L∞ .

As a result, relations (7.12)–(7.15) imply inequality (2.38) with the constant

rCd := ‖g‖L∞(dα1)
1/2Cd + C(9) + C(10). �

§8. Removal of the smoothing operator from the corrector

in a strictly interior subdomain

8.1. A property of the operator Sε. Now we proceed to estimates in a strictly
interior subdomain. We start with a simple property of the operator Sε.

Let O′ be a strictly interior subdomain of the domain O, and let δ be given by (1.61).
Denote

O′′ := {x ∈ O : dist{x; ∂O} > δ/2}, O′′′ := {x ∈ O : dist{x; ∂O} > δ/4}.

Lemma 8.1. Let Sε be the operator (1.1). Put 2r1 = diam Ω. Suppose that v ∈
L2(R

d;Cm) and v ∈ Hσ(O′′′;Cm) with some σ ∈ Z+. Then for 0 < ε ≤ (4r1)
−1δ we

have Sεv ∈ Hσ(O′′;Cm), and

‖Sεv‖Hσ(O′′) ≤ ‖v‖Hσ(O′′′).
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Proof. By (1.1),

‖Sεv‖2Hσ(O′′) = |Ω|−2
∑
|α|≤σ

∫
O′′

dx

∣∣∣∣ ∫
Ω

Dαv(x− εz) dz

∣∣∣∣2
≤ |Ω|−1

∑
|α|≤σ

∫
O′′

dx

∫
Ω

|Dαv(x− εz)|2 dz.
(8.1)

Since 0 < εr1 ≤ δ/4, for x ∈ O′′ and z ∈ Ω we have x − εz ∈ O′′′. Hence, changing the
order of integration in (8.1), we obtain the required estimate. �

8.2. The cut-off function χ(x). We fix a smooth cut-off function χ(x) such that

χ ∈ C∞
0 (Rd), 0 ≤ χ(x) ≤ 1; χ(x) = 1, x ∈ O′;

suppχ ⊂ O′′; |Dαχ(x)| ≤ κσδ
−σ, |α| = σ, σ ∈ N.

(8.2)

The constants κσ depend only on d, σ, and the domain O.

Lemma 8.2. Suppose that χ(x) is a cut-off function satisfying (8.2). Let k ∈ Z+.
1◦. For any function v ∈ Hk(Rd;Cm) we have

(8.3) ‖χv‖Hk(Rd) ≤ C
(11)
k

k∑
j=0

δ−(k−j)‖v‖Hj(O′′).

2◦. For any function v ∈ Hk+1(Rd;Cm) we have

(8.4) ‖χv‖Hk+1/2(Rd) ≤ C
(11)
k+1/2

(k+1∑
j=0

δ−(k+1−j)‖v‖Hj(O′′)

)1/2( k∑
i=0

δ−(k−i)‖v‖Hi(O′′)

)1/2

.

The constants C
(11)
k and C

(11)
k+1/2 depend on d, k, and the domain O.

Proof. Inequality (8.3) follows from the Leibniz formula for the derivatives of the product
χv and from estimates for the derivatives of χ (see (8.2)). To check (8.4), we should also
take into account that

‖w‖2Hk+1/2(Rd) ≤ ‖w‖Hk+1(Rd)‖w‖Hk(Rd), w ∈ Hk+1(Rd;Cm). �

8.3. Proof of Lemma 2.16. Under the assumptions of Lemma 2.16, let u0 be given
by (2.3) with ϕ ∈ L2(O;Cn). By (1.43) and (2.7), (2.8), we have

‖Du0( · , t)‖L2(O) ≤ ‖u0( · , t)‖H1(O) ≤ c3‖f‖L∞t−1/2e−c�t/2‖ϕ‖L2(O),(8.5)

‖Du0( · , t)‖H1(O) ≤ ‖u0( · , t)‖H2(O) ≤ rc‖f‖L∞t−1e−c�t/2‖ϕ‖L2(O).(8.6)

Let ru0 = POu0. Relations (7.1) and (7.2) remain valid. We need to estimate the following
quantity:∥∥KD(t; ε)ϕ−K0

D(t; ε)ϕ
∥∥
H1(O′)

≤
∥∥Λεχ

(
(Sε − I)b(D)ru0

)
( · , t)

∥∥
H1(Rd)

+
∥∥rΛεχ

(
(Sε − I)ru0

)
( · , t)

∥∥
H1(Rd)

.
(8.7)

Recall (cf. Subsection 2.10) that u0( · , t) ∈ Hσ(O′′′;Cn) for any σ ∈ Z+. Then the
function ru0( · , t) satisfies the assumptions of Lemma 8.1 for any σ ∈ Z+. Hence,
(Sεru0)( · , t) ∈ Hσ(O′′;Cn) for 0 < ε ≤ (4r1)

−1δ. Then we can apply Lemma 6.3(2◦)
to estimate the first summand on the right-hand side of (8.7):∥∥Λεχ

(
(Sε − I)b(D)ru0

)
( · , t)

∥∥
H1(Rd)

≤ C(1)ε−1
∥∥χ((Sε−I)b(D)ru0

)
( ·, t)

∥∥
L2(Rd)

+C(2)
∥∥χ((Sε−I)b(D)ru0

)
( ·, t)

∥∥
Hl(Rd)

,
(8.8)
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l = d/2. The first term on the right-hand side of (8.8) is estimated by using inequal-
ity (7.5) (which is valid without additional smoothness assumption on ∂O):

(8.9) ε−1
∥∥χ((Sε − I)b(D)ru0

)
( · , t)

∥∥
L2(Rd)

≤ C(3)t−1e−c�t/2‖ϕ‖L2(O).

Now, we consider the second summand on the right-hand side of (8.8). Obviously,∥∥χ((Sε − I)b(D)ru0

)
( · , t)

∥∥
Hl(Rd)

≤ ‖χ(Sεb(D)ru0)( · , t)‖Hl(Rd) + ‖χb(D)ru0( · , t)‖Hl(Rd).
(8.10)

To estimate the second term on the right-hand side of (8.10), we apply Lemma 8.2 and
(1.4). If l = d/2 is an integer (i.e., the dimension d is even), then

(8.11) ‖χb(D)ru0( · , t)‖Hl(Rd) ≤ C
(11)
l (dα1)

1/2
l∑

j=0

δ−(l−j)‖Du0( · , t)‖Hj(O′′).

If l = d/2 = k + 1/2, then

‖χb(D)ru0( · , t)‖Hl(Rd) ≤ C
(11)
l (dα1)

1/2

(k+1∑
j=0

δ−(k+1−j)‖Du0( · , t)‖Hj(O′′)

)1/2

×
( k∑

σ=0

δ−(k−σ)‖Du0( · , t)‖Hσ(O′′)

)1/2

.

(8.12)

The norms of Du0( · , t) in L2(O;Cn) and in H1(O;Cn) were estimated in (8.5) and (8.6).
By (1.43), (2.3), and (2.45) (with O′ replaced by O′′), we have

(8.13) ‖Du0( · , t)‖Hσ(O′′) ≤ C′
σ+1‖f‖2L∞2σt−1/2(δ−2 + t−1)σ/2e−c�t/2‖ϕ‖L2(O),

σ ≥ 2. Using (8.5), (8.6), and (8.11)–(8.13), we arrive at the inequality

(8.14) ‖χb(D)ru0( · , t)‖Hl(Rd) ≤ C(12)t−1/2(δ−2 + t−1)d/4e−c�t/2‖ϕ‖L2(O).

The constant C(12) depends only on the problem data (1.9).
To estimate the first term on the right-hand side of (8.10), we apply Lemmas 8.1

and 8.2. Assume that 0 < ε ≤ (4r1)
−1δ. By (1.4), in the case where l is an integer, we

have

(8.15) ‖χ(Sεb(D)ru0)( · , t)‖Hl(Rd) ≤ C
(11)
l (dα1)

1/2
l∑

σ=0

δ−(l−σ)‖Du0( · , t)‖Hσ(O′′′).

The norms of Du0( · , t) in L2(O;Cn) and in H1(O;Cn) were estimated in (8.5) and (8.6).
By (1.43), (2.3), and (2.45) (with O′ replaced by O′′′),

(8.16) ‖Du0( · , t)‖Hσ(O′′′) ≤ C′
σ+1‖f‖2L∞4σt−1/2(δ−2 + t−1)σ/2e−c�t/2‖ϕ‖L2(O),

σ ≥ 2. From (8.5), (8.6), (8.15), and (8.16) it follows that

(8.17) ‖χ(Sεb(D)ru0)( · , t)‖Hl(Rd) ≤ C(13)t−1/2(δ−2 + t−1)d/4e−c�t/2‖ϕ‖L2(O).

The constant C(13) depends only on the problem data (1.9). Estimate (8.17) in the case
of half-integral l is checked similarly. Combining (8.8)–(8.10), (8.14), and (8.17), we
estimate the first summand on the right-hand side of (8.7):∥∥Λεχ

(
(Sε − I)b(D)ru0

)
( · , t)

∥∥
H1(Rd)

≤ C(14)
(
t−1 + t−1/2(δ−2 + t−1)d/4

)
e−c�t/2‖ϕ‖L2(O).

(8.18)

Here C(14) := max{C(1)C(3);C(2)(C(12) + C(13))}.



HOMOGENIZATION OF THE FIRST INITIAL BOUNDARY-VALUE PROBLEM 975

The second summand on the right-hand side of (8.7) is estimated with the help of
Lemma 6.5(2◦):∥∥rΛεχ

(
(Sε − I)ru0

)
( · , t)

∥∥
H1(Rd)

≤ rC(1)ε−1
∥∥χ((Sε − I)ru0

)
( · , t)

∥∥
H1(Rd)

+ rC(2)
∥∥χ((Sε − I)ru0

)
( · , t)

∥∥
Hl(Rd)

,
(8.19)

where l = d/2. To estimate the first summand on the right-hand side of (8.19), we use
(8.2) and inequality (7.10) (which is true without additional smoothness assumptions on
the boundary):

ε−1
∥∥χ((Sε − I)ru0

)
( · , t)

∥∥
H1(Rd)

≤ ε−1
∥∥((Sε − I)ru0

)
( · , t)

∥∥
H1(Rd)

+ ε−1
∥∥(Dχ)

(
(Sε − I)ru0

)
( · , t)

∥∥
L2(Rd)

≤ C(5)t−1e−c�t/2‖ϕ‖L2(O) + ε−1κ1δ
−1‖(Sε − I)ru0( · , t)‖L2(Rd).

Combining this with Proposition 1.1 and relations (1.43), (1.46), (2.3), and (2.7), we
obtain

(8.20) ε−1
∥∥χ((Sε − I)ru0

)
( · , t)

∥∥
H1(Rd)

≤ C(15)(δ−1t−1/2 + t−1)e−c�t/2‖ϕ‖L2(O),

where C(15) := max{C(5);κ1r1C
(1)
O c3‖f‖L∞}.

If l = d/2 is an integer, the second summand on the right-hand side of (8.19) is
estimated by analogy with (8.15):

(8.21)
∥∥χ((Sε − I)ru0

)
( · , t)

∥∥
Hl(Rd)

≤ 2C
(11)
l

l∑
σ=0

δ−(l−σ)‖u0( · , t)‖Hσ(O′′′),

0 < ε ≤ (4r1)
−1δ. The norms of u0 in L2(O;Cn), H1(O;Cn), and H2(O;Cn) are

estimated with the help of Lemma 2.1 and relations (1.43), (2.3). For σ ≥ 3, the norm
‖u0( · , t)‖Hσ(O′′′) is estimated by using (2.45) (with O′ replaced by O′′′):

‖u0( · , t)‖Hσ(O′′′) ≤ C′
σ+1‖f‖2L∞4σt−1/2(δ−2 + t−1)σ/2e−c�t/2‖ϕ‖L2(O).

Combining these arguments with (8.21), we deduce that

(8.22)
∥∥χ((Sε − I)ru0

)
( · , t)

∥∥
Hl(Rd)

≤ C(16)t−1/2(δ−2 + t−1)d/4e−c�t/2‖ϕ‖L2(O),

with a constant C(16) depending only on the problem data (1.9). For the case of half-
integral l, estimate (8.22) is checked similarly. As a result, relations (8.19), (8.20), and
(8.22) imply the following estimate for the second summand on the right-hand side of
(8.7):∥∥rΛεχ

(
(Sε − I)ru0

)
( · , t)

∥∥
H1(Rd)

≤ rC(1)C(15)(δ−1t−1/2 + t−1)e−c�t/2‖ϕ‖L2(O)

+ rC(2)C(16)t−1/2(δ−2 + t−1)d/4e−c�t/2‖ϕ‖L2(O).

Together with (8.7) and (8.18), this implies inequality (2.47) with the constant C′′
d :=

C(14) + rC(1)C(15) + rC(2)C(16). We have taken into account that the term δ−1t−1/2 does
not exceed t−1/2(δ−2 + t−1)d/4. �

8.4. Proof of Theorem 2.17. Inequality (2.48) follows directly from (2.44) and (2.47).
Here, Cd := max{C20;C21}+C′′

d .
We check (2.49). From (1.4), (2.32), and (2.48) it follows that∥∥gεb(D)

(
fεe−

rBD,εt(fε)∗ − (I + εΛεb(D) + εrΛε)f0e
− rB0

Dtf0
)∥∥

L2(O)→L2(O′)

≤ ‖g‖L∞(dα1)
1/2Cdεhd(δ; t)e

−c�t/2.
(8.23)
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We apply identity (7.13). The norm of the second summand on the right-hand side of
(7.13) is estimated with the help of (1.4), (8.2), and Lemma 6.3(1◦):

ε

∥∥∥∥ d∑
k,j=1

gεbkΛ
εbjDkDjf0e

− rB0
Dtf0

∥∥∥∥
L2(O)→L2(O′)

≤ εα1‖g‖L∞C(0)
d∑

k,j=1

∥∥χDkDjf0e
− rB0

Dtf0
∥∥
L2(O)→Hl−1(Rd)

, l = d/2.

(8.24)

Next, we apply Lemma 8.2. If l is an integer, then (1.43) yields

d∑
k,j=1

∥∥χDkDjf0e
− rB0

Dtf0
∥∥
L2(O)→Hl−1(Rd)

≤ dC
(11)
l−1 ‖f‖L∞

l−1∑
i=0

δ−(l−1−i)
∥∥f0e− rB0

Dt
∥∥
L2(O)→Hi+2(O′′)

.

(8.25)

The norm ‖f0e− rB0
Dt‖L2(O)→H2(O) satisfies (2.8). If i ≥ 1, relations (1.43) and (2.45)

(with O′ replaced by O′′) imply that∥∥f0e− rB0
Dt
∥∥
L2(O)→Hi+2(O′′)

≤ C′
i+2‖f‖L∞2i+1t−1/2(δ−2 + t−1)(i+1)/2e−c�t/2.

Combining this with (2.8), (8.24), and (8.25), we obtain

(8.26) ε

∥∥∥∥ d∑
k,j=1

gεbkΛ
εbjDkDjf0e

− rB0
Dtf0

∥∥∥∥
L2(O)→L2(O′)

≤ C(17)εt−1/2(δ−2+t−1)d/4e−c�t/2,

where the constant C(17) depends only on the problem data (1.9). If l is half-integral,
inequality (8.26) is checked by using Lemma 8.2(2◦).

The third summand on the right-hand side of (7.13) is estimated similarly by using
(1.4), (8.2), Lemma 6.5(1◦), and Lemma 8.2. As a result, we obtain

(8.27) ε
d∑

j=1

‖gεbj rΛεDjf0e
− rB0

Dtf0‖L2(O)→L2(O′) ≤ C(18)εt−1/2(δ−2 + t−1)d/4e−c�t/2.

Here the constant C(18) depends only on the problem data (1.9).
Finally, relations (1.27), (7.13), (8.23), (8.26), and (8.27) imply inequality (2.49) with

the constant rCd := ‖g‖L∞(dα1)
1/2Cd + C(17) + C(18). �
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