Skip to Main Content

St. Petersburg Mathematical Journal

This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.

ISSN 1547-7371 (online) ISSN 1061-0022 (print)

The 2020 MCQ for St. Petersburg Mathematical Journal is 0.68.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Uniqueness theorem and subharmonic test function
HTML articles powered by AMS MathViewer

by B. N. Khabibullin, Z. F. Abdullina and A. P. Rozit
Translated by: S. V. Kislyakov
St. Petersburg Math. J. 30 (2019), 379-390
DOI: https://doi.org/10.1090/spmj/1547
Published electronically: February 14, 2019

Abstract:

Suppose that a holomorphic function $f$ in a domain $D$ in $\mathbb {C}^n$ satisfies $|f|\leq e^M$ on $D$ (pointwise), where $M\not \equiv -\infty$ is subharmonic function on $D$ with Riesz measure $\nu _M$. Various methods are described for construction of wide classes of subharmonic test functions. These are subharmonic functions nonnegative and bounded on $D\setminus S_0$ for some compact set $S_0\subset D$ that have zero limit on the boundary of $D$. If the integral of such a test function over $D\setminus S_0$ with respect to the Riesz measure $\nu _M$ is finite and its integral with respect to the $(2n-2)$-dimensional Hausdorff measure over the zero set of $f$ is infinite, $f\equiv 0$ on $D$. Thus, any new test function yields a uniqueness theorem.
References
  • B. V. Shabat, Raspredelenie znacheniĭ golomorfnykh otobrazheniĭ, “Nauka”, Moscow, 1982 (Russian). MR 701119
  • Wilhelm Stoll, Value distribution theory for meromorphic maps, Aspects of Mathematics, E7, Friedr. Vieweg & Sohn, Braunschweig, 1985. MR 823236, DOI 10.1007/978-3-663-05292-0
  • Phillip Griffiths and James King, Nevanlinna theory and holomorphic mappings between algebraic varieties, Acta Math. 130 (1973), 145–220. MR 427690, DOI 10.1007/BF02392265
  • Š. A. Dautov and G. M. Henkin, Zeros of holomorphic functions of finite order and weighted estimates for the solutions of the $\bar \partial$-equation, Mat. Sb. (N.S.) 107(149) (1978), no. 2, 163–174, 317 (Russian). MR 512005
  • Joaquim Bruna and Xavier Massaneda, Zero sets of holomorphic functions in the unit ball with slow growth, J. Anal. Math. 66 (1995), 217–252. MR 1370351, DOI 10.1007/BF02788823
  • B. N. Khabibullin, Dual representation of superlinear functionals and its applications in the theory of functions. II, Izv. Ross. Akad. Nauk Ser. Mat. 65 (2001), no. 5, 167–190 (Russian, with Russian summary); English transl., Izv. Math. 65 (2001), no. 5, 1017–1039. MR 1874358, DOI 10.1070/IM2001v065n05ABEH000361
  • G. M. Khenkin, The method of integral representations in complex analysis, Current problems in mathematics. Fundamental directions, Vol. 7, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1985, pp. 23–124, 258 (Russian). MR 850491
  • S. V. Shvedenko, Hardy classes and related spaces of analytic functions in the unit disc, polydisc and ball, Mathematical analysis, Vol. 23, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1985, pp. 3–124, 288 (Russian). MR 824267
  • L. I. Ronkin, Introduction to the theory of entire functions of several variables, Translations of Mathematical Monographs, Vol. 44, American Mathematical Society, Providence, R.I., 1974. Translated from the Russian by Israel Program for Scientific Translations. MR 0346175
  • L. I. Ronkin, Entire functions, Current problems in mathematics. Fundamental directions, Vol. 9 (Russian), Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1986, pp. 5–36, 292 (Russian). MR 860608
  • Pierre Lelong and Lawrence Gruman, Entire functions of several complex variables, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 282, Springer-Verlag, Berlin, 1986. MR 837659, DOI 10.1007/978-3-642-70344-7
  • L. I. Ronkin, Functions of completely regular growth, Mathematics and its Applications (Soviet Series), vol. 81, Kluwer Academic Publishers Group, Dordrecht, 1992. Translated from the Russian by A. Ronkin and I. Yedvabnik. MR 1196691, DOI 10.1007/978-94-011-2418-8
  • B. N. Khabibullin, Completeness of exponential systems and uniqueness sets, RIC Bash. Gos. Univ., Ufa, 2012, (Russian).
  • S. Yu. Favorov and L. D. Radchenko, The Riesz measure of functions subharmonic in the exterior of a compact set, Mat. Stud. 40 (2013), no. 2, 149–158 (Russian, with English and Russian summaries). MR 3185250
  • —, On subharmonic functions in a unit ball growing near a part of the boundary, Sb. Prats Inst. Mat. NAN Ucr. 10 (2013), no. 4–5, 338–356.
  • E. M. Chirka, Complex analytic sets, Mathematics and its Applications (Soviet Series), vol. 46, Kluwer Academic Publishers Group, Dordrecht, 1989. Translated from the Russian by R. A. M. Hoksbergen. MR 1111477, DOI 10.1007/978-94-009-2366-9
  • B. N. Khabibullin and N. R. Tamindarova, Distribution of zeros for Holomorphic functions: Hadamard- and Blaschke-type conditions, Internat. Workshop on “Non-harmonic Analysis and Differential Operators” (May 25–27, 2016, Baku), Abstracts, NAS Azerbaijan, Baku, 2016.
  • —, Uniqueness theorems for subharmonic and holomorphic functions of several variables on a domain, Azerbaijan J. Math. 7 (2017), no. 1, 70–79; https://www.azjm.org/volumes/0701/ 0701-7.pdf.
  • B. N. Khabibullin and N. R. Tamindarova, Subharmonic test functions and the distribution of zero sets of holomorphic functions, Lobachevskii J. Math. 38 (2017), no. 1, 38–43. MR 3615323, DOI 10.1134/S1995080217010115
  • Maciej Klimek, Pluripotential theory, London Mathematical Society Monographs. New Series, vol. 6, The Clarendon Press, Oxford University Press, New York, 1991. Oxford Science Publications. MR 1150978
  • Juhani Riihentaus, Convex functions and subharmonic functions, Potential Anal. 5 (1996), no. 3, 301–309. MR 1389499, DOI 10.1007/BF00282365
  • J. L. Doob, Classical potential theory and its probabilistic counterpart, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 262, Springer-Verlag, New York, 1984. MR 731258, DOI 10.1007/978-1-4612-5208-5
  • W. K. Hayman and P. B. Kennedy, Subharmonic functions. Vol. I, London Mathematical Society Monographs, No. 9, Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1976. MR 0460672
  • Thomas Ransford, Potential theory in the complex plane, London Mathematical Society Student Texts, vol. 28, Cambridge University Press, Cambridge, 1995. MR 1334766, DOI 10.1017/CBO9780511623776
  • A. A. Kondratyuk, On the method of spherical harmonics for subharmonic functions, Mat. Sb. (N.S.) 116(158) (1981), no. 2, 147–165 (Russian). MR 637858
  • A. A. Kondratyuk, Spherical harmonics and subharmonic functions, Mat. Sb. (N.S.) 125(167) (1984), no. 2, 147–166 (Russian). MR 764475
  • B. N. Khabibullin, A uniqueness theorem for subharmonic functions of finite order, Mat. Sb. 182 (1991), no. 6, 811–827 (Russian); English transl., Math. USSR-Sb. 73 (1992), no. 1, 195–210. MR 1126154, DOI 10.1070/SM1992v073n01ABEH002541
  • B. Ya. Levin, Distribution of zeros of entire functions, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow, 1956 (Russian). MR 0087740
  • B. Ya. Levin, Lectures on entire functions, Translations of Mathematical Monographs, vol. 150, American Mathematical Society, Providence, RI, 1996. In collaboration with and with a preface by Yu. Lyubarskii, M. Sodin and V. Tkachenko; Translated from the Russian manuscript by Tkachenko. MR 1400006, DOI 10.1090/mmono/150
  • A. F. Grishin and K. G. Malyutin, Trigonometric convex functions, Ugo-Zap. Gos. Univ., Kursk, 2013. (Russian)
  • B. N. Khabibullin and N. P. Tamindarova, Distribution of zeros and masses for holomorphic and subharmonic functions. I. Hadamard and Blashke-type conditions; arXiv:1512.04610v2.
  • Evgeny A. Poletsky, Holomorphic currents, Indiana Univ. Math. J. 42 (1993), no. 1, 85–144. MR 1218708, DOI 10.1512/iumj.1993.42.42006
  • Evgeny A. Poletsky, Disk envelopes of functions. II, J. Funct. Anal. 163 (1999), no. 1, 111–132. MR 1682839, DOI 10.1006/jfan.1998.3378
Similar Articles
  • Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 31A05
  • Retrieve articles in all journals with MSC (2010): 31A05
Bibliographic Information
  • B. N. Khabibullin
  • Affiliation: Department of Mathematics and Information, Technologies Bashkir state university, ul. Zaki Baligi, 32, 450076, Ufa, Republic of Bashkortostan, Russia
  • Email: khabib-bulat@mail.ru
  • Z. F. Abdullina
  • Affiliation: Department of Mathematics and Information, Technologies Bashkir state university, ul. Zaki Baligi, 32, 450076, Ufa, Republic of Bashkortostan, Russia
  • A. P. Rozit
  • Affiliation: Department of Mathematics and Information, Technologies Bashkir state university, ul. Zaki Baligi, 32, 450076, Ufa, Republic of Bashkortostan, Russia
  • Received by editor(s): August 30, 2017
  • Published electronically: February 14, 2019
  • Additional Notes: Supported by RFBR, project no. 16-01-00024a

  • Dedicated: Dedicated to the $130$th anniversary of the birth of Academician Vladimir Ivanovich Smirnov
  • © Copyright 2019 American Mathematical Society
  • Journal: St. Petersburg Math. J. 30 (2019), 379-390
  • MSC (2010): Primary 31A05
  • DOI: https://doi.org/10.1090/spmj/1547
  • MathSciNet review: 3790741