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BINOMIALS WHOSE DILATIONS GENERATE H2(D)

N. K. NIKOLSKI

Abstract. This note is about the completeness of the function families

{zn(λ− zn)N : n = 1, 2, . . . }
in the Hardy space H2

0 (D), and some related questions. It is shown that for |λ| >
R(N) the family is complete in H2

0 (D) (and often is a Riesz basis of H2
0 ), whereas

for |λ| < r(N) it is not, where both radii r(N) ≤ R(N) tends to infinity and behave
more or less as N (as N → ∞). Several results are also obtained for more general

binomials {zn(1− 1
λ
zn)ν : n = 1, 2, . . . } where |λ| ≥ 1 and ν ∈ C.

The author is indebted to Alexander Borichev for pointing out a few bugs in an initial
version of the manuscript, and to Boris Mityagin for a discussion stimulated the author’s
interest to the question.

§1. The Dilation Completeness Problem (DCP)

The general dilation completeness problem (DCP) consists in the description of func-
tions f ∈ Lp

loc[0,∞) such that

Ef =: spanLp(0,1) g(f(nx)
∣∣(0, 1) : n = 1, 2, 3, . . .

)
= Lp(0, 1).

Recall that the famous Riemann Hypothesis (RH) on zeros of the ζ-function is closely
related to the DCP for p = 2 and f(x) = 1

x − [ 1x ], x > 0: (RH) is equivalent to the
inclusion 1 ∈ Ef , and/or to the equality

spanL2(0,1)

(
f(sx)

∣∣(0, 1) : s ≥ 1
)
= L2(0, 1)

(see [Nym1950, Bae2003], or [Nik2012a, Chap. 6]). According to A. Wintner [Win1944]
and A. Beurling [Beu1945], the following partial case of the DCP (2-periodic DCP for
p = 2) is also related to some number theoretic questions (in Diophantine analysis): to
determine odd 2-periodic functions f ∈ L2

odd(−1, 1) on R such that Ef = L2(0, 1).

Since the functions ek = sin(πkx)
√
2, k = 1, 2, . . . form an orthonormal basis in

L2
odd(−1, 1) and the dilations f �−→ f(nx) act as ek �−→ enk (n, k = 1, 2, . . . ), one can

unitarily change the basis (ek) for (z
k) (k = 1, 2, . . . ) on the Hardy space H2

0 (D) on the
unit disc D = {z ∈ C : |z| < 1},

H2
0 (D) =

{
f =

∑
k≥1

f̂(k)zk : ‖f‖2 =:
∑
k≥1

|f̂(k)|2 < ∞
}
,

and get the following equivalent form of the periodic DCP:
to describe f ∈ H2

0 (D) such that the dilations

Tnf = f(zn)
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generate the whole space,

Ef =: spanH2
0
(Tnf : n = 1, 2, . . . ) = H2

0 ;

such a function f will be called “dilation cyclic”.
The most of very few facts and references known on the periodic DCP are gathered in

[HLS1997, HLS1999, Mit2016, Nik2012a, Nik2012b, Nik2017]. B. Mityagin pointed (see
for example [Mit2016]) to an applied interest of the dilation cyclicity of the binomials
f = z(λ−z)N (λ ∈ C, N = 1, 2, . . . ) related to the Cohn–Lehmer–Schur algorithm (local-
ization of zeros of polynomials). This special choice of f was already treated partially in
[Nik2012b] and [Nik2017]. Below, we add new details to the study of these polynomials.
Moreover, general binomial functions fν,λ are considered as well,

fν,λ = z(λ− z)ν =: λνz
(
1− z

λ

)ν

=: λν
∑
k≥0

(
ν

k

)
zk+1(−1)k

λk
, |z| < |λ|,

where ν, λ ∈ C, and
(
ν
k

)
= ν(ν−1)...(ν−k+1)

k! stands for a binomial coefficient. Clearly,

fν,λ ∈ H2
0 (D) for all ν and |λ| > 1, or for positive integers ν = N and all λ ∈ C, in which

case

fN,λ is a polynomial.

We also treat the Riesz basis question for the families (fν,λ(z
n))n≥1, that is the question

when every function g ∈ H2
0 (D) can uniquely be developed in a norm convergent series

g =
∑
n≥1

anfν,λ(z
n),

with the norm ‖g‖2 comparable with
∑

n≥1 |an|2.

More notation. Given ν ∈ C, denote

Ω(ν) =
{
λ ∈ C : fν,λ is dilation cyclic on H2

0 (D)
}
.

Except some particular values of ν (see below), at present, we cannot describe the shape
of Ω(ν). Instead, following B. Mityagin’s suggestion (see also [Mit2016]), for ν ∈ N we
consider the radii r(ν) and R(ν),

r(ν) = sup
{
r > 0 : |λ| < r ⇒ fν,λ is NOT cyclic

}
,

R(ν) = inf
{
R > 0 : |λ| > R ⇒ fν,λ IS cyclic

}
.

For ν ∈ C \N, we modify the definition writing fν,λ = λνz
(
1− z

λ

)ν
and always requiring

|λ| ≥ 1.
In particular, R(ν) < ∞ means that C \Ω(ν) is a bounded set, and r(ν) is the radius

of the largest zero centered disc (the annulus 1 ≤ |λ| < r(ν) for a noninteger ν) inscribed
into C \ Ω(ν); for integers ν ∈ N,{

λ : |λ| < r(ν)
}
⊂ C \ Ω(ν).

On the other hand, we verify on examples that the set C \Ω(ν) in general is not a disc.
Similarly, {λ : |λ| > R(ν)} is the largest disc centered at ∞ and included into Ω(ν).

The idea of what follows is easy: if |λ| is “large”, then fν,λ is “close” to λνz and the
latter function is obviously cyclic, but if |λ| is “small” and ν = N is a positive integer
then fν,λ is “close” to z1+N which is not dilation cyclic. In what follows, we precise these
“large”, “small” and “close” and verify that our “closeness” implies the corresponding
(non)cyclicity properties for fν,λ. Here are our statements — first, for integer exponents,
and then for general complex exponents (the reader can see that the result for the latter
case is less complete than for the former one).
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Theorem 1. Given a positive integer N ∈ N, then

N ≤ R(N) ≤ N · log2 e,
and moreover, (fN,λ(z

n))n≥1 is a Riesz basis of H2
0 (D) if |λ| ≥ N · log2 e. For the lower

radius r(N), we have

N1−ε � r(N) ≤ R(N),

for every ε, 0 < ε < 1, where for two sequences of positive reals, aN � bN (or bN  aN )
means bN > (1− δ)aN for N > N(δ), for every δ > 0.

In addition, for real λ, 0 ≤ λ ≤ N ⇒ λ ∈ C \ Ω(N).

Theorem 2. Let ν ∈ C, |λ| > 1.
(1) 1

|λ| ≤ 1− 2−1/|ν| ⇒ λ ∈ Ω(ν), and in particular, |λ| ≥ |ν| · 2 log2 e ⇒ λ ∈ Ω(ν) for

|ν| ≥ ln 2, and hence

r(ν) ≤ R(ν) ≤ |ν| · 2 log2 e,
and also |λ| ≥ 1 + 2e− ln 2/|ν| ⇒ λ ∈ Ω(ν) for 0 < |ν| ≤ 1.

(2) For real positive ν, ν ≥ 2, with an even entire part ([ν] ∈ 2N) and for real λ, we
have

1 ≤ λ < ν ⇒ λ ∈ C \ Ω(ν) (fν,λ is noncyclic),

and hence

ν ≤ R(ν).

(3) For real negative ν (ν < 0) such that∑
l≥1

∣∣∣∣( ν

2l − 1

)∣∣∣∣ > 1

let a(ν) = sup{a > 1 :
∑

l≥1

∣∣( ν
2l−1

)∣∣a−2l+1 > 1}. Then

(−a(ν),−1) ⊂ C \ Ω(ν), and R(ν) ≥ a(ν).

In particular, a(−1/2) > 1, 005 and a(ν) > |ν| for |ν| ≥ 1, so that R(ν) ≥ |ν| for
ν ∈ (−∞,−1] (for example, a(−1) ≥ 1.4662 . . . ).

In particular, C \ Ω(ν) is always bounded. An interesting case of “Lambert series”
should also be mentioned, where ν = −1 and f−1,λ = z

λ−z is the Cauchy kernel, see

5.3(2) and a remark to 5.5 below.
The Riesz basis property of the dilations (fν,λ(z

n))n≥1 usually happens when we
replace an inequality giving a sufficient completeness condition for its strong form; below,
we specify the corresponding properties in each case separately.

§2. Recalling some known facts

All known results on periodic DCP use the language of the Bohr lift to the Hilbert
multidisc. An infinite-dimensional Hilbert multi-disc D∞

2 is defined as

D
∞
2 =

{
ζ = (ζk)k≥1 ∈ �2 : |ζk| < 1(∀k)

}
.

A holomorphic function theory on D∞
2 is sketched in [Hil1909]. The Hardy space on D∞

2

can be defined as the space of absolutely convergent power series

H2(D∞
2 ) =:

{
F =

∑
α∈Z+(∞)

cα(F )ζα : ‖F‖22 =
∑

α∈Z+(∞)

|cα(F )|2 < ∞
}
,

where the multiindex α runs over the set

Z+(∞) =
⋃
k≥1

Z
k
+
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of all finitely supported sequences of nonnegative integers α = (α1, . . . , αs, 0, 0, . . . ),
and ζα = ζα1

1 . . . ζαs
s (ζ ∈ D∞

2 ). The Bohr transform (introduced in [Boh1913] in the
framework of Dirichlet series) is a unitary map U : H2

0 (D) → H2(D∞
2 ),

U : f =
∑
n≥1

f̂(n)zn �−→ Uf(ζ) =
∑
n≥1

f̂(n)ζα(n), ζ ∈ D
∞
2 ,

where the multiindex α(n) = (α1, . . . , αs, 0, . . . ) is defined by the prime decomposition
of an integer n,

n = pα1
1 . . . pαs

s , αj ∈ Z+,

p1 = 2, p2 = 3, p3 = 5, . . . are naturally ordered primes. Clearly, a function f ∈ H2
0 (D)

is a polynomial if and only if Uf is a polynomial on D
∞
2 (finite linear combination of

monomials ζ �−→ ζα, ζ ∈ D∞
2 ).

The use of the Bohr transform is based on the following obvious facts.
A. U is unitary H2

0 (D) → H2(D∞
2 ) and transforms the dilations (Tn) into a multiplication

semigroup Mζ = (Mζα)α∈Z+(∞):

(UTnU
−1)f(ζ) = ζα(n)f(ζ) (ζ ∈ D

∞
2 , f ∈ H2(D∞

2 )).

B. E ∈ Lat(Tn) ⇔ UE ∈ Lat(Mζ), where Lat(A) stands for the collection (lattice) of all
A-invariant subspaces.

In particular, a function f ∈ H2
0 is (Tn)-cyclic if and only if Uf is Mζ-cyclic (i.e.,

the weighted polynomials {pUf : p is a polynomial on D∞
2 } are dense in H2(D∞

2 ).
Here are some known results on the dilation cyclicity of a function f ∈ H2

0 (D).
(a) The condition Uf(ζ) �= 0 (∀ζ ∈ D

∞
2 ) is necessary for (Tn)-cyclicity ([Beu1945]).

(b) If f is a polynomial, condition (a) is also sufficient ([NGN1970]).

(c) If the Fourier spectrum σ(f) = {k ∈ Z+\{0} : f̂(k) �= 0} is finitely generated (in the
multiplicative semigroup Z+ \ {0}) and Uf (which depends on finitely many variables
ζ1, . . . , ζs only) is holomorphic on a larger disc (1 + ε)D∞

2 , then condition (a) is also
sufficient ([Nik2012b]).

(d) If σ(f) has only one generator, σ(f) = {Nk : k ≥ 0} and hence f(z) =
∑

k≥0 akz
Nk

,

then the necessary and sufficient condition for the (Tn)-cyclicity of f is that
∑

k≥0 akz
k

is a Beurling outer function ([Nik2012b]).
(e) If f �= 0 and Re(Uf(ζ)) ≥ 0 (∀ζ ∈ D∞

2 ), then f is (Tn)-cyclic ([Nik2012b]); in
particular, f is cyclic if

|f̂(1)| ≥
∑
n≥2

|f̂(n)|

([HLS1997, HLS1999]). Moreover, if |f̂(1)| >
∑

n≥2 |f̂(n)| then (Tnf)n≥1 is a Riesz basis

in H2
0 (D) (see [GN1968/1969]).

(f) If Uf(ζ) �= 0 (∀ζ ∈ D∞
2 ) and there exists ε > 0 such that (Uf)1+ε, (Uf)−ε ∈ H2(D∞

2 ),
then f is (Tn)-cyclic (real powers of Uf can be confidently, defined [Nik2017]).

Unfortunately, there are no visible relations between the values f(z) on the unit disc

z ∈ D and the values Uf(ζ) on the multidisc ζ ∈ D
∞
2 (except the trivial Uf(0) = f(z)

z (0),

and limz→1 f(z) = limt→1 Uf((tk)k≥1), |t| < 1, for functions f having
∑

n≥1 |f̂(n)| < ∞).

§3. Polynomials fN,λ with small integers N

Following 2(b), for a polynomial f ∈ H2
0 (D), the dilations Tnf , n ≥ 1 are complete in

H2
0 (D) if and only if Uf(ζ) �= 0 for all ζ ∈ D∞

2 .

3.1. N = 1. Here f1,λ = f =: z(λ − z), Uf(ζ) = λ − ζ1, ζ = (ζ1, ζ2, . . . ), and hence
Ω(1) = C \ D = {λ : |λ| ≥ 1}, r(1) = R(1) = 1.



BINOMIALS WHOSE DILATIONS GENERATE H2(D) 983

3.2. N = 2. Here f2,λ = f =: z(λ − z)2 = λ2z − 2λz2 + z3, Uf(ζ) = λ2 − 2λζ1 + ζ2,
ζ = (ζ1, ζ2, . . . ), and hence

Uf(ζ) �= 0 (∀ζ ∈ D
∞
2 ) ⇔ 0 /∈ λ2 + 2λD+ D

⇔ 0 /∈ λ2 + (2|λ|+ 1)D ⇔ |λ2| ≥ (2|λ|+ 1) ⇔ |λ| ≥ 1 +
√
2,

and finally

Ω(2) = {λ : |λ| ≥ 1 +
√
2}, r(2) = R(2) = 1 +

√
2.

3.3. N = 1; C\Ω(3) is not a disc. Here f3,λ=f =: z(λ−z)3=λ3z−3λ2z2+3λz3−z4,

Uf(ζ) = λ3 − 3λ2ζ1 + 3λζ2 − ζ21 , ζ = (ζ1, ζ2, . . . ),

and hence

Uf(ζ) = pλ(ζ1) + 3λζ2 �= 0 (∀ζ ∈ D
∞
2 ) ⇔ 0 /∈ (pλ(D) + 3λD),

where

pλ(ζ1) = λ3 − 3λ2ζ1 − ζ21 ,

or

Ω(3) = {λ ∈ C \ {0} : |pλ(ζ1)| ≥ 3|λ|, ∀ζ1 ∈ D}.
It is easy to see that

1.73 <
√
3 ≤ r(3) ≤ R(3) < 3.85

(indeed, since |pλ(ζ1)| ≥ |λ|3 − 3|λ|2 − 1 and t3 − 3t2 − 3t− 1 > 0 for t > 3.85, we have

R(3) < 3.85, and on the other hand, Uf(0,−λ2/3) = 0, which gives r(3) ≥
√
3 > 1.73).

In order to see that Ω(3) is not the complement of a disc, observe that for λ > 0,
Uf(0, 0) = λ3 > 0, and hence the condition Uf(1,−1) = λ3 − 3λ2 − 3λ − 1 ≥ 0 is
necessary for λ ∈ Ω(3) (because Uf(1,−1) < 0 implies that there exists t, 0 < t < 1,
such that Uf(t,−t) = 0). But it is also sufficient (by 2(e)), and so

Ω(3) ∩ R+ =
{
λ > 0 : λ3 − 3λ2 − 3λ− 1 ≥ 0

}
.

For λ < 0, we have Uf(0, 0) = λ3 < 0, and a necessary condition for λ ∈ Ω(3) consists
in Uf(−1,−1) = pλ(−1)− 3λ ≤ 0 (by a similar reason). In particular, pλ(−1) < 0, and
since

pλ(ζ1) = λ3 − (3λ2/2 + ζ1)
2 + (3λ2/2)2 = λ3 + (3λ2/2)2 − q(ζ1)

2,

where q(ζ1) = 3λ2/2+ζ1, it implies that λ3+(3λ2/2)2−q(−1)2 < 0. For real λ ∈ R∩Ω(3),
the image q(D) is a disc with the diameter (3λ2/2− 1, 3λ2/2 + 1) and for λ < 0, by the
previous observation, λ3 + (3λ2/2)2 − (3λ2/2− 1)2 < 0, which entails the formula

min
|ζ1|≤1

|pλ(ζ1)| = dist
(
λ3 + (3λ2/2)2, q(D)2

)
= (3λ2/2− 1)2 − λ3 − (3λ2/2)2 = 1− 3λ2 − λ3.

Thus,

Ω(3) ∩ R− ⊂
{
λ < 0 : min

|ζ1|≤1
|pλ(ζ1)| ≥ 3|λ|

}
=

{
λ < 0 : 1− 3λ2 − λ3 ≥ −3λ

}
=

{
− t : t3 − 3t2 − 3t+ 1 ≥ 0

}
.

Conversely, if −t = λ < 0 satisfies the last condition, then 3λ2 + λ3 − 1 ≤ 3λ < 0,
which implies λ3+(3λ2/2)2− (3λ2/2−1)2 < 0, and hence, as above, min|ζ1|≤1 |pλ(ζ1)| =
1− 3λ2 − λ3 ≥ −3λ, which in turn means that λ ∈ Ω(3) ∩ R−. Conclusion:

−(Ω(3) ∩ R−) = {t : t3 − 3t2 − 3t+ 1 ≥ 0},
which set is larger than Ω(3)∩R+, and so C\Ω(3) is not a disc: R+∩Ω(3) �= −(R−∩Ω(3))
(the left-hand side is smaller).
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§4. General polynomials fN,λ (N ∈ N)

Below, one can observe that our sufficient cyclicity statements (i.e., upper estimates
for R(N)) usually hold for general complex λ, whereas the non-cyclicity ones (i.e., lower
estimates for R(N)) sometimes depend on specific properties of UfN,λ for real λ (see
also 5.4 below).

4.1. A sufficient condition for cyclicity: |λ| ≥ N · log2 e ⇒ λ ∈ Ω(N), and moreover,
(fN,λ(z

n))n≥1 is a Riesz basis of H2
0 (D). Therefore, R(N) ≤ N · log2 e.

Proof. Indeed, the claim in the title follows directly from 2(e): since

fN,λ =

N∑
k=0

(
N

k

)
(−1)kzk+1λN−k

and
N∑

k=1

(
N

k

)
|λ|N−k = (|λ|+ 1)N − |λ|N ,

2(e) implies that the condition (|λ|+1)N−|λ|N ≤ |λ|N , that is 1+ 1
|λ| ≤ 21/N , is sufficient

for λ ∈ Ω(N). The result follows by using the inequality 21/N − 1 > ln 2
N . �

4.2. For N ≥ 2 and real λ, 0 ≤ λ < N ⇒ λ ∈ C \ Ω(N) (noncyclic case), and hence,

N ≤ R(N) ≤ N · log2 e.

Proof. Indeed, UfN,λ(0) = λN > 0, and assuming s ∈ N (s ≥ 2) such that 2s ≤ N +1 <
2s+1, we obtain for 0 < t < 1,

UfN,λ(t, 0, 0, . . . ) = λN +

s∑
k=1

(
N

2k − 1

)
λN−2k+1(−1)2

k−1tk < λN −NλN−1t.

Since N > λ, there exists 0 < t0 < 1 making Uf negative Uf(t0, 0, . . . ) < 0, and by
continuity, we find t, 0 < t < t0 such that Uf(t, 0, . . . ) = 0. Hence, f is not cyclic
in H2

0 . �

4.3. Lemma. Let N ≥ 1 be an integer and q a prime such that
√
N + 1 < q ≤ N + 1.

If |λ| <
(

N
q−1

)1/(q−1)
, the function fN,λ = z(λ− z)N is NOT (Tn)-cyclic, and hence

r(N) ≥ max

{(
N

q − 1

)1/(q−1)

: q prime,
√
N + 1 < q ≤ N + 1

}
;

in fact, the maximum is attained on the least prime q in the interval (
√
N + 1, N + 1],

since the function k �−→
(
N
k

)1/k
is monotone decreasing.

Proof. For the notation convenience, we replace λ by −λ and will treat the function

f = z(λ+ z)N .

We have f =
∑N

k=0

(
N
k

)
zk+1λN−k and Uf =

∑N
k=0

(
N
k

)
ζα(k+1)λN−k. Denoting q = ps

the minimal prime in (
√
N + 1, N + 1], we obtain

Uf(0, . . . , ζs, . . . , 0) = λN +

(
N

q − 1

)
λN−q+1ζs,

where the last (linear) function obviously vanishes at ζs = −λq−1/
(

N
q−1

)
, |ζs| < 1. From

2(a) above, it follows that (Tnf)n≥1 is not complete in H2
0 (D).
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The expression
(
N
k

)1/k
=

( (N−k+1)...N
k!

)1/k
is monotone decreasing in k since the nom-

inator decreases (the arithmetic mean ak =: 1
k

∑k−1
j=0 log(N−j) reduces to the mean ak+1

when we add the least term log(N − k)), and the denominator (k!)1/k increases (for the
same reason). �

We also need the following elementary lemma.

4.4. Lemma. Let reals k and l be such that 0 < k < l and l → ∞. Then(
l

k

)1/k

∼ e
l

k
as lim

(k
l
+

log l

k

)
= 0.

Proof. Since
(
l
k

)
= Γ(l+1)

Γ(k+1)Γ(l−k+1) and Γ(l + 1) ∼ (l/e)l
√
2πl, we have

1

k
log

(
l

k

)
− log

l

k
=

l

k
log

l

e
− l − k

k
log

l − k

e
− log

k

e
− log

l

k
+ o(1)

=
l

k
log

l

l − k
+ log

l − k

e
− log

k

e
− log

l

k
+ o(1)

= − l

k
log

(
1− k

l

)
+ log

l − k

k
− log

l

k
+ o(1)

= − l

k
log

(
1− k

l

)
+ log

(
1− k

l

)
+ o(1) = 1 + o(1). �

Remark. Observe that aN ∼ bN implies both bN  aN and aN  bN . It is known also

that l
k <

(
l
k

)1/k
< el

k for all 0 < k < l.

Below, we will make use of some results on the prime gaps. The simplest one is the
so-called Bertrand postulate (claimed 1845 by J. Bertrand, and proved by P. Chebyshev
in 1852) saying that there is always a prime in the interval (n, 2n), n = 2, 3, . . . . The
following known result is much more involved: there exists A > 0 such that for every
a ≥ A, the interval [a, a + a21/40] contains at least one prime integer q = q(a) (see
[BHP2001]). For our purposes, a simpler form of this will be enough: there is a function
ε(a) > 0, lima→∞ ε(a) = 0, such that any interval [a, a(1 + ε(a))] contains at least one
prime integer.

4.5. Corollary. (1) Asymptotically, as N → ∞,

r(N)  eN1/2

( recall that aN  bN means aN > (1− ε)bN for N > N(ε), for every ε > 0).

Proof. Indeed, we simply combine Lemmas 4.3 and 4.4 with a weak form of Baker–
Harman–Pintz’ result quoted in Remark to Lemma 4.4 applied for a = N1/2: take a
prime q in (N1/2, N1/2(1 + o(1))] and apply 4.4 for l = N , k = N1/2(1 + o(1)):

r(N) ≥
(

N

q − 1

)1/(q−1)

 e
N

N1/2(1 + o(1))
> e(N1/2(1 + o(1)))  eN1/2. �

(2) For rather small values of N , we have
i) for N = 1, 2, r(N) ≥ N ;

ii) for 2 ≤ N ≤ 7, r(N) ≥ N/
√
3;

iii) for N = q2 − 2, where q is a prime, r(N) > q − 1.
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Proof. Indeed, a prime number q will serve in Lemma 4.3 for an integer N if
√
N + 1 <

q ≤ N + 1. For q = 2 we have
√
N + 1 < 2 ≤ N + 1, so N = 1, 2 and

(
N

q−1

)1/(q−1)
= N .

For q = 3 we have
√
N+1 < 3 ≤ N+1, so 2 ≤ N ≤ 7 and

(
N
2

)1/2
= N

(
1
2 (1−

1
N )

)1/2 ≥
N√
3
, N ≥ 3.

A prime q serves for all N with
√
N + 1 < q ≤ N + 1 and gives |λ| <

(
N

q−1

)1/(q−1)
as

a sufficient condition for noncyclicity; as the function N �−→
(

N
q−1

)1/(q−1)
is monotone

increasing, the best result will be for N = q2 − 2; using
(

N
q−1

)1/(q−1)
>

(
(q−1)2

q−1

)1/(q−1)

and (
m2

m

)
=

m∏
k=1

m2 −m+ k

k
=

m∏
k=1

(
1 +

m2 −m

k

)
> mm,

we get |λ| ≤ q − 1 as a sufficient condition of the noncyclicity for N = q2 − 2. �

4.6. Proof of Theorem 1. The first claim of Theorem 1 is already proved (see items 4.1–
4.2 above), as well as a weakened form of the second one (Corollary 4.5). In order to
prove Theorem 1 in full, fix positive integers m, m ≥ 1 and Nm such that the interval
((N + 1)1/m+1, (N + 1)1/m] contains at least one prime for every N > Nm (such Nm

exists, for instance, by the Bertrand–Chebyshev theorem (1852), we can find a prime in
any interval (n, 2n), n = 2, 3, . . . ). Let

p = p(N,m), p ∈
(
(N + 1)1/m+1, (N + 1)1/m

]
be the least such prime (so that, by Bertrand–Chebyshev,

p ∈
(
(N + 1)1/m+1, 2((N + 1)1/m+1), N > Nm

)
and let p = ps be its place in the primes ordering.

As above, we consider the function f = z(λ+z)N = fN,−λ having the Bohr transform

Uf =

N∑
k=0

(
N

k

)
ζα(k+1)λN−k.

The case of m = 1 was considered already in Lemma 4.3 and Corollary 4.5, see the
proof of that lemma. Suppose m > 1. Since pm ≤ N + 1 and pm+1 > N + 1, we have

Uf(0, . . . , ζs, . . . , 0) = λN +

(
N

p− 1

)
ζsλ

N−p+1 +

m∑
k=2

(
N

pk − 1

)
ζks λ

N−pk+1.

By Rouché’s theorem, there will be at least one zero of this function in the disc |ζs| < 1 if(
N

p− 1

)
|λ|N−p+1 > |λ|N +

m∑
k=2

(
N

pk − 1

)
|λ|N−pk+1,

in particular, if the following conditions are fulfilled simultaneously:
(1)

(
N

p−1

)
|λ|N−p+1 1

m > |λ|N ,

(2)
(

N
p−1

)
|λ|N−p+1 1

m >
(

N
pk−1

)
|λ|N−pk+1 for every k, 2 ≤ k ≤ m.

Condition (1) means that

|λ| <
(

N

p− 1

)1/p−1
1

m1/p−1
∼ e

N

p
as N → ∞

(see Lemma 4.4). Similarly, each of conditions (2) means

|λ|pk−p > m

(
N

pk − 1

)/(
N

p− 1

)
, k = 2, . . . ,m.
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Define ρ(N,m, k) by

ρ(N,m, k) =

(
m

(
N

pk − 1

)/(
N

p− 1

))1/pk−p

, k = 2, . . . ,m.

We have m1/pk−p ∼ 1 (as N → ∞), and
(

N
pk−1

)1/pk−1 ∼ e N
pk , and hence

1

pk − 1
log

(
N

pk − 1

)
= 1 + log

N

pk
+ o(1)

(as N → ∞). Now, since pk ≥ p > N1/m+1, we obtain

1

pk − p
log

(
N

pk − 1

)
− 1

pk − 1
log

(
N

pk − 1

)
=

p− 1

(pk − 1)(pk − p)
log

(
N

pk − 1

)
=

p− 1

pk − p
log

N

pk
+ o(1) = o(1),

(as N → ∞), and finally (
N

pk − 1

)1/pk−p

∼ e
N

pk
,

for every k, 2 ≤ k ≤ m.
For the denominator, by the same Lemma 4.4,

(
N

p−1

)
)1/p−1 ∼ eN

p and since

1

pk−1
≥ p− 1

pk − p
≥ 1

mpk−1
and pk−1 ≥ p > N1/m+1,

we get (
N

p− 1

)1/pk−p

∼ 1 as N → ∞.

Finally, conditions (2) are equivalent to

|λ| > ρ(N,m, k), ρ(N,m, k) ∼ e
N

pk
as N → ∞ for all k, k = 2, . . . ,m.

Therefore, given an integer m ≥ 2 and a number ε > 0, the annulus

A(N,m, ε) =:
{
λ ∈ C : (1 + ε)e

N

p2
< |λ| < (1− ε)e

N

p
, p = p(N,m)

}
is included in the noncyclicity set C \ Ω(N) for all N , N > N(m, ε).

For m = 1, we have r(N)  eN1/2 (Corollary 4.5), and hence the disc A(N, 1, ε) =:{
λ ∈ C : |λ| < (1−ε)eN1/2

}
is contained in C\Ω(N) for sufficiently large N (we can also

argue as before, using that in this case, Uf contains two terms only, Uf(0, . . . , ζs, . . . , 0) =

λN +
(

N
p−1

)
ζsλ

N−p+1).

Consider now two consecutive annuli A(N,m, ε) and A(N,m+1, ε). The upper radius
of the former RN,m = (1− ε)eN

p , p = p(N,m) satisfies

RN,m > (1− ε)e
N

2(N + 1)1/m+1
,

and the lower radius of the latter one rN,m+1 = (1 + ε)eN
p2 , p = p(N,m+ 1) satisfies

rN,m+1 ≤ (1 + ε)e
N

(N + 1)2/m+2
.

Since 1
2(N+1)1/m+1 > 1

(N+1)2/m+2 for every m ≥ 1 and sufficiently large N , it follows that

RN,m > rN,m+1 forsufficientlysmall ε > 0, all m ≥ 1 and N > N(m, ε).
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This means that, given an integer l ≥ 2, the consecutive annuli A(N,m, ε) and
A(N,m+ 1, ε), 1 ≤ m < l, overlap (for sufficiently small ε > 0 and sufficiently large N),
and so

l⋃
m=1

A(N,m, ε) =
{
λ : |λ| < (1− ε)e

N

p(N, l)

}
⊂ C \ Ω(N)

for all N , N > N(l, ε), or due to the choice of p(N, l) (Corollary 4.5 is also used){
λ : |λ| < (1− ε)

e

2
N1− 1

l+1

}
⊂ C \ Ω(N).

The result (r(N)  e
2N

1−ε) follows with l + 1 > 1/ε. �

Remark. Of course, the series of asymptotic estimates stated in the theorem is simply
equivalent to r(N) > N1−ε for N > N(ε), for every ε > 0.

§5. General binomials fν,λ

This section contains a few analogues of the results of Sections 3–4 for binomial func-
tions fν,λ that are not polynomials.

We assume everywhere that ν ∈ C \ N, |λ| ≥ 1. A binomial function

fν,−λ = λνz(1 + z/λ)ν ,

(1 + z/λ)ν =
∑
k≥0

(
ν

k

)
zk

λk
,

is in H2
0 (D) if and only if either 1) |λ| > 1 and ν ∈ C (arbitrary), or 2) |λ| = 1 and

Re(ν) > −1/2. The binomial coefficients(
ν

k

)
=

ν(ν − 1) . . . (ν − k + 1)

k!

have powerlike behaviour (since ν /∈ N),(
ν

k

)
=

a(ν, k)

kν+1
, 0 < inf

k≥1
|a(ν, k)| < sup

k≥1
|a(ν, k)| < ∞.

5.1. A sufficient condition for cyclicity:
∑

k≥1

∣∣(ν
k

)∣∣ 1
|λ|k ≤ 1 ⇒ fν,λ is dilation

cyclic (λ ∈ Ω(ν)); the strong inequality implies the Riesz basis property for fν,λ(z
n),

n ≥ 1.

Proof. Indeed, this follows from 2(e). �

The following is a direct analogue of the claim of 4.1 but for an arbitrary exponent
ν ∈ C.

5.2. Corollary. 1
|λ| ≤ 1− 2−1/|ν| ⇒ λ ∈ Ω(ν) (and even the Riesz basis property in the

case of a strong inequality), and in particular,
– for |ν| ≥ ln 2 : |λ| ≥ |ν| · 2 log2 e ⇒ λ ∈ Ω(ν) (and the Riesz basis property), and hence

r(ν) ≤ R(ν) ≤ |ν| · 2 log2 e,

– for 0 < |ν| ≤ 1 : |λ| ≥ 1 + 2e− ln 2/|ν| ⇒ λ ∈ Ω(ν) (and the Riesz basis property), and
hence

r(ν) ≤ R(ν) ≤ 1 + 2e− ln 2/|ν|.

(The latter can be of interest for |ν| → 0).
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Proof. Indeed, since∣∣∣∣(νk
)∣∣∣∣ = ∣∣∣∣ν(ν − 1) . . . (ν − k + 1)

k!

∣∣∣∣
≤

∣∣∣∣ (−|ν|)(−|ν| − 1) . . . (−|ν| − k + 1)

k!

∣∣∣∣ = (−1)k
(
−|ν|
k

)
,

we have ∑
k≥1

∣∣∣∣(νk
)∣∣∣∣ 1

|λ|k ≤
∑
k≥1

(−1)k
(
−|ν|
k

)
1

|λ|k =

(
1− 1

|λ|

)−|ν|
− 1,

and hence the condition (
1− 1

|λ|

)−|ν|
− 1 ≤ 1,

i.e., 1− 1
|λ| ≥ 2−1/|ν|, is sufficient for λ ∈ Ω(ν).

Since 1−e−t > t/2 for 0 < t ≤ 1, the condition ln 2
2|ν| ≥

1
|λ| implies λ ∈ Ω(ν) for ln 2

|ν| ≤ 1

(and even the Riesz basis property).
Similarly, for 0 < x =: e− ln 2/|ν| ≤ 1/2, we have 1

1−x ≤ 1+ 2x, and hence 1+ 2x ≤ |λ|
implies λ ∈ Ω(ν). �

Remark. Of course, one can replace 2e− ln 2/|ν| in the last claim of 5.2 by a larger linear
function (if the corresponding linearized condition seems to be more transparent): since
|ν|/ ln 2 ≥ 2e− ln 2/|ν| (for ln 2

|ν| ≥ 1),

|λ| ≥ 1 +
|ν|
ln 2

⇒ λ ∈ Ω(ν).

5.3. Special cases. Here, we list several linearized forms of statement 5.2 giving suf-
ficient conditions for the completeness of the family (fν,λ(z

n))n≥1 (and its Riesz basis
property when we replace the corresponding inequality for its strong form).
(1) Re(ν) ≥ −1, in which case

A(ν) =: sup
k≥1

∣∣∣∣(νk
)∣∣∣∣ < ∞.

Then |λ| ≥ A(ν) + 1 ⇒ λ ∈ Ω(ν).

Proof. Indeed, applying 5.1, we use
∑

k≥1

∣∣(ν
k

)∣∣ 1
|λ|k ≤ A(ν)

|λ|−1 ≤ 1 whenever the condition

|λ| ≥ A(ν) + 1 holds. �

Remark. The quantity A(ν), at least for real positive ν tending to ∞, is of the order

A(ν) ∼ Γ(ν+1)
Γ(ν/2+1)2 ∼ 2ν+1/2/

√
πν, and so a sufficient cyclicity condition we are getting

from |λ|  2ν+1/2/
√
πν (as ν → ∞) is much worse than those of 5.2.

(2) Lambert series. An interesting partial case of (1) occurs when ν = −1, the Cauchy
kernels

f−1,λ =
z

λ

(
1− z

λ

)−1

=
1

λ

∑
k≥0

zk+1

λk
, |λ| > 1.

Here, A(ν) = 1, and so,

|λ| ≥ 2 ⇒ λ ∈ Ω(−1).
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Moreover, as in the general situation of 2(e), condition |λ|>2 implies that
(

zn

1−zn/λ

)
n≥1

is (not only complete but) a Riesz basis in H2
0 (D), that is every function f ∈ H2

0 (D) is
the sum of a norm convergent series

f =
∑
n≥1

an
zn

λ− zn
,

and the square norm ‖f‖22 is comparable to
∑

n≥1 |an|2. Series of this type are called (gen-

eralized) Lambert series (the “classical” ones corresponds to λ = 1 for which case f−1,λ

is out of H2); they are important for the theory of arithmetic functions, see [Apl2010].

Remark. What happens for 1 < |λ| < 2 is not completely clear but for some negative ν
(in particular, for ν = −1) the set C \ Ω(ν) contains an interval {λ : −a < λ < −1}
where 1 < a < 2, see 5.5 below.

(3) Re(ν) > −1/2, in which case

B(ν)2 =:
∑
k≥1

∣∣∣∣(νk
)∣∣∣∣2 < ∞.

Then |λ|2 ≥ B(ν)2 + 1 ⇒ λ ∈ Ω(ν), and hence R(ν) ≤ (B(ν)2 + 1)1/2.

Proof. Indeed,
∑

k≥1

∣∣(ν
k

)∣∣ 1
|λ|k ≤ B(ν)

(|λ|2−1)1/2
≤ 1 whenever the condition holds. �

Remark. For real ν > 0, the formula

B(ν)2 + 1 =

∫
T

|(1 + z)ν |2 dm =
1

2π

∫ 2π

0

4ν cos2ν(x/2) dx =

(
2ν

ν

)
∼ 4ν√

πν

holds as ν → ∞. It leads to a slightly worse (as compared to the case (2) above) sufficient

condition for (Tn)-cyclicity: |λ|  2ν

(πν)1/4
(as ν → ∞).

(4) Re(ν) > 0, in which case

C(ν) =:
∑
k≥1

∣∣∣∣(νk
)∣∣∣∣ < ∞.

Then |λ| ≥ C(ν) ⇒ λ ∈ Ω(ν), and hence R(ν) ≥ C(ν).

Proof. Indeed,
∑

k≥1

∣∣(ν
k

)∣∣ 1
|λ|k ≤ C(ν)

|λ| ≤ 1 whenever the condition holds. �

In the following special case, one can claim much a better condition.
(5) The case of real ν, 0 < ν ≤ 1. In this case, for every ν and λ, |λ| ≥ 1, fν,λ is
dilation cyclic (and even has the Riesz basis property in the case of a strong inequality
|λ| > 1), so that Ω(ν) = {λ : |λ| ≥ 1}, R(ν) = 1.

Proof. Indeed, the power series for fν,λ is absolutely convergent for |z| ≤ 1 and all λ,

|λ| ≥ 1, and hence, regarding fν,λ
(

λ
|λ|

)
, we observe that(

1− 1

|λ|

)ν

= 1−
∑
k≥1

∣∣∣(ν
k

)∣∣∣ 1

|λ|k ≥ 0,

and the claim follows from 2(e) above. �
Remark. The last inequality, of course, implies Ufν,λ(ζ) �= 0 for all ζ ∈ D∞

2 . However,
zeros on the boundary can appear which does not discard the completeness: for example,
for λ = 1, Ufν,1(1, 1, . . . ) = fν,1(1) = 0.

It is curious to note that taking above λ = 1 we get
∑

k≥1

∣∣(ν
k

)∣∣ = 1 for all 0 < ν < 1.
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5.4. A lower estimate for R(ν), ν real. Here we present a partial analogue of 4.2
(above) for positive noninteger ν.

Claim. For a real ν, ν ≥ 2 with an even entire part ([ν] ∈ 2N) and for real λ, we have

1 ≤ λ < ν ⇒ λ ∈ C \ Ω(ν) (fν,λ isnoncyclic),

and hence

ν ≤ R(ν) ≤ ν · 2 log2 e.

Proof. Indeed, let f = z(1 − z/λ)ν =
∑

k≥0

(
ν
k

) (−1)kzk+1

λk , and as in 4.2, observe that

Uf(0) = 1 > 0, and for 0 < t < 1

Uf(t, 0, 0, . . . ) = 1 +
∑
k≥1

(
ν

2k − 1

)
(1/λ)2

k−1(−1)2
k−1tk

= 1− ν

λ
t−

∑
k≥2

(
ν

2k − 1

)
(1/λ)2

k−1tk.

It is clear that
(

ν
2k−1

)
≥ 0 for 2k − 2 ≤ [ν], and for 2k − 2 > [ν] we have also

(
ν

2k−1

)
=

ν(ν−1)...(ν−[ν])(ν−[ν]−1)...(ν−2k+2)
(2k−1)!

> 0 because [ν] is even. Since ν
λ > 1, it follows that

there exists 0 < t0 < 1 making Uf negative Uf(t0, 0, . . . ) < 0, and by continuity, we find
t, 0 < t < t0 such that Uf(t, 0, . . . ) = 0. Hence, f is not cyclic in H2

0 . �

Remark. The asymptotic formula for
(
ν
k

)1/k
from Lemma 4.4 is available for all complex ν

(since the asymptotics for the Gamma function Γ(z+1) is known in complex domain), but
their consequences similar to these of 4.3, 4.5 and 4.6 (giving quite sharp lower estimates
for r(ν)) meet at the moment some computational problems. The author hopes to return
to the question later.

5.5 Proof of Theorem 2. Items (1)–(2) of the theorem were already proved in 5.2 and
5.4. As above, let

f = z(1− z/λ)ν =
∑
k≥0

(
ν

k

)
(−1)kzk+1

λk
,

and as in 4.2, observe that Uf(0) = 1 > 0, and for 0 < t < 1

Uf(t, 0, 0, . . . ) = 1 +
∑
k≥1

(
ν

2k − 1

)
(1/λ)2

k−1(−1)2
k−1tk.

Since ν < 0, we have
(

ν
2k−1

)
(−1)2

k−1 =
∣∣( ν

2k−1

)∣∣, and for real negative λ, λ < −1,

1/λ2k−1 = −1/|λ|2k−1, so that

Uf(t, 0, 0, . . . ) = 1−
∑
k≥1

∣∣∣∣( ν

2k − 1

)∣∣∣∣ tk

|λ|2k−1
.

By the hypothesis, 1−
∑

k≥1

∣∣( ν
2k−1

)∣∣ 1

|λ|2k−1
< 0 for every λ ∈ (−a(ν), 1). (In fact, a(ν) is

a unique solution to the equation
∑

k≥1

∣∣( ν
2k−1

)∣∣ 1

|λ|2k−1
= 1 since the sum

∑
k≥1

∣∣(ν
k

)∣∣ 1
|λ|k

is a finite and strictly monotone decreasing function of |λ| having limit 0 at infinity;
clearly, a(ν) > |ν| for ν ∈ (−∞,−1]). Hence, there exists t, 0 < t < 1 such that
Ufν,λ(t, 0, 0, . . . ) = 0, and hence λ ∈ C \ Ω(ν).

For ν = −1/2, we have already
∑3

k=1

∣∣( ν
2k−1

)∣∣(1/1.005)2k−1 > 1, and similarly for an

estimate of a(−1). �
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Remark. Recall that for the “Lambert series” case, ν = −1, see 5.3(2) above, for |λ| ≥ 2
we have already the cyclicity case for f−1,λ (and the Riesz basis property for |λ| > 2),
but for λ ∈ (−a,−1), a = 1.46627 · · · < 2, we have noncyclic Cauchy type kernels f−1,λ.
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