Discrete universality of the Riemann zeta-function and uniform distribution modulo 1
HTML articles powered by AMS MathViewer
- by A. Laurinčikas
- St. Petersburg Math. J. 30 (2019), 103-110
- DOI: https://doi.org/10.1090/spmj/1532
- Published electronically: December 5, 2018
- PDF | Request permission
Abstract:
It is proved that a wide class of analytic functions can be approximated by shifts $\zeta (s+i\varphi (k))$, $k\geq k_0$, $k\in \mathbb {N}$, of the Riemann zeta-function. Here the function $\varphi (t)$ has a continuous nonvanishing derivative on $[k_0,\infty )$ satisfying the estimate $\varphi (2t) \max _{t\leq u \leq 2t} \left (\varphi ’(u)\right )^{-1}\ll t$, and the sequence $\{a\varphi (k) : k\geq k_0\}$ with every real $a\neq 0$ is uniformly distributed modulo 1. Examples of $\varphi (t)$ are given.References
- B. Bagchi, The statistical behaviour and universality properties of the Riemann zeta-function and other allied Dirichlet series, Ph.D. Thesis, Calcutta, Indian Stat. Inst., 1981.
- Patrick Billingsley, Convergence of probability measures, John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR 0233396
- Artūras Dubickas and Antanas Laurinčikas, Distribution modulo 1 and the discrete universality of the Riemann zeta-function, Abh. Math. Semin. Univ. Hambg. 86 (2016), no. 1, 79–87. MR 3474509, DOI 10.1007/s12188-016-0123-8
- Steven Mark Gonek, ANALYTIC PROPERTIES OF ZETA AND L-FUNCTIONS, ProQuest LLC, Ann Arbor, MI, 1979. Thesis (Ph.D.)–University of Michigan. MR 2628587
- L. Kuipers and H. Niederreiter, Uniform distribution of sequences, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. MR 0419394
- Antanas Laurinčikas, Limit theorems for the Riemann zeta-function, Mathematics and its Applications, vol. 352, Kluwer Academic Publishers Group, Dordrecht, 1996. MR 1376140, DOI 10.1007/978-94-017-2091-5
- S. N. Mergelyan, Uniform approximations of functions of a complex variable, Uspehi Matem. Nauk (N.S.) 7 (1952), no. 2(48), 31–122 (Russian). MR 0051921
- Hugh L. Montgomery, Topics in multiplicative number theory, Lecture Notes in Mathematics, Vol. 227, Springer-Verlag, Berlin-New York, 1971. MR 0337847
- Axel Reich, Werteverteilung von Zetafunktionen, Arch. Math. (Basel) 34 (1980), no. 5, 440–451 (German). MR 593771, DOI 10.1007/BF01224983
- Jörn Steuding, Value-distribution of $L$-functions, Lecture Notes in Mathematics, vol. 1877, Springer, Berlin, 2007. MR 2330696
- S. M. Voronin, A theorem on the “universality” of the Riemann zeta-function, Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), no. 3, 475–486, 703 (Russian). MR 0472727
- J. L. Walsh, Interpolation and approximation by rational functions in the complex domain, 4th ed., American Mathematical Society Colloquium Publications, Vol. XX, American Mathematical Society, Providence, R.I., 1965. MR 0218588
Bibliographic Information
- A. Laurinčikas
- Affiliation: Faculty of Mathematics and Informatics, Vilnius University, Naugarduko str. 24, LT-03225 Vilnius, Lithuania
- Email: antanas.laurincikas@mif.vu.lt
- Received by editor(s): November 26, 2016
- Published electronically: December 5, 2018
- © Copyright 2018 American Mathematical Society
- Journal: St. Petersburg Math. J. 30 (2019), 103-110
- MSC (2010): Primary 11M06
- DOI: https://doi.org/10.1090/spmj/1532
- MathSciNet review: 3790747