Radial and logarithmic refinements of Hardy’s inequality
HTML articles powered by AMS MathViewer
- by F. Gesztesy, L. L. Littlejohn, I. Michael and M. M. H. Pang
- St. Petersburg Math. J. 30 (2019), 429-436
- DOI: https://doi.org/10.1090/spmj/1550
- Published electronically: April 12, 2019
- PDF | Request permission
Abstract:
Versions of Hardy’s inequality involving radial derivatives and logarithmic refinements are deduced.References
- Adimurthi, Massimo Grossi, and Sanjiban Santra, Optimal Hardy-Rellich inequalities, maximum principle and related eigenvalue problem, J. Funct. Anal. 240 (2006), no. 1, 36–83. MR 2259892, DOI 10.1016/j.jfa.2006.07.011
- A. A. Balinsky and W. D. Evans, Spectral analysis of relativistic operators, Imperial College Press, London, 2011. MR 2779257
- Alexander A. Balinsky, W. Desmond Evans, and Roger T. Lewis, The analysis and geometry of Hardy’s inequality, Universitext, Springer, Cham, 2015. MR 3408787, DOI 10.1007/978-3-319-22870-9
- H. L. Cycon, R. G. Froese, W. Kirsch, and B. Simon, Schrödinger operators with application to quantum mechanics and global geometry, Springer Study Edition, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1987. MR 883643
- William G. Faris, Weak Lebesgue spaces and quantum mechanical binding, Duke Math. J. 43 (1976), no. 2, 365–373. MR 425598
- F. Gesztesy, On nondegenerate ground states for Schrödinger operators, Rep. Math. Phys. 20 (1984), no. 1, 93–109. MR 761334, DOI 10.1016/0034-4877(84)90075-2
- Fritz Gesztesy and Lance Littlejohn, Factorizations and Hardy-Rellich-type inequalities, Non-linear partial differential equations, mathematical physics, and stochastic analysis, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2018, pp. 207–226. MR 3823846
- F. Gesztesy, L. L. Littlejohn, I. Michael, and M. Pang, (in preparation).
- Fritz Gesztesy, Marius Mitrea, Irina Nenciu, and Gerald Teschl, Decoupling of deficiency indices and applications to Schrödinger-type operators with possibly strongly singular potentials, Adv. Math. 301 (2016), 1022–1061. MR 3539396, DOI 10.1016/j.aim.2016.08.008
- F. Gesztesy and L. Pittner, A generalization of the virial theorem for strongly singular potentials, Rep. Math. Phys. 18 (1980), no. 2, 149–162 (1983). MR 730744, DOI 10.1016/0034-4877(80)90082-8
- F. Gesztesy and M. Ünal, Perturbative oscillation criteria and Hardy-type inequalities, Math. Nachr. 189 (1998), 121–144. MR 1492926, DOI 10.1002/mana.19981890108
- Hubert Kalf, On the characterization of the Friedrichs extension of ordinary or elliptic differential operators with a strongly singular potential, J. Functional Analysis 10 (1972), 230–250. MR 0348256, DOI 10.1016/0022-1236(72)90051-1
- H. Kalf, U.-W. Schmincke, J. Walter, and R. Wüst, On the spectral theory of Schrödinger and Dirac operators with strongly singular potentials, Spectral theory and differential equations (Proc. Sympos., Dundee, 1974; dedicated to Konrad Jörgens), Lecture Notes in Math., Vol. 448, Springer, Berlin, 1975, pp. 182–226. MR 0397192
- Hubert Kalf and Johann Walter, Strongly singular potentials and essential self-adjointness of singular elliptic operators in $C_{0}{}^{\infty }(\textbf {R}^{n}\backslash \{0\})$, J. Functional Analysis 10 (1972), 114–130. MR 0350183, DOI 10.1016/0022-1236(72)90059-6
- Alois Kufner, Lech Maligranda, and Lars-Erik Persson, The Hardy inequality, Vydavatelský Servis, Plzeň, 2007. About its history and some related results. MR 2351524
- Alois Kufner, Lars-Erik Persson, and Natasha Samko, Weighted inequalities of Hardy type, 2nd ed., World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017. MR 3676556, DOI 10.1142/10052
- B. Opic and A. Kufner, Hardy-type inequalities, Pitman Research Notes in Mathematics Series, vol. 219, Longman Scientific & Technical, Harlow, 1990. MR 1069756
- M. Ruzhansky and N. Yessirkegenov, Factorizations and Hardy–Rellich inequalities on stratified groups, arXiv:1706.05108.
- A. Tertikas and N. B. Zographopoulos, Best constants in the Hardy-Rellich inequalities and related improvements, Adv. Math. 209 (2007), no. 2, 407–459. MR 2296305, DOI 10.1016/j.aim.2006.05.011
Bibliographic Information
- F. Gesztesy
- Affiliation: Department of Mathematics, Baylor University, One Bear Place #97328, Waco, Texas 76798-7328
- MR Author ID: 72880
- Email: Fritz_Gesztesy@baylor.edu
- L. L. Littlejohn
- Affiliation: Department of Mathematics, Baylor University, One Bear Place #97328, Waco, Texas 76798-7328
- Email: Lance_Littlejohn@baylor.edu
- I. Michael
- Affiliation: Department of Mathematics, Baylor University, One Bear Place #97328, Waco, Texas 76798-7328
- Email: Isaac_Michael@baylor.edu
- M. M. H. Pang
- Affiliation: Department of Mathematics, University of Missouri, Columbia, Missouri 65211
- Email: pangm@missouri.edu
- Received by editor(s): November 28, 2017
- Published electronically: April 12, 2019
- © Copyright 2019 American Mathematical Society
- Journal: St. Petersburg Math. J. 30 (2019), 429-436
- MSC (2010): Primary 35A23, 35J30; Secondary 47A63, 47F05
- DOI: https://doi.org/10.1090/spmj/1550
- MathSciNet review: 3811998
Dedicated: Dedicated, with great admiration, to the memory of Michael Solomyak (May 16, 1931–July 31, 2016).