Deficiency indices of the operators generated by infinite Jacobi matrices with operator entries
HTML articles powered by AMS MathViewer
- by
I. N. Braeutigam and K. A. Mirzoev
Translated by: E. Peller - St. Petersburg Math. J. 30 (2019), 621-638
- DOI: https://doi.org/10.1090/spmj/1562
- Published electronically: June 4, 2019
- PDF | Request permission
Abstract:
Let $\mathbf {J}$ be an infinite symmetric Jacobi matrix whose entries are either linear operators acting in the finite dimensional space $\mathbb {C}^m$ or bounded linear operators acting on an infinite-dimensional separable Hilbert space $\mathrm {H}$. The minimal closed symmetric operator $L$ induced by $\mathbf {J}$ is considered in the Hilbert spaces $\ell ^2(\mathbb {N}_0,\mathbb {C}^m)$ or $\ell ^2(\mathbb {N}_0, \mathrm {H})$, respectively. New criteria are given for the minimality, maximality, and nonmaximality of the deficiency indices of this operator, i.e., criteria in terms of the matrix $\mathbf {J}$ for the corresponding moment problem to be determinate, completely indeterminate and noncompletely indeterminate. The main emphasis is on conditions on the entries of a numerical Jacobi matrix that ensure the determinate or indeterminate cases of the classical moment problem. These results are applied to a construction of examples of entire operators (in the sense of M. Kreĭn) with infinite deficiency indices as well as to the Sturm–Liouville vector differential operator with point interactions on the semiaxis.References
- M. Kreĭn, Infinite $J$-matrices and a matrix-moment problem, Doklady Akad. Nauk SSSR (N.S.) 69 (1949), 125–128 (Russian). MR 0034964
- M. G. Kreĭn, The fundamental propositions of the theory of representations of Hermitian operators with deficiency index $(m,m)$, Ukrain. Mat. Žurnal 1 (1949), no. 2, 3–66 (Russian). MR 0048704
- Ju. M. Berezans′kiĭ, Razlozhenie po sobstvennym funktsiyam samosopryazhennykh operatorov, Izdat. “Naukova Dumka”, Kiev, 1965 (Russian). Akademijá Nauk Ukrainskoĭ SSSR. Institut Matematiki. MR 0222719
- V. I. Kogan, Operators that are generated by $I_{p}$-matrices in the case of maximal defect indices, Teor. Funkciĭ Funkcional. Anal. i Priložen. 11 (1970), 103–107 (Russian). MR 0295127
- Yu. M. Dyukarev, Deficiency numbers of symmetric operators generated by block Jacobi matrices, Mat. Sb. 197 (2006), no. 8, 73–100 (Russian, with Russian summary); English transl., Sb. Math. 197 (2006), no. 7-8, 1177–1203. MR 2272779, DOI 10.1070/SM2006v197n08ABEH003794
- Yu. M. Dyukarev, Examples of block Jacobi matrices that generate symmetric operators with arbitrary possible deficiency numbers, Mat. Sb. 201 (2010), no. 12, 83–92 (Russian, with Russian summary); English transl., Sb. Math. 201 (2010), no. 11-12, 1791–1800. MR 2760103, DOI 10.1070/SM2010v201n12ABEH004131
- I. N. Broĭtigam and K. A. Mirzoev, On the defect numbers of operators generated by infinite Jacobi matrices, Dokl. Akad. Nauk 467 (2016), no. 3, 261–265 (Russian, with Russian summary); English transl., Dokl. Math. 93 (2016), no. 2, 170–174. MR 3525639, DOI 10.1134/s1064562416020137
- A. G. Kostyuchenko and K. A. Mirzoev, Trinomial recurrent relations with matrix coefficients. The completely indeterminate case, Mat. Zametki 63 (1998), no. 5, 709–716 (Russian, with Russian summary); English transl., Math. Notes 63 (1998), no. 5-6, 624–630. MR 1683644, DOI 10.1007/BF02312843
- A. G. Kostyuchenko and K. A. Mirzoev, Generalized Jacobi matrices and deficiency indices of ordinary differential operators with polynomial coefficients, Funktsional. Anal. i Prilozhen. 33 (1999), no. 1, 30–45, 96 (Russian, with Russian summary); English transl., Funct. Anal. Appl. 33 (1999), no. 1, 25–37. MR 1711874, DOI 10.1007/BF02465140
- N. I. Ahiezer, Klassicheskaya problema momentov i nekotorye voprosy analiza, svyazannye s neyu, Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1961 (Russian). MR 0154069
- Béla Nagy, Multiplicities, generalized Jacobi matrices, and symmetric operators, J. Operator Theory 65 (2011), no. 1, 211–232. MR 2765765
- A. L. Čistjakov, Defect indices of symmetric operators in a direct sum of Hilbert spaces. I, II, Vestnik Moskov. Univ. Ser. I Mat. Meh. 24 (1969), no. 3, 15–21; ibid. 24 (1969), no. 4, 3–5 (Russian, with English summary). MR 0259633
- Eugenia N. Petropoulou and L. Velázquez, Self-adjointness of unbounded tridiagonal operators and spectra of their finite truncations, J. Math. Anal. Appl. 420 (2014), no. 1, 852–872. MR 3229858, DOI 10.1016/j.jmaa.2014.05.077
- K. A. Mirzoev and T. A. Safonova, Singular Sturm-Liouville operators with distribution potential in the space of vector functions, Dokl. Akad. Nauk 441 (2011), no. 2, 165–168 (Russian); English transl., Dokl. Math. 84 (2011), no. 3, 791–794. MR 2953790, DOI 10.1134/S106456241107012X
- K. A. Mirzoev and T. A. Safonova, On the deficiency index of the vectorial Sturm-Liouville operator, Mat. Zametki 99 (2016), no. 2, 262–277 (Russian, with Russian summary); English transl., Math. Notes 99 (2016), no. 1-2, 290–303. MR 3462706, DOI 10.4213/mzm10854
- A. S. Kostenko, M. M. Malamud, and D. D. Natyagaĭlo, The matrix Schrödinger operator with $\delta$-interactions, Mat. Zametki 100 (2016), no. 1, 59–77 (Russian, with Russian summary); English transl., Math. Notes 100 (2016), no. 1-2, 49–65. MR 3588828, DOI 10.4213/mzm11122
- A. S. Kostenko and M. M. Malamud, On the one-dimensional Schrödinger operator with $\delta$-interactions, Funktsional. Anal. i Prilozhen. 44 (2010), no. 2, 87–91 (Russian); English transl., Funct. Anal. Appl. 44 (2010), no. 2, 151–155. MR 2681961, DOI 10.1007/s10688-010-0019-9
- Aleksey S. Kostenko and Mark M. Malamud, 1-D Schrödinger operators with local point interactions on a discrete set, J. Differential Equations 249 (2010), no. 2, 253–304. MR 2644117, DOI 10.1016/j.jde.2010.02.011
- Karakhan A. Mirzoev, New limit-point criteria for Sturm-Liouville operator, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb. 40 (2014), 290–299. MR 3408862
- V. Ī. Gorbačuk and M. L. Gorbačuk, A certain example of an entire operator with infinite defect numbers. , Dopovīdī Akad. Nauk Ukraïn. RSR Ser. A 1970 (1970), 579–583, 667 (Ukrainian, with English and Russian summaries). MR 0283605
- M. L. Gorbachuk and V. I. Gorbachuk, Realization of entire operators by differential ones, Integral Equations Operator Theory 30 (1998), no. 2, 200–230. Dedicated to the memory of Mark Grigorievich Krein (1907–1989). MR 1607901, DOI 10.1007/BF01238219
- Guojing Ren, Defect index of the square of a formally self-adjoint second-order difference expression, Adv. Difference Equ. , posted on (2014), Paper No. 48, 12. MR 3875418, DOI 10.1186/1687-1847-2014-48
Bibliographic Information
- I. N. Braeutigam
- Affiliation: Northern (Arctic) Federal University named after M. V. Lomonosov, 17 Naberezhnaya Severnoy Dviny, 163002 Arkhangelsk, Russia
- Email: irinadolgih@rambler.ru
- K. A. Mirzoev
- Affiliation: Lomonosov Moscow State University, 1 Leninskiye Gory, 119991 Moscow, Russia
- Email: mirzoev.karahan@mail.ru
- Received by editor(s): February 8, 2017
- Published electronically: June 4, 2019
- Additional Notes: The work of the first author (§§2, 5, 6) was supported by Ministry of Education and Science of the Russian Federation and German Academic Exchange Service (DAAD) in the framework of the “Mikhail Lomonosov” program (no 1.728.2016/DAAD)
The work of the second author (§§1, 3, 4) was supported by Russian Science Foundation (grant $\#$17-11-01215). - © Copyright 2019 American Mathematical Society
- Journal: St. Petersburg Math. J. 30 (2019), 621-638
- MSC (2010): Primary 47B25
- DOI: https://doi.org/10.1090/spmj/1562
- MathSciNet review: 3851369