St. Petersburg Mathematical Journal

This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.

ISSN 1547-7371 (online) ISSN 1061-0022 (print)

The 2024 MCQ for St. Petersburg Mathematical Journal is 0.68.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Maxwell operator in a cylinder with coefficients that do not depend on the longitudinal variable
HTML articles powered by AMS MathViewer

by N. Filonov
Translated by: the author
St. Petersburg Math. J. 30 (2019), 545-572
DOI: https://doi.org/10.1090/spmj/1558
Published electronically: April 12, 2019

Abstract:

The Maxwell operator in a 3-dimensional cylinder with Lipschitz cross-section is considered. The coefficients are assumed to be independent of the longitudinal variable. The spectrum of the operator is shown to be absolutely continuous. If the cross-section of the cylinder is multiply connected, then the spectrum fills the real axes. If the cross-section is simply connected, then the spectrum has one gap centered at the origin.
References
  • M. Sh. Birman and M. Z. Solomyak, The Maxwell operator in domains with a nonsmooth boundary, Sibirsk. Mat. Zh. 28 (1987), no. 1, i, 23–36 (Russian). MR 886850
  • M. Sh. Birman and M. Z. Solomyak, Weyl asymptotics of the spectrum of the Maxwell operator for domains with a Lipschitz boundary, Vestnik Leningrad. Univ. Mat. Mekh. Astronom. vyp. 3 (1987), 23–28, 127 (Russian, with English summary). MR 928156
  • M. Sh. Birman and M. Z. Solomyak, The selfadjoint Maxwell operator in arbitrary domains, Algebra i Analiz 1 (1989), no. 1, 96–110 (Russian); English transl., Leningrad Math. J. 1 (1990), no. 1, 99–115. MR 1015335
  • A. L. Delitsyn, On the formulation of boundary value problems for a system of Maxwell equations in a cylinder and their solvability, Izv. Ross. Akad. Nauk Ser. Mat. 71 (2007), no. 3, 61–112 (Russian, with Russian summary); English transl., Izv. Math. 71 (2007), no. 3, 495–544. MR 2347091, DOI 10.1070/IM2007v071n03ABEH002366
  • N. Filonov, On an inequality for the eigenvalues of the Dirichlet and Neumann problems for the Laplace operator, Algebra i Analiz 16 (2004), no. 2, 172–176 (Russian); English transl., St. Petersburg Math. J. 16 (2005), no. 2, 413–416. MR 2068346, DOI 10.1090/S1061-0022-05-00857-5
  • N. Filonov, Weyl asymptotics of the spectrum of the Maxwell operator in Lipschitz domains of arbitrary dimension, Algebra i Analiz 25 (2013), no. 1, 170–215 (Russian); English transl., St. Petersburg Math. J. 25 (2014), no. 1, 117–149. MR 3113431, DOI 10.1090/s1061-0022-2013-01282-9
  • A. O. Prokhorov and N. D. Filonov, The Maxwell operator with periodic coefficients in a cylinder, Algebra i Analiz 29 (2017), no. 6, 182–196 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 29 (2018), no. 6, 997–1006. MR 3723815, DOI 10.1090/spmj/1524
  • Leonid Friedlander, Some inequalities between Dirichlet and Neumann eigenvalues, Arch. Rational Mech. Anal. 116 (1991), no. 2, 153–160. MR 1143438, DOI 10.1007/BF00375590
  • I. S. Gudovič and S. G. Kreĭn, Boundary value problems for overdetermined systems of partial differential equations, Differencial′nye Uravnenija i Primenen.—Trudy Sem. Processy Vyp. 9 (1974), 1–145 (Russian, with Lithuanian and English summaries). MR 0481612
  • Tosio Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MR 0203473
  • L. D. Landau and E. M. Lifshitz, Course of theoretical physics. Vol. 8, Pergamon International Library of Science, Technology, Engineering and Social Studies, Pergamon Press, Oxford, 1984. Electrodynamics of continuous media; Translated from the second Russian edition by J. B. Sykes, J. S. Bell and M. J. Kearsley; Second Russian edition revised by Lifshits and L. P. Pitaevskiĭ. MR 766230
  • Abderemane Morame, The absolute continuity of the spectrum of Maxwell operator in a periodic media, J. Math. Phys. 41 (2000), no. 10, 7099–7108. MR 1781426, DOI 10.1063/1.1288794
  • B. A. Plamenevskiĭ and A. S. Poretskiĭ, The Maxwell system in waveguides with several cylindrical exits to infinity, Algebra i Analiz 25 (2013), no. 1, 94–155 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 25 (2014), no. 1, 63–104. MR 3113429, DOI 10.1090/s1061-0022-2013-01280-5
  • B. A. Plamenevskiĭ and A. S. Poretskiĭ, The Maxwell system in waveguides with several cylindrical outlets to infinity and nonhomogeneous anisotropic filling, Algebra i Analiz 29 (2017), no. 2, 89–126 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 29 (2018), no. 2, 289–314. MR 3660675, DOI 10.1090/spmj/1494
  • Michael Reed and Barry Simon, Methods of modern mathematical physics. IV. Analysis of operators, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 0493421
  • Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
  • T. A. Suslina, Absolute continuity of the spectrum of the periodic Maxwell operator in a layer, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 288 (2002), no. Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts. 32, 232–255, 274 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 123 (2004), no. 6, 4654–4667. MR 1923552, DOI 10.1023/B:JOTH.0000041481.09722.86
Similar Articles
  • Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 35Q61
  • Retrieve articles in all journals with MSC (2010): 35Q61
Bibliographic Information
  • N. Filonov
  • Affiliation: St. Petersburg Branch, Steklov Institute of Mathematics, Russian Academy of Sciences, Fontanka 27, St. Petersburg 191023, Russia; and St. Petersburg State University, University emb. 7/9, St. Petersburg 199034, Russia
  • MR Author ID: 609754
  • Email: filonov@pdmi.ras.ru
  • Received by editor(s): October 28, 2017
  • Published electronically: April 12, 2019
  • Additional Notes: This research was supported by Russian Science Foundation, project no. 17-11-01069

  • Dedicated: To the memory of M. Z. Solomjak
  • © Copyright 2019 American Mathematical Society
  • Journal: St. Petersburg Math. J. 30 (2019), 545-572
  • MSC (2010): Primary 35Q61
  • DOI: https://doi.org/10.1090/spmj/1558
  • MathSciNet review: 3812006