Symplectic capacity and the main triangle projection
HTML articles powered by AMS MathViewer
- by
E. D. Gluskin
Translated by: E. Peller - St. Petersburg Math. J. 30 (2019), 437-443
- DOI: https://doi.org/10.1090/spmj/1551
- Published electronically: April 12, 2019
- PDF | Request permission
Abstract:
In this paper a sequence of convex sets of increasing dimension is constructed for which the Ekeland–Hofer–Zehnder capacity is uniformly bounded while the symplectic capacity grows to infinity. This contrasts sharply with the recent result from the paper by E. D. Gluskin, Y. Ostrover, Comm. Math. Helv. 91 (2016), no. 1, 131–144, which shows that there are no such examples in the case of centrally symmetric convex bodies.References
- Helmut Hofer and Eduard Zehnder, Symplectic invariants and Hamiltonian dynamics, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Verlag, Basel, 1994. MR 1306732, DOI 10.1007/978-3-0348-8540-9
- Yaron Ostrover, When symplectic topology meets Banach space geometry, Proceedings of the International Congress of Mathematicians—Seoul 2014. Vol. II, Kyung Moon Sa, Seoul, 2014, pp. 959–981. MR 3728647
- M. Gromov, Pseudo holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), no. 2, 307–347. MR 809718, DOI 10.1007/BF01388806
- I. Ekeland and H. Hofer, Symplectic topology and Hamiltonian dynamics, Math. Z. 200 (1989), no. 3, 355–378. MR 978597, DOI 10.1007/BF01215653
- H. Hofer and E. Zehnder, A new capacity for symplectic manifolds, Analysis, et cetera, Academic Press, Boston, MA, 1990, pp. 405–427. MR 1039354
- Efim D. Gluskin and Yaron Ostrover, Asymptotic equivalence of symplectic capacities, Comment. Math. Helv. 91 (2016), no. 1, 131–144. MR 3471939, DOI 10.4171/CMH/380
- S. Kwapień and A. Pełczyński, The main triangle projection in matrix spaces and its applications, Studia Math. 34 (1970), 43–68. MR 270118, DOI 10.4064/sm-34-1-43-67
- A. E. Litvak, Properties of the operator of discrete integration and some applications, Vestnik St. Petersburg Univ. Math. 25 (1992), no. 4, 28–30. MR 1353643
- Alan Weinstein, Periodic orbits for convex Hamiltonian systems, Ann. of Math. (2) 108 (1978), no. 3, 507–518. MR 512430, DOI 10.2307/1971185
- Paul H. Rabinowitz, Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math. 31 (1978), no. 2, 157–184. MR 467823, DOI 10.1002/cpa.3160310203
- Alberto Abbondandolo and Pietro Majer, A non-squeezing theorem for convex symplectic images of the Hilbert ball, Calc. Var. Partial Differential Equations 54 (2015), no. 2, 1469–1506. MR 3396420, DOI 10.1007/s00526-015-0832-3
- P. Haim-Kislev, On the symplectic size of convex polytopes, Geom. Funct. Anal. (2019).arXiv: 1712.03494.
- I. C. Gohberg and M. G. Kreĭn, Theory and applications of Volterra operators in Hilbert space, Translations of Mathematical Monographs, Vol. 24, American Mathematical Society, Providence, R.I., 1970. Translated from the Russian by A. Feinstein. MR 0264447
- C. A. Rogers and G. C. Shephard, The difference body of a convex body, Arch. Math. (Basel) 8 (1957), 220–233. MR 92172, DOI 10.1007/BF01899997
- Elias M. Stein and Rami Shakarchi, Fourier analysis, Princeton Lectures in Analysis, vol. 1, Princeton University Press, Princeton, NJ, 2003. An introduction. MR 1970295
- Boris Makarov and Anatolii Podkorytov, Real analysis: measures, integrals and applications, Universitext, Springer, London, 2013. Translated from the 2011 Russian original. MR 3089088, DOI 10.1007/978-1-4471-5122-7
- B. M. Makarov, M. G. Goluzina, A. A. Lodkin, and A. N. Podkorytov, Izbrannye zadachi po veshchestvennomu analizu, Nevskiĭ Dialekt, St. Petersburg; “BKhV-Peterburg”, St. Petersburg, 2004 (Russian, with Russian summary). Second edition [of MR1261189]. MR 2808972
Bibliographic Information
- E. D. Gluskin
- Affiliation: School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Email: gluskin@post.tau.ac.il
- Received by editor(s): February 22, 2018
- Published electronically: April 12, 2019
- © Copyright 2019 American Mathematical Society
- Journal: St. Petersburg Math. J. 30 (2019), 437-443
- MSC (2010): Primary 52A20
- DOI: https://doi.org/10.1090/spmj/1551
- MathSciNet review: 3811999
Dedicated: Dedicated to the blessed memory of my dear teacher M. Z. Solomyak