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ON SPECTRAL ASYMPTOTICS OF THE TENSOR

PRODUCT OF OPERATORS WITH ALMOST REGULAR

MARGINAL ASYMPTOTICS

N. V. RASTEGAEV

Abstract. The spectral asymptotics of a tensor product of compact operators in
Hilbert space with known marginal asymptotics is studied. The methods of A. Karol′,
A. Nazarov, and Ya. Nikitin are generalized to operators with almost regular marginal
asymptotics. In many (but not all) cases it is shown that the tensor product in
question also has almost regular asymptotics. The results are then applied to the
theory of small ball probabilities of Gaussian random fields.

§1. Introduction

We consider compact nonnegative selfadjoint operators T = T ∗ ≥ 0 on a Hilbert space

H and T̃ on a Hilbert space H̃. Let λn = λn(T ) denote the eigenvalues of T arranged
in a nondecreasing order and repeated in accordance with their multiplicity. We also
consider their counting function

N (t) = N (t, T ) = #{n : λn(T ) > t}.

Similarly we define λ̃n and Ñ (t) for T̃ .

Having known the asymptotics forN (t, T ) andN (t, T̃ ) as t → 0, we want to determine

the asymptotics for N (t, T ⊗T̃ ). Our results are easily generalized to the case of a tensor
product of several operators.

Known applications of such results can be found in problems concerning asymptotics
of quantization for random variables and vectors (see, e.g., [1, 2]), average complexity of
linear problems, i.e., problems of approximation of a continuous linear operator (see, e.g.,
[3]), and also in the rapidly developing theory of small deviations of random processes in
L2-norm (see, e.g., [4, 5]).

The abstract methods of spectral asymptotic analysis for tensor products, generalized
in this paper, were developed in [4] and [5]. In the case treated in [4] the eigenvalues of
the operator factors have the so-called regular asymptotic behavior:

λn ∼ ψ(n)

np
, n → ∞,

where p > 1, and ψ is a slowly varying function (SVF). In the paper [5], a similar approach
was used in the case where the eigenvalue counting function has the asymptotics of a
slowly varying function.

In this paper we consider compact operators with almost regular asymptotics,

(1) λn(T ) ∼ ψ(n) · s(ln(n))
np

, n → +∞,
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where p > 1, ψ is an SVF, and s is a continuous periodic function. As an example of
such an operator, we mention Green integral operators with a singular arithmetically
self-similar weight measure (see [6, 7, 8]).

For the asymptotics (1), the following fact holds, which is similar to Lemma 3.1
from [4], so we present it without proof.

Proposition 1. For any p > 0, the spectral asymptotics (1) for the operator T is
equivalent to the asymptotics

(2) N (t, T ) ∼ Nas(t) :=
ϕ(1/t) · s(ln(1/t))

t1/p
, t → +0,

where ϕ is an SVF, s is a periodic function (the period T of s corresponds to the period
T/p of the function s). Moreover, the convergence of the integral

∫∞
1

ϕ(τ )dττ is equivalent

to the convergence of the sum
∑

n λ
1/p
n (T ).

Application of the results obtained in this paper is demonstrated by an example per-
taining to the problem of L2-small deviations of Gaussian random fields.

The study of the small deviation problem was initiated in [9] and was continued by
many other authors. The history of the problem and the summary of main results are
the subjects of two reviews [10] and [11]. Links to recent results in the field of small
deviations of random processes can be found on the web-site [12].

The study of small deviations of Gaussian fields of tensor product type was initiated
in the classical paper [13], where the logarithmic asymptotics of L2-small deviations was
obtained for the Brownian sheet

Wd(x1, . . . , xd) = W1(x1)⊗W2(x2)⊗ · · · ⊗Wd(xd)

on the unit cube (here the Wk are independent Wiener processes). This result was later
generalized in [14] to some other marginal processes. In [4] and [5], certain results on
small deviations for wide classes of Gaussian fields of tensor product type were obtained
as a consequence of the results on spectral asymptotics of the corresponding operators.

This paper has the following structure. In §2 we give the necessary information about
slowly varying functions. In §3 we establish some auxiliary facts related to the asymp-
totics of convolutions of an almost Mellin type.

Spectral asymptotics of the tensor products of operators with marginal asymptotics
of the form (2) are the subject of §4. The main results are that we obtain the main
term of the spectral asymptotics of the tensor product for all possible combinations of
parameters, imposing only slight technical restrictions in some cases. The results are
split into several cases depending on the relations between the parameters of the spectral

asymptotics of the operators T and T̃ :

1. p̃ > p.
2. p̃ = p.

2.1.
∫∞
1

ϕ(σ)dσσ =
∫∞
1

ϕ̃(σ)dσσ = ∞.

2.1.1. The functions s and s̃ have a common period (T = T̃ ).

2.1.2. The periods T and T̃ of s and s̃ are incommensurable.
2.2.

∫∞
1

ϕ(σ)dσσ < ∞,
∫∞
1

ϕ̃(σ)dσσ = ∞.

2.3.
∫∞
1

ϕ(σ)dσσ < ∞,
∫∞
1

ϕ̃(σ)dσσ < ∞.

In the cases 1 and 2.1.1 the asymptotics of the tensor product is almost regular, in the
case 2.1.2 it is regular. In the cases 2.2 and 2.3 we obtain an asymptotics of a more
complex form.

In §5 we relate the almost regular spectral asymptotics with the logarithmic asymp-
totics of small deviations of Gaussian random fields.
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Various constants whose values are not essential for this work are denoted by C. The
dependence of these constants on parameters is noted in parentheses.

§2. Auxiliary facts about slowly varying functions

We recall that a positive function ϕ(τ ), τ > 0, is said to be slowly varying (at infinity)
if for any constant c > 0 we have

(3) ϕ(cτ )/ϕ(τ ) → 1 as τ → +∞.

The following simple properties of SVFs are well known (see, e.g., [15] for the proofs).

Proposition 2. Let ϕ be an SVF. Then it possesses the following properties.

1) Convergence in (3) is uniform for c∈ [a, b] for any 0<a<b<+∞.
2) The function τ �→ τpϕ(τ ), p 	= 0, is monotone for large values of τ .
3) There exists an SVF ψ ∈ C2(R) equivalent to ϕ (i.e., ϕ(τ )/ψ(τ ) → 1 as τ → ∞)

and such that

τ · (ln(ψ))′(τ ) → 0, τ2 · (ln(ψ))′′(τ ) → 0, τ → ∞.

4) If
∫∞
1

ϕ(τ )dττ < ∞, then ϕ(τ ) → 0 as τ → ∞.

Following [4], we define the Mellin convolution of two SVFs ϕ and ψ:

(ϕ ∗ ψ)(τ ) =
∫ τ

1

ϕ(σ)ψ(τ/σ)
dσ

σ
= hϕ,ψ(τ ) + hψ,ϕ(τ ),

where

hϕ,ψ(τ ) =

∫ √
τ

1

ϕ(σ)ψ(τ/σ)
dσ

σ
.

Proposition 3 ([4, Theorem 2.2]). We continue the list of properties of SVFs.

1) If
∫∞
1

ϕ(τ )dττ = ∞, then ψ(τ ) = o(hϕ,ψ(τ )) as τ → ∞.
2) If ψ(τ ) = ψ1(τ )(1 + o(1)) as τ → ∞, then

hϕ,ψ(τ ) = hϕ,ψ1
(τ )(1 + o(1)), τ → ∞.

If also
∫∞
1

ψ(τ )dττ = ∞, then

hψ,ϕ(τ ) = hψ1,ϕ(τ )(1 + o(1)), τ → ∞.

3) hϕ,ψ is an SVF.

4) Let
∫∞
1

ϕ(τ )dττ < ∞, and let∫ ∞

1

ϕ(σ)mψ(σ)
dσ

σ
< ∞,

where

mψ(σ) = sup
τ>σ2

ψ(τ/σ)

ψ(τ )
.

Then

(4) hϕ,ψ(τ ) = ψ(τ )

∫ ∞

1

ϕ(σ)
dσ

σ
· (1 + o(1)), τ → ∞.
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§3. Preliminary facts about the asymptotics

of almost Mellin convolutions

In this section ϕ and ϕ̃ are SVFs, and s and s̃ are continuous and bounded functions

separated away from zero and with periods T and T̃ (respectively) that have the form

s(τ ) = e−τ/p�(τ ), s̃(τ ) = e−τ/p�̃(τ ),

where p > 0, � and �̃ are monotone. In particular, it follows that s and s̃ are of bounded
variation.

We define the almost Mellin convolution by the formulas

(ϕs ∗ ϕ̃s̃)(τ ) =
∫ τ

1

ϕ
( τ
σ

)
ϕ̃(σ)s

(
ln

τ

σ

)
s̃(lnσ)

d(�̃(lnσ))

�̃(lnσ)

= H[ϕs, ϕ̃s̃ ](τ ) +H1[ϕs, ϕ̃s̃ ](τ ),

H[ϕs, ϕ̃s̃ ](τ ) =

∫ √
τ

1

ϕ
( τ
σ

)
ϕ̃(σ)s

(
ln

τ

σ

)
s̃(lnσ)

d(�̃(lnσ))

�̃(lnσ)
,

H1[ϕs, ϕ̃s̃ ](τ ) =

∫ τ

√
τ

ϕ
( τ
σ

)
ϕ̃(σ)s

(
ln

τ

σ

)
s̃(lnσ)

d(�̃(lnσ))

�̃(lnσ)
.

The integral here should be interpreted as a Lebesgue–Stieltjes integral.

Lemma 1.
(ϕs ∗ ϕ̃s̃ )(τ ) � (ϕ ∗ ϕ̃)(τ ), τ → ∞,

H[ϕs, ϕ̃s̃ ](τ ) � hϕ̃,ϕ(τ ), τ → ∞,

H1[ϕs, ϕ̃s̃ ](τ ) � hϕ,ϕ̃(τ ), τ → ∞.

Proof. We prove the upper estimate for the first relation, the other estimates can be
obtained similarly. We introduce the operator

(5) Fσ[ϕ](ξ) = ϕ
(
ej

˜Tσ
)

for ξ ∈
[
ej

˜T , e(j+1)˜T
)
,

which transforms a given function ϕ to a step function.
Note that

(6) Fσ[ϕ](τ ) = ϕ(τ )(1 + o(1)), τ → ∞,

uniformly over σ ∈ [1, e
˜T ]. Let k ∈ N be a number such that e(k−1)˜T < τ ≤ ek

˜T . Then

(ϕs ∗ ϕ̃s̃ )(τ ) ≤ C

∫ ek
˜T

1

Fek ˜T /τ [ϕ]
( τ
σ

)
F1[ϕ̃ ](σ)

d(�̃(lnσ))

�̃(lnσ)
.

Observe that the function Fek ˜T /τ [ϕ]
(
τ
σ

)
F1[ϕ̃](σ) is constant with respect to σ on every

interval
(
ej

˜T , e(j+1)˜T
)
, j = 0, . . . , k − 1. The measure d(�̃(lnσ))

�̃(lnσ) = d ln(s̃(lnσ)σ1/p) is

periodic with respect to lnσ, which allows us to replace the integral with a sum. We
obtain

(ϕs ∗ ϕ̃s̃)(τ ) ≤ C

∫ e
˜T

1

d(�̃(lnσ))

�̃(lnσ)

k−1∑
j=0

Fek ˜T /τ [ϕ]
( τ

ej ˜T

)
F1[ϕ̃](e

j ˜T )

≤ C

∫ e
˜T

1

dσ

σ

k−1∑
j=0

Fek ˜T /τ [ϕ]
( τ

ej ˜T

)
F1[ϕ̃](e

j ˜T )

= C

∫ ek
˜T

1

Fek ˜T /τ [ϕ]
( τ
σ

)
F1[ϕ̃](σ)

dσ

σ
≤ C

∫ τ

1

ϕ
( τ
σ

)
ϕ̃(σ)

dσ

σ
. �

The proof of the next proposition is similar to Theorem 2.2 in [4], so we omit it.
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Proposition 4. Let ϕ̃(τ ) = ψ1(τ )(1 + o(1)) as τ → ∞. Then

H[ϕs, ϕ̃s̃ ](τ ) = H[ϕs, ψ1s̃ ](τ )(1 + o(1)).

If, moreover,
∫∞
1

ϕ̃(τ )dττ = ∞, then

H1[ϕs, ϕ̃s̃ ](τ ) = H1[ϕs, ψ1s̃ ](τ )(1 + o(1)).

Lemma 2. Suppose that
∫∞
1

ϕ(τ )dττ = ∞,
∫∞
1

ϕ̃(τ )dττ = ∞. Then

H1[ϕs, ϕ̃s̃ ](τ ) = H[ϕ̃s̃, ϕs](τ )(1 + o(1)), τ → ∞,

and the almost Mellin convolution is asymptotically symmetric, i.e.,

(ϕs ∗ ϕ̃s̃ )(τ ) = (ϕ̃s̃ ∗ ϕs)(τ )(1 + o(1)), τ → ∞.

Proof. The second relation follows from the first immediately. In order to prove the first
relation, we write

H1[ϕs, ϕ̃s̃ ](τ ) = τ−1/p

∫ τ

√
τ

ϕ
( τ
σ

)
ϕ̃(σ)ρ

(
ln

τ

σ

)
d(ρ̃(lnσ)),

replace σ with τ/σ and integrate by parts:

H1[ϕs, ϕ̃s̃ ](τ ) = −τ−1/p

∫ √
τ

1

ϕ(σ)ϕ̃
( τ
σ

)
ρ(lnσ)d

(
ρ̃
(
ln

τ

σ

))
= τ−1/p

∫ √
τ

1

ϕ(σ)ϕ̃
( τ
σ

)
ρ̃
(
ln

τ

σ

)
d(ρ(lnσ)) + ϕ(σ)ϕ̃

( τ
σ

)
s(lnσ)s̃

(
ln

τ

σ

)∣∣∣√τ

1

+

∫ √
τ

1

(σϕ′(σ)

ϕ(σ)
− (τ/σ)ϕ̃′(τ/σ)

ϕ̃(τ/σ)

)
ϕ(σ)ϕ̃

( τ
σ

)
s̃
(
ln

τ

σ

)
s(lnσ)

dσ

σ
.

The first term equals H[ϕ̃s̃, ϕs](τ ). It remains to show that the second and third terms
satisfy the estimate o(H[ϕ̃s̃, ϕs](τ )). As to the second term, we have

ϕ(σ)ϕ̃
( τ
σ

)
s(lnσ)s̃

(
ln

τ

σ

) ∣∣∣√τ

1
= ϕ(

√
τ )ϕ̃(

√
τ)s(ln

√
τ)s̃(ln

√
τ)− ϕ(1)ϕ̃(τ )s(0)s̃(ln τ ).

All periodic components are bounded, and

ϕ̃(τ ) = o(hϕ,ϕ̃(τ )) = o(H[ϕ̃s̃, ϕs](τ )), τ → ∞,

in accordance with Part 1 of Proposition 3, by Lemma 1. Thus, it suffices to estimate

ϕ(
√
τ)ϕ̃(

√
τ ) = ϕ(1)ϕ̃(τ ) +

∫ √
τ

1

(
ϕ(σ)ϕ̃

( τ
σ

))′

σ
dσ

= ϕ(1)ϕ̃(τ ) +

∫ √
τ

1

(σϕ′(σ)

ϕ(σ)
− (τ/σ)ϕ̃′(τ/σ)

ϕ̃(τ/σ)

)
ϕ(σ)ϕ̃

( τ
σ

) dσ

σ

= ϕ(1)ϕ̃(τ ) +

∫ √
τ

1

(
1 +

σϕ′(σ)

ϕ(σ)

)
ϕ(σ)ϕ̃

( τ
σ

) dσ

σ

−
∫ √

τ

1

ϕ(σ)
(
1 +

(τ/σ)ϕ̃′(τ/σ)

ϕ̃(τ/σ)

)
ϕ̃
( τ
σ

) dσ

σ

= o(hϕ,ϕ̃(τ )) + hϕ,ϕ̃(τ )(1 + o(1))− hϕ,ϕ̃(τ )(1 + o(1))

= o(hϕ,ϕ̃(τ )) = o(H[ϕ̃s̃, ϕs](τ )), τ → ∞.

We have used Part 2 of Proposition 3 and part 3 of Proposition 2, when estimating the
integrals above.
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Using similar arguments and Proposition 4, we see that∫ √
τ

1

(σϕ′(σ)

ϕ(σ)
− (τ/σ)ϕ̃′(τ/σ)

ϕ̃(τ/σ)

)
ϕ(σ)ϕ̃

( τ
σ

)
s̃
(
ln

τ

σ

)
s(lnσ)

dσ

σ
= o(H[ϕ̃s̃, ϕs](τ ))

as τ → ∞, which concludes the proof of the lemma. �

The case of coinciding periods. Now we consider the case where the functions s and

s̃ have a common period (T = T̃ ). Denote

(s 
 s̃ )(η) :=
1

T

∫ T

0

s(η − λ)s̃(λ) dλ.

Note that there exists a continuous derivative

(7) (s 
 s̃ )′(η) =
1

T

∫ T

0

s(η − λ)d(s̃(λ)) = −1

p
(s 
 s̃ )(η) + e−η/p 1

T

∫ T

0

�(η − λ) d�̃(λ).

The fact that it is continuous follows from the continuity of � and �̃.

Lemma 3. Let
∫∞
1

ϕ̃(τ )dττ = ∞, and let s and s̃ have a common period T . Then∫ √
τ

1

ϕ
( τ
σ

)
s
(
ln

τ

σ

)
ϕ̃(σ)s̃(lnσ)

dσ

σ
∼ hϕ̃,ϕ(τ )(s 
 s̃ )(ln τ ), τ → ∞.

If, moreover,
∫∞
1

ϕ(τ )dττ = ∞, then∫ τ

1

ϕ
( τ
σ

)
s
(
ln

τ

σ

)
ϕ̃(σ)s̃(lnσ)

dσ

σ
∼ (ϕ ∗ ϕ̃)(τ )(s 
 s̃ )(ln τ ), τ → ∞.

Proof. For e2(k−1)T < τ ≤ e2kT we write∫ √
τ

1

ϕ
( τ
σ

)
s
(
ln

τ

σ

)
ϕ̃(σ)s̃(lnσ)

dσ

σ
∼

∫ ekT

1

ϕ
( τ
σ

)
s
(
ln

τ

σ

)
ϕ̃(σ)s̃(lnσ)

dσ

σ

=

k−1∑
j=0

∫ eT

1

ϕ(e−jT · τ
σ
)s

(
ln

τ

σ

)
ϕ̃(ejTσ)s̃(lnσ)

dσ

σ

=

∫ eT

1

s
(
ln

τ

σ

)
s̃(lnσ)

k−1∑
j=0

ϕ
(
e−jT · τ

σ

)
ϕ̃(ejTσ)

dσ

σ

=

∫ eT

1

s
(
ln

τ

σ

)
s̃(lnσ)T−1

∫ ekT

1

Fe−(k−1)T · τσ [ϕ](e
kT/ξ)Fσ[ϕ̃](ξ)

dξ

ξ

dσ

σ
,

where the operator F was introduced in (5). Employing the asymptotics (6) and Part 2
of Proposition 3, we obtain∫ √

τ

1

ϕ
( τ
σ

)
s
(
ln

τ

σ

)
ϕ̃(σ)s̃(lnσ)

dσ

σ
∼ hϕ̃,ϕ(e

kT )(s 
 s̃ )(ln τ ) ∼ hϕ̃,ϕ(τ )(s 
 s̃ )(ln τ ).

The second part of the lemma can be proved similarly, using the fact that∫ ∞

1

ϕ(τ )
dτ

τ
= ∞. �

Lemma 4. Let
∫∞
1

ϕ̃(τ )dττ = ∞, and let s and s̃ have a common period T . Then

H[ϕs, ϕ̃s̃ ](τ ) ∼ hϕ̃,ϕ(τ )
(1
p
(s 
 s̃ ) + (s 
 s̃ )′

)
(ln τ ), τ → ∞.
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If, moreover,
∫∞
1

ϕ(τ )dττ = ∞, then

(ϕs ∗ ϕ̃s̃)(τ ) ∼ (ϕ ∗ ϕ̃)(τ )
(1
p
(s 
 s̃ ) + (s 
 s̃ )′

)
(ln τ ), τ → ∞.

Proof. The proof is precisely the same as for the preceding lemma. We only need to
verify that ∫ eT

1

s
(
ln

τ

σ

)
s̃(lnσ)

d(�̃(lnσ))

�̃(lnσ)
= τ−1/p

∫ T

0

�(ln τ − λ) d�̃(λ),

which is clear if we substitute λ = lnσ on the left-hand side. �

The case of incommensurable periods. Now, let the functions s and s̃ have no
common period.

Lemma 5. If the periods T and T̃ are incommensurable, then∫ τ

1

s(ln(ω/σ))s̃(lnσ)
d(�̃(lnσ))

�̃(lnσ)
= (C+ o(1)) ln τ, τ → +∞,

uniformly over ω ∈ R, where

(8) C =
1

p
· 1
T

∫ T

0

s(t) dt · 1
T̃

∫
˜T

0

s̃(t) dt.

Proof.

Step 1. We prove the estimate

(9)

∫ τ

1

s(ln(τ/σ))s̃(lnσ)
d(�̃(lnσ))

�̃(lnσ)
= (C+ o(1)) ln τ, τ → +∞.

Substitute t = ln τ , r = lnσ:∫ τ

1

s(ln(τ/σ))s̃(lnσ)
d(�̃(lnσ))

�̃(lnσ)
=

∫ t

0

s(t− r)e−r/p d�̃(r) =: Q(t).

We define a T̃ -periodic function

q(t) :=

∫ T

0

s(r)s̃(t+ T − r) dr =

∫ t+T

t

s(t− r)s̃(r) dr.

This function admits a continuous derivative

q′(t) =

∫ T

0

s(r) ds̃(t+ T − r) =

∫ t+T

t

s(t− r) ds̃(r) = −1

p
· q(t) +

∫ t+T

t

s(t− r)e−r/p d�̃(r).

Therefore,

Q(t+ T )−Q(t) =

∫ t+T

t

s(t− r)e−r/p d�̃(r) = q′(t) +
1

p
· q(t) =: q1(t),

where q1(t) is a continuous T̃ -periodic function. Hence,

(10) Q(t+ nT ) = Q(t) +

n−1∑
k=0

q1(t+ kT ).

Using Oxtoby’s ergodic theorem (see [20]), we get

(11) lim
n→+∞

1

n

n−1∑
k=0

q1(t+ kT ) =
1

T̃

∫
˜T

0

q1(t) dt
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uniformly with respect to t. From (10) and (11) we deduce the estimate

Q(t) = (C+ o(1))t, t → +∞,

where

C =
1

T T̃

∫
˜T

0

q1(t) dt =
1

p
· 1
T

∫ T

0

s(t) dt · 1
T̃

∫
˜T

0

s̃(t) dt.

Substituting t = ln τ , we complete the proof of formula (9).

Step 2. For every τ there exists k(τ ) ∈ Z such that

0 ≤ τ − ω − Tk(τ ) < T.

Then∫ τ

1

s(ln(ω/σ))s̃(lnσ)
d(�̃(lnσ))

�̃(lnσ)
=

∫ τ

ω+Tk(τ)

s(ln(ω/σ))s̃(lnσ)
d(�̃(lnσ))

�̃(lnσ)

+

∫ ω+Tk(τ)

1

s(ln((ω + Tk(τ ))/σ))s̃(lnσ)
d(�̃(lnσ))

�̃(lnσ)
.

The first term is uniformly bounded, and the second satisfies the estimate

(C+ o(1)) ln(ω + Tk(τ )) = (C+ o(1)) ln τ, τ → +∞. �

§4. Spectral asymptotics of tensor products

Lemma 6. In formula (2) the function s has the form

s(τ ) = e−τ/p�(τ ),

where � is a monotone function; thus, s is a function of bounded variation.

Proof. The asymptotics can be reshaped as follows:

s(ln(1/t))

t1/p
=

N (t)

ϕ(1/t)
(1 + ε(t)), ε(t) → 0 as t → +0.

Replacing t with e−kT t, we get

s(ln(1/t))

(e−kT t)1/p
=

N (e−kT t)

ϕ(ekT /t)
(1 + ε(e−kT t)).

Thus,
s(ln(1/t))

t1/p
= lim

k→+∞
e−

kT
p
N (e−kT t)

ϕ(ekT/t)
,

where convergence is uniform on [1, eT ]. Hence, for a fixed ε > 0 we obtain the relation

s(ln(1/t)) = t
1
p+ε · lim

k→+∞

e−
kT
p −kTεN (e−kT t)

(ekT /t)−εϕ(ekT/t)
.

Note that the numerator of the fraction above decreases with t, and the denominator
grows with t if k is sufficiently large, in accordance with Part 2 of Proposition 2. Denote

�ε(ln(1/t)) := lim
k→+∞

e−
kT
p −kTεN (e−kT t)

(ekT /t)−εϕ(ekT /t)
.

Being a uniform limit of monotone functions, �ε is monotone. The function s has the
form

s(τ ) = e−( 1
p+ε)τ�ε(τ ).

Passing to the limit as ε → 0 and denoting �(τ ) := limε→0 �ε(τ ), we obtain
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s(τ ) = e−τ/p�(τ ),

where � is also a monotone function. �

Remark 1. For some Green integral operators with singular arithmetically selfsimilar
weight measures (see [16, 17, 18]) it is shown that �(τ ) is a continuous purely singular
function, i.e., its generalized derivative is a measure singular with respect to Lebesgue
measure.

Below we assume that all periodic functions arising in our asymptotics are continuous
(thus satisfying all the requirements of §3). Also, Part 3 of Proposition 2 allows us to
assume all SVFs to be C2-smooth.

Theorem 1. Suppose that an operator T on a Hilbert space H has the spectral asymp-

totics (2), and an operator T̃ on a Hilbert space H̃ has the spectral asymptotics

Ñ (t) := Ñ (t, T̃ ) = O(t−1/p̃), t → 0+, p̃ > p.

Then the operator T ⊗ T̃ on the Hilbert space H⊗ H̃ has the asymptotics

(12) N⊗(t) := N (t, T ⊗ T̃ ) ∼ ϕ(1/t) · s∗(ln(1/t))
t1/p

, t → +0,

where

(13) s∗(τ ) :=
∑
k

s(τ + ln(λ̃k)) · λ̃1/p
k

is a periodic function with period T (the series converges because p̃ > p).

Proof. Since the eigenvalues of a tensor product of operators are equal to the products
of their eigenvalues, we have

N⊗(t) = #{k, j : λkλ̃j > t} =
∑
k

#{j : λj > t/λ̃k} =
∑
k

N (t/λ̃k).

Thus,

t1/p

ϕ(1/t)

∑
k

N (t/λ̃k) =
∑
k

(
(t/λ̃k)

1/pN (t/λ̃k)

ϕ(λ̃k/t)s(ln(λ̃k/t))

)(
ϕ(λ̃k/t)

ϕ(1/t)

)
s(ln(λ̃k/t))λ̃

1/p
k .

The first factor is uniformly bounded and tends to 1 as t → 0+, see (2). The second
factor also tends to 1. Also, since for every ε the function τ εϕ(τ ) grows when τ > τ0(ε)
by Part 2 of Proposition 2, we have

λεϕ(λτ )

ϕ(τ )
=

(λτ )εϕ(λτ )

τ εϕ(τ )
≤ 1 for λτ > τ0(ε), λ < 1.

Thus, for every ε > 0 we have the following estimate uniform for t < 1:

ϕ(λ̃k/t)

ϕ(1/t)
≤ C(ε)λ̃−ε

k ,

whence

ϕ(λ̃k/t)

ϕ(1/t)
λ̃
1/p
k ≤ C(ε) · k−p̃(1/p−ε).

For sufficiently small ε (such that p̃(1/p − ε) > 1), this gives us an estimate suffi-
cient for using Lebesgue’s dominated convergence theorem. Passing to the limit, we
obtain (12). �
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Remark 2. Generally speaking, for an arbitrary function s and an operator T̃ the function
s∗(τ ) can degenerate to a constant. We could, for example, demand that s(τ ) + s(τ +

T/2) = 1, T = 2p ln 2, and choose a finite-rank operator T̃ with three eigenvalues: 2p,
2p, and 22p. Then

s∗(τ ) = s(τ + p ln 2) · 2 + s(τ + p ln 2) · 2 + s(τ + 2p ln 2) · 22

= 4(s(τ ) + s(τ + T/2)) = const .

However, if s(τ ) = exp(−τ/p)�(τ ), where �(τ ) is a monotone nondecreasing purely
singular function (like in Remark 1), then no linear combination of shifts will be constant.
Moreover, we observe that in this case the function s∗(τ ) also has the form

s∗(τ ) = exp(−τ/p)�∗(τ ), �∗(τ ) =
∑
k

�(τ + ln λ̃k),

and �∗(τ ) is a purely singular function, because �(τ ) is monotone.

Now, we consider the case where the operators have coinciding power exponents in
their spectral asymptotics.

Theorem 2. Let T have the spectral asymptotics (2), and let T̃ have the asymptotics

(14) N (t, T̃ ) ∼ Ñas(t) :=
ϕ̃(1/t) · s̃(ln(1/t))

t1/p
, t → +0.

Here ϕ̃ is an SVF, s̃ has period T̃ . Then for every ε > 0 we have the estimates

N⊗(t) ≶
α±(ε)

t1/p
·
[
S(t, ε) + S̃(t, ε) +

∫ ετ

α∓(ε)/ε

ϕ
( τ
σ

)
ϕ̃(σ)s

(
ln

τ

σ

)
s̃(lnσ)

d(�̃(lnσ))

�̃(lnσ)

]
uniformly for t > 0. Here the integral should be interpreted as a Lebesgue–Sieltjes in-
tegral, τ = α±(ε)/t. When ετ < a∓(ε)/ε, the integral is assumed to be zero. The

coefficients α±(ε) tend to 1 as ε → 0, and the functions S(t, ε) and S̃(t, ε) have the
following asymptotics as t → +0:

S(t, ε) ∼ ϕ(1/t) ·
∑
˜λk≥ε

s(ln(1/t) + ln(λ̃k))λ̃
1/p
k ,

S̃(t, ε) ∼ ϕ̃(1/t) ·
( ∑

λk≥ε

s̃(ln(τ ) + ln(λk))λ
1/p
k + ϕ(1/ε)s(ln(1/ε))s̃(ln(τε))

)
.

(15)

Proof. The proof follows the lines of Theorem 3.3 in [4]. We prove the upper estimate,
the lower estimate can be obtained similarly. We have

t1/pN⊗(t) = t1/p
∑
˜λk<ε

N (t/λ̃k) + S(t, ε),

where

S(t, ε) = t1/p
∑
˜λk≥ε

N (t/λ̃k).

The asymptotics for S(t, ε) can be obtained from Theorem 1 for a finite-rank operator T̃ .

Denote by μ̃ the function inverse to Ñas. Then λ̃k/μ̃(k) → 1 as k → ∞, so that

α−(ε)μ̃(k) ≤ λ̃k ≤ α+(ε)μ̃(k) for λ̃k < ε

for certain values of α±(ε) such that α±(ε) → 1 as ε → 0.
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Since the function N is monotone, we have∑
˜λk<ε

N (t/λ̃k) ≤
∑

μ̃(k)<α−1
− (ε)ε

N
( t

α+(ε)μ̃(k)

)
.

The function k �→ N
(

t
α+(ε)μ̃(k)

)
is also monotone, which yields

(16) t1/p
∑
˜λk<ε

N (t/λ̃k) ≤ t1/pN
(α−(ε)t

α+(ε)ε

)
+ t1/p

∫ εα−1
− (ε)

0

N
( t

α+(ε)μ

)
(−dÑas(μ)).

The first term can be estimated as O(ε1/pϕ(1/t)); thus, adding it to the term S(t, ε), we

obtain α+(ε)S(t, ε). Next, viewing −dÑas(μ) as a Lebesgue–Stieltjes measure, we obtain

(17) −dÑas(μ) =
1

μ
ϕ̃(1/μ)�̃(ln(1/μ))

(−μd(�̃(ln(1/μ)))

�̃(ln(1/μ))
+

ϕ̃ ′(1/μ)

μϕ̃(1/μ)
dμ

)
.

The density of the second term tends to zero as μ → 0, while the first term

−μd(�̃(ln(1/μ)))

�̃(ln(1/μ))
=

d�̃(ln(1/μ))

�̃(ln(1/μ))
= d(ln(�̃(λ)))

is a positive periodic measure (here λ = ln(1/μ)), because

ln(�(τ + T )) = ln(�(τ )) +
T

p
.

Hence, for sufficiently small ε the contribution of the second term of (17) to the integral
in (16) is negligible, and this integral is dominated by

α+(ε)t
1/p

∫ εα−1
− (ε)

0

N
( t

α+(ε)μ

)
ϕ̃(1/μ)

(
− d(�̃(ln(1/μ)))

)
.

Splitting the integral into two parts and changing variables, we obtain the estimate

α+(ε)t
1/p

∫ +∞

ε

N (s)ϕ̃(τs)d(�̃(ln(τs))) + α+(ε)t
1/p

∫ ετ

α−(ε)/ε

N (σ/τ )ϕ̃(σ)d(�̃(lnσ)).

Replacing in the second integral N with α+(ε)Nas, we obtain exactly the third term of

the estimate we are proving. The first integral gives us the term S̃(t, ε). Next, we have

ϕ̃(α+(ε)s/t)

ϕ̃(1/t)
→ 1 as t → 0

uniformly for s ∈ [ε, λ1(T )]. Thus,

S̃(t, ε) ∼ ϕ̃(1/t)

∫ +∞

ε

N (s)d(s̃(ln(τs))s1/p).

It is clear that N (s) = 0 for s > λ1(T ). Integrating by parts, we arrive at the asymp-
totics (15). �

In Theorems 3–5 it is assumed that

(18)

∫ ∞

1

ϕ(τ )
dτ

τ
=

∫ ∞

1

ϕ̃(τ )
dτ

τ
= ∞.

Theorem 3. Let operators T and T̃ satisfy the conditions of Theorem 2. Suppose also
that condition (18) is fulfilled, and the periods of s and s̃ coincide and are equal to T .
Then

N⊗(t) ∼
φ(1/t) · s⊗(ln(1/t))

t1/p
, t → +0,
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where φ(s) := (ϕ ∗ ϕ̃ )(s) is an SVF, and

(19) s⊗(η) =
(s 
 s̃ )(η)

p
+ (s 
 s̃ )′(η) = e−η/p 1

T

∫ T

0

�(η − σ) d�̃(σ)

is a continuous positive T -periodic function.

Proof. Fix ε > 0 and consider the estimate obtained in Theorem 2. By Part 1 of Propo-
sition 3, we have

S(t, ε) = o(φ(1/t)), S̃(t, ε) = o(φ(1/t)), t → +0.

Next, we can extend the integration interval because, considering τ = α±(ε)/t and using
Part 1 of Proposition 3, we have∫ τ

ετ

ϕ
( τ
σ

)
ϕ̃(σ)s

(
ln

τ

σ

)
s̃(lnσ)

d(�̃(lnσ))

�̃(lnσ)

∼ ϕ̃(τ )

∫ 1/ε

1

ϕ(σ)s(lnσ)s̃(ln(τ/σ))
d(�̃(ln(τ/σ)))

�̃(ln(τ/σ))
= o(φ(1/t)), t → +0,∫ α∓(ε)/ε

1

ϕ
( τ
σ

)
ϕ̃(σ)s

(
ln

τ

σ

)
s̃(lnσ)

d(�̃(lnσ))

�̃(lnσ)

∼ ϕ(τ )

∫ α∓(ε)/ε

1

ϕ̃(σ)s
(
ln

τ

σ

)
s̃(lnσ)

d(�̃(lnσ))

�̃(lnσ)
= o(φ(1/t)), t → +0.

Thus,

(20) N⊗(t) ≶
α±(ε)

t1/p
(ϕs ∗ ϕ̃s̃ )(τ )(1 + o(1)).

Using Lemma 4, we obtain

N⊗(t) ≶ α±(ε)
φ(τ )

t1/p

( (s 
 s̃ )
p

+ (s 
 s̃ )′
)
(ln(τ ))(1 + o(1)), t → +0.

Observe also that φ(τ ) = φ(1/t)(1 + o(1)) as t → +0. Hence,

lim sup
t→+0

N⊗(t)
(φ(1/t) · s⊗(ln(1/t))

t1/p

)−1

≤ α+(ε) · sup
t∈[1,eT ]

s⊗(ln(α+(ε))+ ln(1/t))

s⊗(ln(1/t))
,

lim inf
t→+0

N⊗(t)
(φ(1/t) · s⊗(ln(1/t))

t1/p

)−1

≥ α−(ε) · inf
t∈[1,eT ]

s⊗(ln(α−(ε))+ ln(1/t))

s⊗(ln(1/t))
.

(21)

Since the function s⊗ is uniformly continuous on a segment, the supremum and infimum
on the right-hand sides of (21) tend to 1 as ε → +0. Passing to the limit as ε → +0, we
complete the proof. �

Remark 3. The question of the nonconstancy of the s⊗ remains open. Even if we assume
that s(τ ) = exp(−τ/p)�(τ ), s̃(τ ) = exp(−τ/p)�̃(τ ), and the functions � and �̃ are purely
singular, we have s⊗(τ ) = exp(−τ/p)�⊗(τ ), where

�⊗(τ ) =
1

T

∫ T

0

�(τ − λ)d�̃(λ).

It is clear that �′⊗ = �′
�̃ ′ is a convolution of singular measures. However, the convolution
of singular measures often turns out to be absolutely continuous (see, e.g., [19]).
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Theorem 4. Let operators T and T̃ satisfy the conditions of Theorem 2. Suppose also
that condition (18) is fulfilled and the functions s and s̃ have no common period, i.e.,

their periods T and T̃ are incommensurable. Then

N⊗(t) ∼
ψ(1/t)φ(1/t)

t1/p
, t → +0,

where φ(s) = (ϕ ∗ ϕ̃ )(s), ψ(t) is a certain SVF bounded and separated away from zero.

Proof. We repeat the proof of Theorem 3 until we obtain relation (20). Next we obtain
an estimate capable to replace Lemma 4.

We introduce a function r(τ ) defined in accordance with the relation

(ϕs ∗ ϕ̃s̃ )(τ ) = φ(τ )r(ln τ ).

By Lemma 1, the function r is bounded and separated away from zero. We need to prove
that it is uniformly continuous. We have

r(ln τ + δ)− r(ln τ ) = r(ln τ + δ)
(φ(τeδ)

φ(τ )
− 1

)
+

1

φ(τ )
·
∫ τ

1

(
ϕ( τe

δ

σ )s(ln τeδ

σ )

ϕ
(
τ
σ

)
s
(
ln τ

σ

) − 1

)
ϕ
( τ
σ

)
s
(
ln

τ

σ

)
ϕ̃(σ)s̃(lnσ)

d(�̃(lnσ))

�̃(lnσ)

+
1

φ(τ )
·
∫ τeδ

τ

ϕ
( τ
σ

)
s
(
ln

τ

σ

)
ϕ̃(σ)s̃(lnσ)

d(�̃(lnσ))

�̃(lnσ)
.

We show that each term here tends to zero as δ → 0 uniformly with respect to τ . Without
loss of generality we may assume that 0 < δ ≤ δ0 for some δ0. For the first term we use
the mean value theorem:

φ(τeδ)− φ(τ )

φ(τ )
= (τeδ − τ )

φ′(ζ)

φ(τ )
= (eδ − 1) · τ

ζ
· φ(ζ)
φ(τ )

· ζφ
′(ζ)

φ(ζ)
,

where ζ ∈ [τ, τeδ]. The factor τ
ζ is bounded. For the last two factors, observe the

existence of the limits

φ(ζ)

φ(τ )
→ 1,

ζφ′(ζ)

φ(ζ)
→ 0, τ → ∞,

which means that they are also bounded. Thus,∣∣∣∣φ(τeδ)φ(τ )
− 1

∣∣∣∣ ≤ C(eδ − 1) → 0, δ → 0,

uniformly for τ ∈ R+.
Similarly, we can show that in the second term the expression

ϕ( τe
δ

σ )s(ln τeδ

σ )

ϕ
(
τ
σ

)
s
(
ln τ

σ

) − 1

tends to zero uniformly, because ϕ is an SVF, and s is continuous, periodic, bounded,
and separated away from zero. The other factors in the second term are bounded by
Lemma 1.

For the third term, as in Lemma 1, we obtain the estimate∫ τeδ

τ

ϕ
( τ
σ

)
s
(
ln

τ

σ

)
ϕ̃(σ)s̃(lnσ)

d(�̃(lnσ))

�̃(lnσ)
= O(φ(τeδ)− φ(τ )), τ → ∞,

so that it tends to zero like the first term. Thereby, the uniform continuity in question
is proved.
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Now we need to prove that r(ln τ ) is an SVF. By definition, we have

r(ln τ + T )φ(τeT )− r(ln τ )φ(τ )

=

∫ τeT

τ

ϕ
(
eT · τ

σ

)
s
(
ln

τ

σ

)
ϕ̃(σ)s̃(lnσ)

d(�̃(lnσ))

�̃(lnσ)

+

∫ τ

1

(
ϕ
(
eT · τ

σ

)
− ϕ

( τ
σ

))
s
(
ln

τ

σ

)
ϕ̃(σ)s̃(lnσ)

d(�̃(lnσ))

�̃(lnσ)
.

(22)

Using the relation φ(τeT ) = φ(τ )(1 + o(1)), we rewrite the left-hand side of (22) as
follows:

(23) r(ln τ + T )φ(τeT )− r(ln τ )φ(τ ) =
(
r(ln τ + T )− r(ln τ )

)
φ(τ ) + o(φ(τ )), τ → ∞.

On the right-hand side of (22), as τ → ∞, the first integral satisfies the estimate∫ τeT

τ

ϕ
(
eT · τ

σ

)
s
(
ln

τ

σ

)
ϕ̃(σ)s̃(lnσ)

d(�̃(lnσ))

�̃(lnσ)

∼ ϕ̃(τ )

∫ eT

1

ϕ(
eT

σ
)s

(
ln

1

σ

)
s̃(ln(τσ))

d(�̃(ln(τσ)))

�̃(ln(τσ))
= o(φ(τ )).

(24)

To estimate the second integral we use Proposition 4. Since ϕ(τeT ) = ϕ(τ )(1 + o(1)) as
τ → ∞, we have∫ τ

1

ϕ
(
eT · τ

σ

)
s
(
ln

τ

σ

)
ϕ̃(σ)s̃(lnσ)

d(�̃(lnσ))

�̃(lnσ)

=

∫ τ

1

ϕ
( τ
σ

)
s
(
ln

τ

σ

)
ϕ̃(σ)s̃(lnσ)

d(�̃(lnσ))

�̃(lnσ)
(1 + o(1)).

By Lemma 1, the integral on the right-hand side is O(φ(τ )), whence

(25)

∫ τ

1

(
ϕ
(
eT · τ

σ

)
− ϕ

( τ
σ

))
s
(
ln

τ

σ

)
ϕ̃(σ)s̃(lnσ)

d(�̃(lnσ))

�̃(lnσ)
= o(φ(τ )), τ → ∞.

From (23), (24), and (25) it follows that

r(ln τ + T )− r(ln τ ) = o(1), τ → ∞.

By the same argument, we obtain

r(ln τ + T̃ )− r(ln τ ) = o(1), τ → ∞.

Hence, for arbitrary z1, z2 ∈ Z we have

r(ln τ + z1T + z2T̃ )− r(ln τ ) = o(1), τ → ∞.

Since the periods are incommensurable, the set {z1T + z2T̃ | z1, z2 ∈ Z} is dense in R.
Therefore, the uniform continuity of r implies that for every c ∈ R we have

r(ln τ + c)− r(ln τ ) = o(1), τ → ∞.

Hence, recalling that r is bounded and separated away from zero, we conclude that the
function ψ(τ ) := r(ln(τ )) is an SVF. �

Under certain additional conditions it is possible to demonstrate that ψ = const.

Theorem 5. Let operators T and T̃ satisfy the conditions of Theorem 4. Suppose also
that the functions ϕ and ϕ̃ satisfy the following estimates:

(26)

∣∣∣∣σ ln(σ)ϕ′(σ)

ϕ(σ)

∣∣∣∣ ≤ C,

∣∣∣∣σ ln(σ)ϕ̃′(σ)

ϕ̃(σ)

∣∣∣∣ ≤ C, σ ≥ 1.
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Then

N⊗(t) ∼
Cφ(1/t)

t1/p
, t → +0,

where φ(s) = (ϕ ∗ ϕ̃)(s), and the constant C is as defined in (8).

Proof. We want to prove the estimate

(27) (ϕs ∗ ϕ̃s̃)(τ ) ∼ Cφ(τ ), τ → ∞.

First, we estimate H[ϕs, ϕ̃s̃](τ ). For that, we integrate by parts and use Lemma 5:

H[ϕs, ϕ̃s̃ ](τ ) =

∫ √
τ

1

ϕ
( τ
σ

)
ϕ̃(σ) d

(∫ σ

1

s
(
ln

τ

ξ

)
s̃
(
ln ξ

)d(�̃(ln ξ))
�̃(ln ξ)

)
= ϕ(

√
τ )ϕ̃(

√
τ)

∫ √
τ

1

s
(
ln

τ

ξ

)
s̃
(
ln ξ

)d(�̃(ln ξ))
�̃(ln ξ)

−
∫ √

τ

1

(
ϕ
( τ
σ

)
ϕ̃(σ)

)′

σ

∫ σ

1

s
(
ln

τ

ξ

)
s̃
(
ln ξ

)d(�̃(ln ξ))
�̃(ln ξ)

dσ

= ϕ(
√
τ )ϕ̃(

√
τ)(C+ o(1)) ln(

√
τ)

−
∫ √

τ

1

(
ϕ
( τ
σ

)
ϕ̃(σ)

)′

σ
(C+ o(1)) lnσ dσ.

We transform the leading term of the asymptotics by reversing integration by parts:

C

(
ϕ(

√
τ )ϕ̃(

√
τ) ln(

√
τ)−

∫ √
τ

1

(
ϕ
( τ
σ

)
ϕ̃(σ)

)′

σ
lnσ dσ

)
= Chϕ̃,ϕ(τ ).

Now, we estimate the contribution of each o(1):

Chϕ̃,ϕ(τ ) +

∫ √
τ

1

(
ϕ
( τ
σ

)
ϕ̃(σ)

)′

σ
lnσ · o(1) dσ

= C

∫ √
τ

1

[
1 +

(σ ln(σ)ϕ̃′(σ)

ϕ̃(σ)
+

ln(1/σ)

ln(τ/σ)
· (τ/σ) ln(τ/σ)ϕ

′(τ/σ)

ϕ(τ/σ)

)
o(1)

]
· ϕ

( τ
σ

)
ϕ̃(σ)

dσ

σ

= (C+ o(1))hϕ̃,ϕ(τ ).

by Part 2 of Proposition 3, because the expression in the parentheses is bounded due to
the additional conditions (26). By the same argument we have

ϕ(
√
τ )ϕ̃(

√
τ) ln(

√
τ) · o(1) = o(1) ·

(
hϕ̃,ϕ(τ ) +

∫ √
τ

1

(
ϕ
( τ
σ

)
ϕ̃(σ)

)′

σ
lnσ dσ

)
= o(hϕ̃,ϕ(τ )).

Thus, we have obtained the estimate

(28) H[ϕs, ϕ̃s̃ ](τ ) = (C+ o(1))hϕ̃,ϕ(τ ).

Similarly, using Lemma 2, we obtain

(29) H1[ϕs, ϕ̃s̃ ](τ ) = H[ϕ̃s̃, ϕs](τ )(1 + o(1)) = (C+ o(1))hϕ,ϕ̃(τ ).

From the asymptotics (28) and (29) we obtain the required asymptotics (27). �

Remark 4. From the additional conditions (26) it follows that for some C > 0 the
estimates

ϕ(e)(lnσ)−C ≤ ϕ(σ) ≤ ϕ(e)(lnσ)C , ϕ̃(e)(lnσ)−C ≤ ϕ̃(σ) ≤ ϕ̃(e)(lnσ)C

are true for σ ≥ e. The additional conditions are clearly satisfied for the SVFs of the
form (1 + ln(τ ))κ. In the general case, the question of the constancy of the function ψ
in Theorem 4 remains open.
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Now we consider the cases where one or both of the integrals of the SVFs are finite.

Theorem 6. Let operators T and T̃ satisfy the conditions of Theorem 2. Suppose that∫ ∞

1

ϕ(τ )
dτ

τ
< ∞,

∫ ∞

1

ϕ̃(τ )
dτ

τ
= ∞,

and the periods of the functions s and s̃ coincide and are equal to T . Suppose also that
the pair (ϕ, ϕ̃) satisfies Part 4 of Proposition 3. Then

N⊗(t) ∼
hϕ̃,ϕ(1/t) · s⊗(ln(1/t)) + ϕ̃(1/t) · s̃∗(ln(1/t))

t1/p
,

where s⊗ is defined in (19), and

(30) s̃∗(τ ) =
∑
n

s̃(τ + ln(λn))λ
1/p
n

(cf. (13)).

Remark 5. The sum (30) converges in accordance with Proposition 1.

Proof. Fix ε > 0. By Part 3 of Proposition 3, we have

S(t, ε) = o(hϕ̃,ϕ(1/t)), t → +0.

Part 4 of Proposition 2 yields

S̃(t, ε) ∼ ϕ̃(1/t) ·
(∑

n

s̃(ln τ + lnλk)λ
1/p
k + ν(ε)

)
,

where ν(ε) → 0 as ε → +0. It remains to estimate the integral term:∫ ετ

α∓(ε)/ε

ϕ
( τ
σ

)
ϕ̃(σ)s

(
ln

τ

σ

)
s̃(lnσ)

d(�̃(lnσ))

�̃(lnσ)

=

∫ √
τ

1

ϕ
( τ
σ

)
ϕ̃(σ)s

(
ln

τ

σ

)
s̃(lnσ)

d(�̃(lnσ))

�̃(lnσ)

−
∫ α∓(ε)/ε

1

ϕ
( τ
σ

)
ϕ̃(σ)s

(
ln

τ

σ

)
s̃(lnσ)

d(�̃(lnσ))

�̃(lnσ)

+

∫ √
τ

1/ε

ϕ(σ)ϕ̃
( τ
σ

)
s(lnσ)s̃(ln(τ/σ))

d(�̃(ln(τ/σ)))

�̃(ln(τ/σ))
.

We estimate the first term by Lemma 4. The second term is O(ϕ(τ )) = o(hϕ̃,ϕ(τ )) as
τ → ∞. As to the third term, we estimate it as in Part 4 of Proposition 3:∫ √

τ

1/ε

ϕ(σ)ϕ̃
( τ
σ

)
s(lnσ)s̃(ln(τ/σ))

d(�̃(ln(τ/σ)))

�̃(ln(τ/σ))
≤ Cϕ̃(τ )

∫ ∞

1/ε

ϕ(σ)
dσ

σ
, τ → ∞.

Here ∫ ∞

1/ε

ϕ(σ)
dσ

σ
→ 0, ε → 0,

showing that this term’s contribution to the asymptotics is negligible. �

Remark 6. Like in Theorem 4, if the periods T and T̃ are incommensurable, then instead
of s⊗(ln(τ )) in the asymptotics we obtain an SVF bounded and separated away from
zero, which degenerates to a constant in the same particular cases as in Theorem 5.
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Theorem 7. Let operators T and T̃ satisfy the conditions of Theorem 2. Suppose that∫ ∞

1

ϕ(τ )
dτ

τ
< ∞,

∫ ∞

1

ϕ̃(τ )
dτ

τ
< ∞,

and (ϕ, ϕ̃) and (ϕ̃, ϕ) satisfy Part 4 of Poposition 3. Then

N⊗(t) ∼
ϕ(1/t) · s∗(ln(1/t)) + ϕ̃(1/t) · s̃∗(ln(1/t))

t1/p
,

where s∗ is defined in (13), s̃∗ is defined in (30).

The proof of this theorem is similar to that of Theorem 6.

Remark 7. In contrast to the preseding theorems, the asymptotics in the last two cases
contain two terms. One of them might be majorized by the other, in which case the
asymptotics is again almost regular. However, in the general case, it is impossible to
predict their behavior, and it is possible that neither one prevails. In that case the
asymptotics may fail to be almost regular.

Example 1. Let

N (t, T ) ∼ lnκ1(1/t) · s(ln(1/t))
t1/p

, N (t, T̃ ) ∼ lnκ2(1/t) · s̃(ln(1/t))
t1/p

as t → +0. Without loss of generality we assume that ϕ(τ ) = (1 + ln(τ ))κ1 , ϕ̃(τ ) =
(1 + ln(τ ))κ2 . In this case, the asymptotics of the Mellin convolution was calculated in
[4, Example 1]. We consider all possible cases.
Case 1. κ1 ≥ −1,κ2 ≥ −1. In this case Theorem 3 is applicable when the periodic
functions have a common period, and Theorem 5 is applicable otherwise.

If the functions s and s̃ have a common period T , then

N⊗(t) ∼
φ(1/t) · s⊗(ln(1/t))

t1/p
, t → +0,

where the function s⊗ is as defined in (19), and

φ(τ ) =

⎧⎪⎨⎪⎩
B(κ1 + 1,κ2 + 1)(1 + ln(τ ))κ1+κ2+1, κ1 > −1,κ2 > −1,

ln(ln(τ )) · (1 + ln(τ ))κ2 , κ1 = −1,κ2 > −1,

2 ln(ln(τ )) · (1 + ln(τ ))−1, κ1 = κ2 = −1,

where B is the Euler beta function. Note that the resulting asymptotics is again almost
regular.

If the periods T and T̃ are incommensurable, then

N⊗(t) ∼
Cφ(1/t)

t1/p
, t → +0,

where the constant C is as defined in (8), and the resulting asymptotics is regular.
Case 2. κ1 < −1 ≤ κ2. In this case, Theorem 6 is applicable, and direct calculations
show that

hϕ̃,ϕ(τ ) = o(ϕ̃(τ )), τ → ∞,

which means that

(31) N⊗(t) ∼
lnκ2(1/t) · s̃∗(ln(1/t))

t1/p
,

where s̃∗ is as defined in (30), and the resulting asymptotics is again almost regular.
Case 3. κ1 < κ2 < −1. In this case Theorem 7 is applicable, and

ϕ(τ ) = o(ϕ̃(τ )), τ → ∞,

so that, again, we have the asymptotics (31).
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Case 4. κ1 = κ2 < −1. In this case Theorem 7 is applicable, and the two terms of the
asymptotics have the same order of growth, so that

N⊗(t) ∼
lnκ1(1/t)

(
s∗(ln(1/t)) + s̃∗(ln(1/t))

)
t1/p

,

where s∗ is as in (13), s̃∗ is as in (30). In the case, when the functions s and s̃ have a
common period, this asymptotics turns out to be almost regular, but whenever the peri-
ods are incommensurable, we have an almost regular asymptotics with a quasi-periodic
component.

§5. Small deviations asymptotics

We recall some facts from the theory of L2-small deviations of Gaussian random
functions.

Suppose we have a Gaussian random function X(x), x ∈ O ⊆ R
m, with zero mean

and a covariation function GX(x, u), x, u ∈ O. Let μ be a finite measure on O. Denote

‖X‖μ =
(∫

O
X2(x)dμ(x)

)1/2

.

By the logarithmic asymptotics of small deviations in L2 we mean the asymptotics of
lnP{‖X‖μ ≤ ε} as ε → 0.

In accordance with the well-known Karhunen–Loève expansion, we have in distribution

‖X(x)‖2μ
d
=

∞∑
n=1

λnξ
2
n,

where the ξn, n ∈ N, are independent standard normal random variables, and λn > 0,
n ∈ N,

∑
n λn < ∞, are the eigenvalues of the integral equation

(32) λf(x) =

∫
O
GX(x, u)f(u)dμ(u).

Thus we arrive at the equivalent problem of studying the asymptotic behavior as ε → 0
of lnP{

∑∞
n=1 λnξ

2
n ≤ ε2}. By the results of [21], the answer only depends on the leading

term of the asymptotics of the sequence λn.
The case of the purely power asymptotics λn ∼ Cn−p, p > 1, was considered in

[22, 23, 24, 25]. In [4], the case of regular asymptotics was treated, and in [8] the case of
almost power asymptotics with a periodic component was explored.

Consider a more general case. Suppose

(33) λn(T ) = φ(n) :=
ψ(n) · θ(ln(n))

np
,

where p > 1, and the function θ is bounded, uniformly continuous on R, and separated
away from zero, and the function φ(t) is monotone on R.

The function φ(n) satisfies the conditions of Theorem 2 in [26], which in our case has
the following form.

Proposition 5.

(34) P

{ ∞∑
n=1

φ(n)ξ2n ≤ r

}
∼ exp(L(u) + ur)√

2πu2L′′(u)
, r → 0,

where

L(u) =
∞∑

n=1

ln f(uφ(n)), f(t) := (1 + 2t)−1/2,
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and u = u(r) is an arbitrary function satisfying

lim
r→0

L′(u) + r√
L′′(u)

= 0.

First, we analyse the asymptotics of L′(u) as u → +∞. In our case

uL′(u) = −
∞∑

n=1

uψ(n)θ(ln(n))

np + 2uψ(n)θ(ln(n))
→ −∞, u → +∞.

Since φ(t) is a monotone decreasing function, we can write
∞∑

n=1

uψ(n)θ(ln(n))

np + 2uψ(n)θ(ln(n))
≥

∫ ∞

1

uψ(t)θ(ln(t)) dt

tp + 2uψ(t)θ(ln(t))

≥
∞∑

n=2

uψ(n)θ(ln(n))

np + 2uψ(n)θ(ln(n))
∼ −uL′(u),

whence

uL′(u) ∼ I1(u) := −
∫ ∞

1

uψ(t)θ(ln(t)) dt

tp + 2uψ(t)θ(ln(t))
.

Replacing the integration interval with (0,∞) and substituting

t = t(z) := zφ−1(1/u) = zγ(u),

γ(u) := φ−1(1/u) ∼ u1/pϕ(u)ϑ(ln(u)), u → ∞,

where ϕ is an SVF and ϑ is a function that is uniformly continuous, bounded, and
separated away from zero, we obtain

I1(u) = −γ(u) ·
∫ ∞

0

dz

2 + zp · (γ(u))p

uψ(t(z))θ(ln(t(z)))

+ O(1), u → ∞.

Since 1/u = φ(γ(u)), we get the relation

(γ(u))p/u = ψ(t(z)/z)θ(ln(t(z)/z)).

Substituting this in the integral and recalling the definition of γ(u), we see that

I1(u) = −γ(u) ·
∫ ∞

0

dz

2 + zp · ψ(γ(u))θ(ln(γ(u)))

ψ(zγ(u))θ(ln(zγ(u)))

+O(1), u → ∞.

Clearly,

θ(ln(zγ(u))) = θ
( ln(u)

p
+ ln(z)

)
(1 + o(1)), u → ∞.

Observe also that, by Part 2 of Proposition 2, for every ε > 0 the ratio ψ(t)/tε decreases
at large values of t; thus, for z > 1 we have

ψ(t)

ψ(zt)
=

1

zε
· ψ(t)

tε
· (zt)ε

ψ(zt)
≥ C(ε)

zε
.

This majorant allows us to to use the Lebesgue theorem. As a result, we have

(35) I1(u) = −u1/pϑ(u) ·
∫ ∞

0

dz

2 + zp · θ(ln(u)/p)

θ(ln(u)/p+ ln(z))

+O(1), u → ∞.

Since the integral is a uniformly continuous and bounded function of ln(u) separated
away from zero, we obtain

(36) L′(u) ∼ −u− p−1
p ϕ(u)ϑ1(ln(u)), u → ∞,
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where ϕ is an SVF from the asymptotics of γ, and the function ϑ1 is uniformly continuous,
bounded, and separated away from zero.

Similarly,

(37) u2L′′(u) ∼ 2

∫ ∞

1

(uψ(t)θ(ln(t)))2 dt

(tp + 2uψ(t)θ(ln(t)))2
� u1/pϕ(u),

L(u) ∼ −1

2
u1/pϕ(u)ϑ(ln(u)) ·

∫ ∞

0

ln

(
1 +

2θ(ln(u)/p+ ln(z))

zpθ(ln(u)/p)

)
dt.

Since L′′(u) > 0, for sufficiently small r the equation L′(u)+ r = 0 has a unique solution
u(r) such that u(r) → ∞ as r → 0. Moreover, relation (36) yields

(38) u(r) ∼ r−
p

p−1 η(1/r)ϑ2(ln(1/r)), r → 0,

where η is an SVF, and the function ϑ2 is uniformly continuous, bounded, and separated
away from zero.

Substituting (37) in (34), we conclude that

lnP

{ ∞∑
n=1

φ(n)ξ2n ≤ r

}
∼ L(u) + ur = L(u)− uL′(u)

∼ −u1/pϕ(u)ϑ(ln(u)) ·
∫ ∞

0

[
1

2
ln

(
1 +

2θ(ln(u)/p+ ln(z))

zpθ(ln(u)/p)

)

− 1

2 + zp · θ(ln(u)/p)
θ(ln(u)/p+ln(z))

]
dz.

(39)

It remains to note that the integrand

1

2
ln(1 + 2x)− x

2x+ 1

is positive, so that the integral is a uniformly continuous function of ln(u), bounded
and separated away from zero. Substituting the asymptotics of u obtained above and
replacing r with ε2, we formulate the following theorem.

Theorem 8. Let the eigenvalues of (32) have the form (33). Then, as ε → 0,

(40) lnP {‖X‖μ ≤ ε} ∼ −ε−
2

p−1 ξ(1/ε)ζ(ln(1/ε)),

where ξ is an SVF and the function ζ is uniformly continuous, bounded, and separated
away from zero. Moreover, if the function θ in (33) is asymptotically T

p -periodic, then

the function ζ can be chosen to be T (p−1)
2p -periodic.

Proof. The first statement of the theorem follows from (39) and (38) if we replace r
with ε2. Next, if θ is asymptotically T

p -periodic, then the function ϑ is asymptotically

T -periodic, and using the Lebesgue theorem it is easy to verify that the integrals in (35)
and (39) are also asymptotically T -periodic functions of ln(u). Thus, the function ϑ1 in

(36) is asymptotically T -periodic, whence ϑ2 in (38) is asymptotically T (p−1)
p -periodic.

It remains to note that (38) implies

ln(u) =
p

p− 1
ln(1/r)(1 + o(1)), r → 0.

Thus, the integral in (39) and the function ϑ(ln(u)) are asymptotically T (p−1)
p -periodic

functions of ln(1/r), and the second statement is proved. �
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Now, suppose we have two Gaussian processes X(x), x ∈ O1 ⊆ R
m1 , and Y (y),

y ∈ O2 ⊆ R
m2 , with zero mean and covariation functions GX(x, u), x, u ∈ O1, and

GY (y, v), y, v ∈ O2, respectively. Consider a new Gaussian function Z(x, y), x ∈ O1,
y ∈ O2, with zero mean and the covariation GZ((x, y), (u, v)) = GX(x, u)GY (y, v). Such
a Gaussian function obviously exists, and the integral operator with the kernel GZ is
the tensor product of the operators with the kernels GX and GY . Therefore, we use the
notation Z = X⊗Y and we call the process Z the tensor product of the processes X and

Y . Generalization to the tensor product
⊗d

j=1 Xj of several factors is straightforward.

Example 2. We demonstrate application of theorems from §4 by the example of the
Brownian sheet

Wd(x1, . . . , xd) = W1(x1)⊗W2(x2)⊗ · · · ⊗Wd(xd)

in the unit cube with the norm of L2(μ), where μ =
⊗d

j=1 μj , and every measure μj

is a self-similar measure of generalized Cantor type. The spectral asymptotics of the
operators-factors in this case are known from [6] and [7]:

Nj(t) ∼
sj(ln(1/t))

t1/pj
, t → 0+,

where the sj are continuous and Tj-periodic, pj > 1. This power asymptotics was
considered in Example 1 and corresponds to the case where κ1 = κ2 = 0.

For certain measures μj the functions sj can be constant, but in [16, 18] we find
description of wide classes of measures for which the nonconstancy of the periodic com-
ponent is proved.

Let p := p1 = min pj . First, we use Theorem 1 for each operator with pj > p,
multiplying it by the first one. As a result, without loss of generality we may assume
that all operator’s asymptotics have the same power exponent.

If among the remaining operators at least one has a degenerate periodic component,
then the tensor product will also have a degenerate periodic component. If at least two
periods are incommensurable, then the periodic component of their tensor product will
degenerate to a constant as in Example 1, and as a result, the periodic component of the
entire tensor product will also degenerate to a constant.

If all power exponents coincide and all periods are commensurable, then we can use
Example 1 to obtain

N⊗(t) ∼
C lnd−1(1/t)s

(d)
⊗ (ln(1/t))

t1/p
, t → 0+,

where d is the number of the power exponents equal to p, and s
(d)
⊗ is obtained by iterating

formula (19) a required number of times. This allows us to use Theorem 8 for this
Gaussian field. Moreover, by direct calculation we discover that, in (38) and (40),

η(1/r) ∼ ln
(d−1)p
p−1 (1/r), r → 0,

ξ(1/r) ∼ ln
(d−1)p
p−1 (1/r), r → 0.

Thus, as ε → 0 we have

lnP {‖Wd‖μ ≤ ε} ∼ −ε−
2

p−1 ln
(d−1)p
p−1 (1/ε)ζ(ln(1/ε)),

where ζ is a T (p−1)
2p -periodic function.

Consider the simplest case where all measures are the classical Cantor measures. In
this case we know that

p = log2 6, T = ln 6.
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Substituting this in the asymptotics, we see that

lnP {‖Wd‖μ ≤ ε} ∼ −ε−2 log3 2 ln(d−1) log3 6(1/ε)ζ(ln(1/ε)) as ε → 0,

where ζ is a ln 3
2 -periodic function.

Remark 8. Similar results hold true if instead of the Wiener process we consider different
independent Green Gaussian processes. Some examples of well-known Green Gaussian
processes can be found in [8].
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