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THE MAXWELL OPERATOR WITH PERIODIC

COEFFICIENTS IN A CYLINDER

N. FILONOV AND A. PROKHOROV

Abstract. The object of study is the Maxwell operator in a three-dimensional cylin-
der with coefficients periodic along the axis of the cylinder. It is proved that for
cylinders with circular and rectangular cross-section the spectrum of the Maxwell
operator is absolutely continuous.

Introduction

Let U ⊂ R
2 be a bounded domain, and let Π = U×R be a three-dimensional cylinder.

Let ε and μ be two scalar functions describing the dielectric and magnetic permeabilities
of the medium that fills the cylinder Π. We will always assume that these functions are
bounded and separated away from zero:

(0.1) 0 < ε0 ≤ ε(x) ≤ ε1, 0 < μ0 ≤ μ(x) ≤ μ1, x ∈ sΠ.

The Maxwell operator (see, e.g., [1]) acts by the formula

(0.2) M
(
u
v

)
=

(
iε−1 curl v
−iμ−1 curlu

)
on the pairs of vector-valued functions {u, v} defined on Π and satisfying the divergence
free condition

(0.3) div(εu) = div(μv) = 0

and the perfect conductivity condition on the boundary of the cylinder:

(0.4) uτ

∣∣
∂Π

= 0, vν
∣∣
∂Π

= 0;

the subscripts τ and ν denote the tangent and normal components of a vector, respec-
tively. The functions u and v have the meaning of the electric and magnetic field com-
ponents in the cylinder. The exact definition of the operator M is given below in §1.
The Maxwell operator is selfadjoint in a suitable Hilbert space. We are interested in the
structure of its spectrum in the case where the coefficients ε and μ are periodic along the
axis of the cylinder,

(0.5) ε(x+ e3) = ε(x), μ(x+ e3) = μ(x), x ∈ sΠ.

It is well known that for operators with periodic coefficients the spectrum has a band
structure (see, e.g., [8]), no singular continuous component (see also [5]) is present, and
the eigenvalues can only be of infinite multiplicity (degenerate bands). Our goal is to
establish the absolute continuity of the spectrum of the Maxwell operator or, equivalently,
the absence of eigenvalues.
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In the paper [9] by A. Morame, the absolute continuity of the Maxwell operator was
established in the entire space R3 in the case of scalar coefficients ε, μ ∈ C∞ periodic
with respect to a three-dimensional lattice. T. A. Suslina simplified the proof of Morame,
which made it possible to relax the smoothness conditions to

(0.6) ε, μ ∈ W 2
3/2,loc.

Moreover, Suslina proved the absolute continuity of the Maxwell operator in a layer
[0, a] × R2 under the same condition (0.6), see [10] (formally speaking, in [10] it was
required that ε, μ ∈ W 2

3/2,loc∩W 1
p,loc, p > 3, but the proof works in the case of p = 3, and

then (0.6) suffices, by the embedding theorem W 2
3/2 ⊂ W 1

3 ). In the paper [3] the absolute

continuity of the Maxwell operator in R3 was established in the case where the coefficients
are periodic along certain directions and tend to constants super-exponentially fast in
the remaining directions (the so-called soft waveguide).

We show that in the case of cylinders with circular and rectangular cross-section the
spectrum of the Maxwell operator is absolutely continuous. We also assume that the
coefficients ε and μ are scalar functions (which corresponds to an isotropic medium),
rather than matrix-valued functions, and are sufficiently smooth. The question as to
what happens if at least one of these conditions fails is open even in the case of R3. It is
known that if we lift both conditions, that is, consider an operator with nonsmooth matrix
coefficients, then the spectrum can have eigenvalues of infinite multiplicity (see [2]).

In all three papers [9, 10] and [3] it was proved that an eigenvalue of the Maxwell
operator (0.2)–(0.4) can occur only if there is an eigenvalue of some Schrödinger operator
−Δ + V . The function V is periodic, (6 × 6)–matrix-valued, and, generally speaking,
nonselfadjoint. In the case of a layer, the Robin boundary condition arises with periodic
coefficients that are combinations of ε, μ, and their derivatives. We follow the same
pattern. In this paper we show that in the case of a cylinder with quite an arbitrary
cross-section, the question of the absolute continuity of the Maxwell operator also reduces
to the question of the absence of eigenvalues for some Schrödinger operator in a cylinder
with the Robin boundary condition. Moreover, some terms related to the curvature
of the boundary are added to the coefficients in the boundary condition. The result
on the absolute continuity of the Maxwell operator is obtained only for cylinders with
rectangular or circular cross-section, because currently the corresponding theorems for
the Schrödinger operator are obtained only for such cylinders, see [6] and [7].

§1. Formulation of results

Let ε, μ be real scalar functions in a cylinder Π = U × R; we assume conditions (0.1)
and (0.5). We introduce the Hilbert space

(1.1) J =
{
(u; v)∈L2(Π,C3, εdx)⊕ L2(Π,C3, μdx) : div(εu)=div(μv) = 0, vν |∂Π= 0

}
.

The conditions on u and v are understood in the sense of the integral identities

div(εu) = 0 ⇔
∫
Π

〈εu,∇η〉 dx = 0, η ∈ H1
0 (Π,C),

div(μv) = 0, vν |∂Π = 0 ⇔
∫
Π

〈μv,∇θ〉 dx = 0, θ ∈ H1(Π,C),

where H1, H1
0 are Sobolev spaces; H1

0 (Π) is the closure of the set C∞
0 (Π) in H1(Π). In

the space J we consider the Maxwell operator

(1.2) M =

(
0 iε−1 curl

−iμ−1 curl 0

)
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on the domain

(1.3) DomM =
{
(u; v) ∈ J : curlu, curl v ∈ L2(Π,C3), uτ

∣∣
∂Π

= 0
}
.

The boundary condition is again defined in terms of an integral identity:

uτ

∣∣
∂Π

= 0 ⇔
∫
Π

〈curlu, z〉 dx =

∫
Π

〈u, curl z〉 dx for all z ∈ L2(Π,C3)

with curl z ∈ L2(Π,C3).

It is well known (see [1]) that the operator M defined in this way is selfadjoint.

We introduce the notation ĂLp(Π) for the space of periodic functions f ,

f(x+ e3) = f(x),

such that f ∈ Lp(Π∩BR) for any R, where BR is a ball of radius R. The symbols ĂW l
p(Π)

and ĂLp(∂Π) have a similar meaning.
The next result was established in a previous work of the authors, see [4, Theorem 1.4].

Theorem 1.1. Let Π = U × R, where the cross-section U is a convex bounded domain

on the plane. Suppose that the coefficients ε, μ satisfy (0.1) and ε, μ ∈ ĂW 1
3 (Π). Then

the set DomM admits an equivalent description:

DomM =
{
(u; v) ∈ H1(Π,C) : div(εu) = div(μv) = 0, uτ |∂Π = 0, vν |∂Π = 0

}
;

here the boundary conditions can be understood in the sense of traces.

Thus, the “weak” Maxwell operator coincides with the “strong” Maxwell operator.

Remark 1.2. The claim of Theorem 1.1 remains valid if the convexity condition on the
domain U is replaced by the smoothness condition ∂U ∈ W 2

p , p > 2.

We introduce the space

Ĥ1(Π) =
{
Φ ∈ H1(Π,C6) : NΦ

∣∣
∂Π

= 0
}
,

where

N =

⎛
⎜⎜⎝

0 −ν3 ν2 0 0 0
ν3 0 −ν1 0 0 0
−ν2 ν1 0 0 0 0
0 0 0 ν1 ν2 ν3

⎞
⎟⎟⎠ ,

ν(x) is the normal vector at the point x ∈ ∂Π.
We introduce an additional restriction on the cylinder Π. Let q ≥ 3/2, r ≥ 2.

Condition (A(q, r)). The domain Π is such that the conditions

Φ ∈ Ĥ1(Π), V ∈ ĂLq(Π,Mat(6× 6,C)), Σ ∈ ĂLr(∂Π,Mat(6× 6,C))

and the integral identity

(1.4)

∫
Π

(
〈∂jΦ, ∂jΨ〉C6 +〈V Φ,Ψ〉C6

)
dx+

∫
∂Π

〈ΣΦ,Ψ〉C6 dS(x) = 0 for all Ψ ∈ Ĥ1(Π)

imply Φ ≡ 0.

Hereinafter, summation over repeated indices from 1 to 3 is implied.

Remark 1.3. The identity (1.4) means that the function Φ lies in the kernel of the matrix
Schrödinger operator −Δ+ V in the cylinder Π with the boundary conditions

Φ(1)
τ

∣∣
∂Π

= 0, Φ(2)
ν

∣∣
∂Π

= 0,
(
∂νΦ

(1) + (ΣΦ)(1)
)
ν

∣∣
∂Π

= 0,
(
∂νΦ

(2) + (ΣΦ)(2)
)
τ

∣∣
∂Π

= 0,

where Φ(1) = (Φ1,Φ2,Φ3), Φ
(2) = (Φ4,Φ5,Φ6). Thus, the condition A(q, r) means that

any Schrödinger operator with potentials V and Σ in the classes under consideration
admits no eigenvalues.
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We now state the main result.

Theorem 1.4. Let U be a bounded convex plane domain with piecewise C2-smooth
boundary. Suppose that the cylinder Π = U × R satisfies the condition A(q, r) for some
q ≥ 3/2, r ≥ 2. Let the scalar coefficients ε, μ satisfy condition (0.1), and let

ε, μ ∈ ĂW 2
p (Π), p = max

(
q,

3r

2 + r

)
.

Then the spectrum of the Maxwell operator defined by formulas (1.1)–(1.3) is absolutely
continuous.

Theorem 1.4 is conditional: if the periodic Schrödinger operator with the Robin bound-
ary condition in a cylinder has no eigenvalues, then the spectrum of the Maxwell operator
in the same cylinder is absolutely continuous. The question of the absence of eigenval-
ues for the Schrödinger operator in a cylinder with an arbitrary cross-section remains
open. I. Kachkovskĭı established this for cylinders with rectangular cross-section and
with circular cross-section.

Theorem 1.5 ([6]). Let U be a rectangle on the plane. Then the condition A(3/2, r)
with any r > 2 is fulfilled for the cylinder U × R.

Theorem 1.6 ([7]). Let U be a circle on the plane. Then the condition A(2, 4) is fulfilled
for the cylinder U × R.

Now Theorem 1.4 implies the following.

Corollary 1.7. Suppose U is a rectangle, the coefficients ε, μ satisfy (0.1), and ε, μ ∈
ĂW 2

p (Π) with p > 3/2. Then the spectrum of the Maxwell operator (1.1)–(1.3) is absolutely
continuous.

Corollary 1.8. Suppose U is a disk, the coefficients ε, μ satisfy (0.1), and ε, μ ∈ ĂW 2
2 (Π).

Then the spectrum of the Maxwell operator (1.1)–(1.3) is absolutely continuous.

Remark 1.9. Theorem 1.4 remains true also for the case of a nonconvex cross-section U
with C2-smooth boundary ∂U , see Remark 1.2.

Remark 1.10. For simplicity, Theorem 1.4 is stated for the cylinder Π. From the proof
it will be clear that a similar result holds true for a periodic waveguide (a domain with
a variable cross-section whose change along the x3-axis is also periodic) with C2-smooth
boundary.

§2. Lemmas

Here and in what follows it is assumed that the cylinder Π satisfies the conditions of
Theorem 1.4.

Lemma 2.1. a) Suppose a ∈ H1(Π,C3) and ϕ ∈ ĂW 1
3 (Π) ∩ L∞(Π). Then

curl(ϕa) = ϕ curl a+ [∇ϕ, a] ∈ L2(Π,C3),

where [ . , . ] stands for the cross product of three-dimensional vectors.

b) Suppose a, d ∈ H1(Π,C3) and b ∈ ĂW 1
3/2(Π). Then

〈curl[a, b], d〉 = 〈a div b− b div a− 〈a,∇〉b+ 〈b,∇〉a, d〉 ∈ L1(Π,C3).

These identities are well known, and the L2- or L1-integrability follows from the
embedding theorems.
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Lemma 2.2. Suppose d ∈ H1(Π,C3) and c ∈ H1(Π,C3) or c = [a, b], where a ∈
H1(Π,C3), b ∈ ĂW 1

3/2(Π). Then∫
Π

〈curl c, d〉 dx =

∫
Π

〈c, curl d〉 dx+

∫
∂Π

〈c, [d, ν]〉 dS.

Here ν is the outer unit normal to the boundary.

This lemma is also well known for smooth functions. The convergence of all integrals
again follows from the embedding theorems.

Lemma 2.3. Suppose that v ∈ H1(Π,C3), μ satisfies (0.1), and μ ∈ ĂW 2
3/2(Π). Then

div(μ−1∇μ)v + μ−2|∇μ|2v − 〈v,∇〉(μ−1∇μ) = W0(μ)v,

where

(2.1) W0(μ)jk = μ−1Δμδjk + μ−2∂jμ∂kμ− μ−1∂j∂kμ.

This lemma is verified by direct computation.
On the boundary of the cylinder Π, we introduce a function κ as follows: for x =

(x1, x2, x3) ∈ ∂U × R, the value κ(x) is equal to the curvature of the curve ∂U at the
point (x1, x2). In other words, κ(x) is the mean curvature (the sum of the principal
curvatures) of the surface ∂Π at the point x.

Lemma 2.4. Let a, b ∈ C1(sΠ,C3). On the boundary ∂Π we consider the function

(2.2) I(x) ≡ νk(x)ak(x)∂jsbj(x)− νj(x)ak(x)∂ksbj(x),

where ν(x) is the outer unit normal. If the boundary conditions

(2.3) aν
∣∣
∂Π

= bν
∣∣
∂Π

= 0

or

(2.4) aτ
∣∣
∂Π

= bτ
∣∣
∂Π

= 0,

are satisfied, then
I(x) = κ(x)〈Pe⊥3

a(x), b(x)〉,
where Pe⊥3

is the projection onto the plane orthogonal to the axis of the cylinder.

Proof. 1) Consider the case where (2.3) is true. We have

I(x) = −νjak∂ksbj = sbjak∂kνj

because 〈ν, b〉 = 0 on ∂Π, and this identity admits differentiation along the tangent
vector a. It is also clear that ∂3νj = 0. Thus, I(x) = 〈∂

raν, b〉, where ra = Pe⊥3
a. The

condition aν = 0 implies ra = eiθ|ra|τ , where θ(x) ∈ R, τ1 = ν2, τ2 = −ν1. By the
Frenet–Serret formulas,

∂
raν = eiθ|ra|∂τν = eiθ|ra|κ(x)τ.

Therefore, I(x) = κ(x)〈ra, b〉.
2) Now consider the case of (2.4). We have a = eiθ|a|ν and

νjνk∂k + τjτk∂k = ∂j , j = 1, 2,

where τ1 = ν2, τ2 = −ν1, τ3 = ν3 = 0. Hence,

I(x) = eiθ|a| (νkνk∂j − νjνk∂k)sbj = eiθ|a|τjτk∂ksbj ,

where we have taken into account the fact that b3 = 0. Furthermore, ∂τ (τjsbj) = 0
because τjsbj = 0 along ∂Π. Therefore, again by the Frenet–Serret formulas, we have

I(x) = −eiθ|a|sbj∂τ τj = eiθ|a|sbjκ(x)νj = κ(x)〈a, b〉. �
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Lemma 2.5. Suppose that a, b ∈ H1(Π,C3) and the boundary conditions (2.3) or (2.4)
are satisfied. Then∫
Π

〈curl a, curl b〉 dx =

∫
Π

〈∂ja, ∂jb〉 dx−
∫
Π

〈div a, div b〉 dx+

∫
∂Π

κ(x)〈Pe⊥3
a(x), b(x)〉 dS.

Proof. It suffices to prove the claim for smooth functions a, b. For such functions, it is
well known that∫

Π

〈curl a, curl b〉 dx =

∫
Π

〈∂ja, ∂jb〉 dx−
∫
Π

〈div a, div b〉 dx+

∫
∂Π

I(x) dS(x),

where I(x) is as in (2.2). It remains to refer to the preceding lemma. �

Lemma 2.6. Suppose that a, b ∈ H1(Π,C3), μ satisfies (0.1), and μ ∈ ĂW 2
3/2(Π). Then∫

Π

〈∂j(μa), ∂j(μ−1b)〉 dx =

∫
Π

〈∂j(μ1/2a), ∂j(μ
−1/2b)〉 dx−

∫
Π

μ−1∂jμ〈∂ja, b〉 dx

−
∫
Π

(
(4μ2)−1|∇μ|2 + (2μ)−1Δμ

)
〈a, b〉 dx+

∫
∂Π

(2μ)−1∂νμ〈a, b〉 dS.

Proof. We differentiate the products μ1/2(μ1/2a) and μ−1/2(μ−1/2b) :∫
Π

〈∂j(μa), ∂j(μ−1b)〉 dx =

∫
Π

〈∂j(μ1/2a), ∂j(μ
−1/2b)〉 dx+

∫
Π

∂j(μ
1/2)〈a, ∂j(μ−1/2b)〉 dx

+

∫
Π

∂j(μ
−1/2)〈∂j(μ1/2a), b〉 dx+

∫
Π

∂j(μ
1/2)∂j(μ

−1/2)〈a, b〉 dx

=: J1 + J2 + J3 + J4.

In the second term we integrate by parts:

J2 =−
∫
Π

〈∂j(∂j(μ1/2)a), μ−1/2b〉 dx+

∫
∂Π

νj∂j(μ
1/2)〈a, μ−1/2b〉 dS

=−
∫
Π

(
((2μ)−1Δμ− (4μ2)−1|∇μ|2)〈a, b〉+ (2μ)−1∂jμ〈∂ja, b〉

)
dx

+

∫
∂Π

(2μ)−1∂νμ〈a, b〉 dS.

Furthermore,

J3 =

∫
Π

(
−|∇μ|2

4μ2
〈a, b〉 − ∂jμ

2μ
〈∂ja, b〉

)
dx, J4 = −

∫
Π

|∇μ|2
4μ2

〈a, b〉 dx.

Summarizing, we get the result. �

§3. Integration by parts

Theorem 3.1. Suppose that v, f ∈ H1(Π,C3), div(μv) = 0, ε and μ satisfy (0.1), and

ε, μ ∈ ĂW 2
3/2(Π). Then∫

Π

ε−1〈curl v, curl f〉 dx =

∫
Π

〈curl(μv), curl((εμ)−1f)〉 dx

−
∫
Π

〈curl v, μ[∇(εμ)−1, f ]〉 dx+

∫
Π

ε−1〈W0(μ)v, f〉 dx

+

∫
Π

(εμ)−1∂jμ〈∂jv, f〉 dx+

∫
∂Π

(εμ)−1〈[∇μ, v], [f, ν]〉 dS,

(3.1)

where W0(μ) is as in (2.1).
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Proof. We have∫
Π

ε−1〈curl v, curl f〉 dx =

∫
Π

〈
μ curl v, curl((εμ)−1f)− [∇(εμ)−1, f ]

〉
dx

= −
∫
Π

〈
μ curl v, [∇(εμ)−1, f ]

〉
dx+

∫
Π

〈
curl(μv), curl((εμ)−1f)

〉
dx

−
∫
Π

〈
[∇μ, v], curl((εμ)−1f)

〉
dx,

where we have used Lemma 2.1 twice.
In the last summand, we apply Lemma 2.2:

−
∫
Π

〈
[∇μ, v], curl((εμ)−1f)

〉
dx

= −
∫
Π

〈
curl[∇μ, v], (εμ)−1f

〉
dx+

∫
∂Π

〈[∇μ, v], [(εμ)−1f, ν]〉 dS.

In the first term on the right-hand side, we apply Lemma 2.1 b), taking into account the
fact that div(μv) = 0:

−
∫
Π

〈
curl[μ−1∇μ, μv], (εμ)−1f

〉
dx

=

∫
Π

〈
μv div(μ−1∇μ) + 〈μ−1∇μ,∇〉(μv)− 〈μv,∇〉(μ−1∇μ), (εμ)−1f

〉
dx.

It remains to use Lemma 2.3. �

Recall that our goal is to transform the Maxwell operator to a Schrödinger operator.
The terms on the right-hand side of (3.1) that do not involve the derivatives v and f ,
as well as the second summand involving curl v, are suitable for this purpose. The first
term on the right-hand side of (3.1) is transformed with the help of Lemmas 2.5 and 2.6
to

〈∂j(μ1/2v), ∂j(ε
−1μ−1/2f)〉,

which corresponds to the Laplace operator. The fourth term on the right-hand side of
(3.1), which involves 〈∂jv, f〉, cancels exactly. This explains the choice of the exponents

of ε and μ in the expression 〈∂j(μ1/2v), ∂j(ε
−1μ−1/2f)〉.

Lemma 3.2. Suppose that v, f ∈ H1(Π,C3), div(μv) = 0, and vν
∣∣
∂Π

= 0, fν
∣∣
∂Π

= 0.

Let ε and μ satisfy (0.1), and let ε, μ ∈ ĂW 2
3/2(Π). Then

∫
Π

ε−1〈curl v, curl f〉 dx =

∫
Π

〈∂j(μ1/2v), ∂j(ε
−1μ−1/2f)〉 dx−

∫
Π

〈curl v, μ[∇(εμ)−1, f ]〉 dx

+

∫
Π

ε−1〈W (μ)v, f〉 dx+

∫
∂Π

〈(
ε−1κ(x)Pe⊥3

− (2εμ)−1∂νμ
)
v, f

〉
dS.

Here

(3.2) Wjk(μ) =
(
(2μ)−1Δμ− (4μ2)−1|∇μ|2

)
δjk + μ−2∂jμ∂kμ− μ−1∂j∂kμ.

Proof. By Lemma 2.5, since div(μv) = 0, we have∫
Π

〈curl(μv), curl((εμ)−1f)〉 dx =

∫
Π

〈∂j(μv), ∂j((εμ)−1f)〉 dx+

∫
∂Π

κ(x)ε−1〈Pe⊥3
v, f〉 dS.
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Using Lemma 2.6 with a = v, b = ε−1f , we get∫
Π

〈∂j(μv), ∂j((εμ)−1f)〉 dx =

∫
Π

〈∂j(μ1/2v), ∂j(ε
−1μ−1/2f)〉 dx

−
∫
Π

(εμ)−1∂jμ〈∂jv, f〉 dx

−
∫
Π

(
(4εμ2)−1|∇μ|2 + (2εμ)−1Δμ

)
〈v, f〉 dx

+

∫
∂Π

(2εμ)−1∂νμ〈v, f〉 dS.

(3.3)

Finally, the condition vν |∂Π = 0 implies

〈[∇μ, v], [f, ν]〉 = 〈[ν, [∇μ, v]], f〉 = −∂νμ〈v, f〉.
Therefore, the last integral on the right-hand side of (3.1) is equal to∫

∂Π

(εμ)−1〈[∇μ, v], [f, ν]〉 dS = −
∫
∂Π

(εμ)−1∂νμ〈v, f〉 dS. �

Lemma 3.3. Suppose that u,w ∈ H1(Π,C3), div(εu) = 0, and uτ

∣∣
∂Π

= 0, wτ

∣∣
∂Π

= 0.

Let ε and μ satisfy (0.1) and ε, μ ∈ ĂW 2
3/2(Π). Then∫

Π

μ−1〈curlu, curlw〉 dx =

∫
Π

〈∂j(ε1/2u), ∂j(ε−1/2μ−1w)〉 dx−
∫
Π

〈curlu, ε[∇(εμ)−1, w]〉 dx

+

∫
Π

μ−1〈W (ε)u,w〉 dx+

∫
∂Π

(
μ−1κ(x) + (2εμ)−1∂νε

)
〈u,w〉 dS,

where the matrix W (ε) is given by formula (3.2).

Proof. We apply Theorem 3.1 with v = u, f = w, and with ε and μ interchanged. We
get∫
Π

μ−1〈curlu, curlw〉 dx =

∫
Π

〈curl(εu), curl((εμ)−1w)〉 dx−
∫
Π

〈curlu, ε[∇(εμ)−1, w]〉 dx

+

∫
Π

μ−1〈W0(ε)u,w〉 dx+

∫
Π

(εμ)−1∂jε〈∂ju,w〉 dx.

The last integral on the right-hand side of (3.1) is zero because wτ |∂Π = 0.
Again, we apply Lemma 2.5 to the first integral on the right-hand side, taking into

account the fact that div(εu) = 0:∫
Π

〈curl(εu), curl((εμ)−1w)〉 dx =

∫
Π

〈∂j(εu), ∂j((εμ)−1w)〉 dx+

∫
∂Π

κ(x)μ−1〈u,w〉 dS.

By Lemma 2.6 with a = u, b = μ−1w, arguing as in (3.3), we obtain∫
Π

〈∂j(εu), ∂j((εμ)−1w)〉 dx =

∫
Π

〈∂j(ε1/2u), ∂j(ε−1/2μ−1w)〉 dx

−
∫
Π

(εμ)−1∂jε〈∂ju,w〉 dx

−
∫
Π

(
(4ε2μ)−1|∇ε|2 + (2εμ)−1Δε

)
〈u,w〉 dx

+

∫
∂Π

(2εμ)−1∂νε〈u,w〉 dS,

and the claim follows. �
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§4. Proof of Theorem 1.4

It suffices to prove the absence of eigenvalues. Suppose that {u, v} is an eigenfunction
of the Maxwell operator, that is,

−iμ−1 curlu = λv, div(εu) = 0, uτ

∣∣
∂Π

= 0,(4.1)

iε−1 curl v = λu, div(μv) = 0, vν
∣∣
∂Π

= 0.(4.2)

Suppose w ∈ H1(Π,C3), wτ |∂Π = 0. Using (4.1), (4.2), and Lemma 2.2, we obtain
(4.3)∫

Π

μ−1〈curlu, curlw〉 dx = iλ

∫
Π

〈v, curlw〉 dx = iλ

∫
Π

〈curl v, w〉 dx = λ2

∫
Π

ε〈u,w〉 dx.

Similarly, if f ∈ H1(Π,C3), fν |∂Π = 0, then
(4.4)∫

Π

ε−1〈curl v, curl f〉 dx = −iλ

∫
Π

〈u, curl f〉 dx = −iλ

∫
Π

〈curlu, f〉 dx = λ2

∫
Π

μ〈v, f〉 dx.

In the middle identities in (4.3) and (4.4) we have used Lemma 2.2 and the conditions
wτ |∂Π = 0 and uτ |∂Π = 0. We add identities (4.3) and (4.4), substituting the expressions
from Lemmas 3.2 and 3.3 for the left-hand sides:∫

Π

(
〈∂j(ε1/2u), ∂j(ε−1/2μ−1w)〉+ 〈∂j(μ1/2v), ∂j(ε

−1μ−1/2f)〉 − 〈curlu, ε[∇(εμ)−1, w]〉

− 〈curl v, μ[∇(εμ)−1, f ]〉+ μ−1〈W (ε)u,w〉+ ε−1〈W (μ)v, f〉
)
dx

+

∫
∂Π

((
μ−1κ(x) + (2εμ)−1∂νε

)
〈u,w〉+

〈(
ε−1κ(x)Pe⊥3

− (2εμ)−1∂νμ
)
v, f

〉)
dS

= λ2

∫
Π

(ε〈u,w〉+ μ〈v, f〉) dx.

Since curlu and curl v in the first integral on the left-hand side can be expressed with
the help of (4.1) and (4.2), the last identity can be rewritten as

(4.5)

∫
Π

(〈∂jΦ, ∂jΨ〉C6 + 〈V Φ,Ψ〉C6) dx+

∫
∂Π

〈ΣΦ,Ψ〉C6 dS = 0,

where

Φ =

(
ε1/2u
μ1/2v

)
, Ψ =

(
ε−1/2μ−1w
ε−1μ−1/2f

)
, V =

(
W (ε)− εμλ2I3 −2iλF

2iλF W (μ)− εμλ2I3

)
,

F =

⎛
⎝ 0 −∂3(εμ)

1/2 ∂2(εμ)
1/2

∂3(εμ)
1/2 0 −∂1(εμ)

1/2

−∂2(εμ)
1/2 ∂1(εμ)

1/2 0

⎞
⎠ ,

Σ =

(
(κ(x) + (2ε)−1∂νε)I3 0

0 κ(x)Pe⊥3
− (2μ)−1∂νμI3

)
.

The conditions ε, μ ∈ ĂW 2
q for q ≥ 3/2 and condition (0.1) yield W (ε),W (μ) ∈ ĂLq and

V ∈ ĂLq(Π).

From ε, μ ∈ ĂW 2
3r

2+r

it follows that ∂νε, ∂νμ,Σ ∈ ĂLr(∂Π). Since (4.5) is valid for any

Ψ ∈ Ĥ1(Π), the condition A(q, r) shows that Φ ≡ 0. This means that u ≡ v ≡ 0 and the
point spectrum of the Maxwell operator is empty. Theorem 1.4 is proved.
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