Boundary behavior and equicontinuity for families of mappings in terms of prime ends
HTML articles powered by AMS MathViewer
- by
E. A. Sevost′yanov
Translated by: S. V. Kislyakov - St. Petersburg Math. J. 30 (2019), 973-1005
- DOI: https://doi.org/10.1090/spmj/1579
- Published electronically: September 16, 2019
- PDF | Request permission
Abstract:
The boundary behaviour is treated for classes of mappings that are related to the study of Sobolev and Sobolev–Orlicz spaces in the $n$-dimensional Euclidean space. Continuous extendibility to the boundary of a regular domain is studied for such classes in terms of prime ends. Moreover, the global behavior of families of such mappings is investigated, in particular, again in terms of prime ends, some results are proved concerning the equicontinuity of such families.References
- Cabiria Andreian Cazacu, On the length-area dilatation, Complex Var. Theory Appl. 50 (2005), no. 7-11, 765–776. MR 2155443, DOI 10.1080/02781070500087840
- Christopher J. Bishop, Vladimir Ya. Gutlyanskiĭ, Olli Martio, and Matti Vuorinen, On conformal dilatation in space, Int. J. Math. Math. Sci. 22 (2003), 1397–1420. MR 1980177, DOI 10.1155/S0161171203110034
- C. Carathéodory, Über die Begrenzung einfach zusammenhängender Gebiete, Math. Ann. 73 (1913), no. 3, 323–370 (German). MR 1511737, DOI 10.1007/BF01456699
- Mihai Cristea, Local homeomorphisms having local $\textrm {ACL}^n$ inverses, Complex Var. Elliptic Equ. 53 (2008), no. 1, 77–99. MR 2380822, DOI 10.1080/17476930701666924
- Mihai Cristea, Open discrete mapping having local $ACL^n$ inverses, Complex Var. Elliptic Equ. 55 (2010), no. 1-3, 61–90. MR 2599611, DOI 10.1080/17476930902998985
- Anatoly Golberg, Homeomorphisms with finite mean dilatations, Complex analysis and dynamical systems II, Contemp. Math., vol. 382, Amer. Math. Soc., Providence, RI, 2005, pp. 177–186. MR 2175886, DOI 10.1090/conm/382/07057
- Anatoly Golberg, Differential properties of $(\alpha ,Q)$-homeomorphisms, Further progress in analysis, World Sci. Publ., Hackensack, NJ, 2009, pp. 218–228. MR 2581624, DOI 10.1142/9789812837332_{0}015
- Vladimir Gutlyanskii, Vladimir Ryazanov, Uri Srebro, and Eduard Yakubov, The Beltrami equation, Developments in Mathematics, vol. 26, Springer, New York, 2012. A geometric approach. MR 2917642, DOI 10.1007/978-1-4614-3191-6
- Stanislav Hencl and Pekka Koskela, Lectures on mappings of finite distortion, Lecture Notes in Mathematics, vol. 2096, Springer, Cham, 2014. MR 3184742, DOI 10.1007/978-3-319-03173-6
- Tadeusz Iwaniec and Gaven Martin, Geometric function theory and non-linear analysis, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2001. MR 1859913
- Olli Martio, Vladimir Ryazanov, Uri Srebro, and Eduard Yakubov, Moduli in modern mapping theory, Springer Monographs in Mathematics, Springer, New York, 2009. MR 2466579
- O. Martio, S. Rickman, and J. Väisälä, Definitions for quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A I 448 (1969), 40. MR 0259114
- O. Martio, S. Rickman, and J. Väisälä, Distortion and singularities of quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A I 465 (1970), 13. MR 0267093
- O. Martio, S. Rickman, and J. Väisälä, Topological and metric properties of quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A. I. 488 (1971), 31. MR 299782
- Yu. G. Reshetnyak, Prostranstvennye otobrazheniya s ogranichennym iskazheniem, “Nauka” Sibirsk. Otdel., Novosibirsk, 1982 (Russian). MR 665590
- Seppo Rickman, Quasiregular mappings, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 26, Springer-Verlag, Berlin, 1993. MR 1238941, DOI 10.1007/978-3-642-78201-5
- E. A. Sevost′yanov, A generalization of a lemma of E. A. Poletskiĭ on classes of space mappings, Ukraïn. Mat. Zh. 61 (2009), no. 7, 969–975 (Russian, with English and Ukrainian summaries); English transl., Ukrainian Math. J. 61 (2009), no. 7, 1151–1157. MR 2768898, DOI 10.1007/s11253-009-0267-0
- Matti Vuorinen, Conformal geometry and quasiregular mappings, Lecture Notes in Mathematics, vol. 1319, Springer-Verlag, Berlin, 1988. MR 950174, DOI 10.1007/BFb0077904
- V. M. Gol′dšteĭn and S. K. Vodop′janov, Metric completion of a domain by means of a conformal capacity that is invariant under quasiconformal mappings, Dokl. Akad. Nauk SSSR 238 (1978), no. 5, 1040–1042 (Russian). MR 0492225
- D. A. Kovtonyuk and V. I. Ryazanov, Prime ends and Orlicz-Sobolev classes, Algebra i Analiz 27 (2015), no. 5, 81–116 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 27 (2016), no. 5, 765–788. MR 3582943, DOI 10.1090/spmj/1416
- Vladimir Gutlyanskii, Vladimir Ryazanov, and Eduard Yakubov, The Beltrami equations and prime ends, J. Math. Sci. (N.Y.) 210 (2015), no. 1, 22–51. Translation of Ukr. Mat. Visn. 12 (2015), no. 1, 27–66. MR 3400242, DOI 10.1007/s10958-015-2546-7
- D. A. Kovtonyuk, V. I. Ryazanov, R. R. Salimov, and E. A. Sevost′yanov, On the theory of Orlicz-Sobolev classes, Algebra i Analiz 25 (2013), no. 6, 50–102 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 25 (2014), no. 6, 929–963. MR 3234840, DOI 10.1090/s1061-0022-2014-01324-6
- D. A. Kovtonyuk, R. R. Salimov, and E. A. Sevost′yanov, Toward the theory of mappings in classes of Sobolev and Orlicz–Sobolev, Naukova Dumka, Kiev, 2013. (Russian)
- E. A. Sevost′yanov, On the equicontinuity of homeomorphisms with an unbounded characteristic, Mat. Tr. 15 (2012), no. 1, 178–204 (Russian, with Russian summary); English transl., Siberian Adv. Math. 23 (2013), no. 2, 106–122. MR 2984683, DOI 10.3103/s1055134413020053
- S. K. Vodop′yanov, Closure of classes of mappings with bounded distortion on Carnot groups [Translation of Mat. Tr. 5 (2002), no. 2, 92–137; MR1944067], Siberian Adv. Math. 14 (2004), no. 1, 84–125. MR 2087341
- S. K. Vodopyanov, Foundations of the theory of mappings with bounded distortion on Carnot groups, The interaction of analysis and geometry, Contemp. Math., vol. 424, Amer. Math. Soc., Providence, RI, 2007, pp. 303–344. MR 2316342, DOI 10.1090/conm/424/08106
- S. K. Vodop′yanov and V. M. Gol′dshtein, Prostranstva Soboleva i spetsial′nye klassy otobrazheniĭ, Novosibirsk. Gos. Univ., Novosibirsk, 1981 (Russian). MR 684992
- S. K. Vodop′yanov, V. M. Gol′dshtein, and Yu. G. Reshetnyak, The geometric properties of functions with generalized first derivatives, Uspekhi Mat. Nauk 34 (1979), no. 1(205), 17–65 (Russian). MR 525650
- Irina Markina, Singularities of quasiregular mappings on Carnot groups, Sci. Ser. A Math. Sci. (N.S.) 11 (2005), 69–81. MR 2196068
- A. Ukhlov and S. K. Vodopyanov, Mappings associated with weighted Sobolev spaces, Complex analysis and dynamical systems III, Contemp. Math., vol. 455, Amer. Math. Soc., Providence, RI, 2008, pp. 369–382. MR 2408182, DOI 10.1090/conm/455/08868
- S. K. Vodop′yanov and A. D. Ukhlov, Sobolev spaces and $(P,Q)$-quasiconformal mappings of Carnot groups, Sibirsk. Mat. Zh. 39 (1998), no. 4, 776–795, i (Russian, with Russian summary); English transl., Siberian Math. J. 39 (1998), no. 4, 665–682. MR 1654140, DOI 10.1007/BF02673052
- A. Ukhlov and S. K. Vodop’yanov, Mappings with bounded $(P,Q)$-distortion on Carnot groups, Bull. Sci. Math. 134 (2010), no. 6, 605–634 (English, with English and French summaries). MR 2679532, DOI 10.1016/j.bulsci.2009.09.002
- Vladimir Gol’dshtein and Alexander Ukhlov, Traces of functions of $L^1_2$ Dirichlet spaces on the Carathéodory boundary, Studia Math. 235 (2016), no. 3, 209–224. MR 3577394, DOI 10.4064/sm8485-8-2016
- V. I. Kruglikov and V. I. Paĭkov, Capacities and prime ends of an $n$-dimensional domain, Dokl. Akad. Nauk Ukrain. SSR Ser. A 5 (1987), 10–13, 84 (Russian, with English summary). MR 899870
- V. M. Miklyukov, The relative distance of M. A. Lavrent′ev and prime ends on nonparametric surfaces, Ukr. Mat. Visn. 1 (2004), no. 3, 349–372, 447 (Russian, with English and Russian summaries); English transl., Ukr. Math. Bull. 1 (2004), no. 3, 353–376. MR 2172635
- G. D. Suvorov, Obobshchennyĭ “printsip dliny i ploshchadi” v teorii otobrazheniĭ, “Naukova Dumka”, Kiev, 1985 (Russian). MR 869064
- Raimo Näkki, Prime ends and quasiconformal mappings, J. Analyse Math. 35 (1979), 13–40. MR 555299, DOI 10.1007/BF02791061
- Matti Vuorinen, Exceptional sets and boundary behavior of quasiregular mappings in $n$-space, Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes 11 (1976), 44. MR 437757
- Matti Vuorinen, On the existence of angular limits of $n$-dimensional quasiconformal mappings, Ark. Mat. 18 (1980), no. 2, 157–180. MR 608334, DOI 10.1007/BF02384688
- Raimo Näkki, Extension of Loewner’s capacity theorem, Trans. Amer. Math. Soc. 180 (1973), 229–236. MR 328062, DOI 10.1090/S0002-9947-1973-0328062-9
- Casimir Kuratowski, Topologie. Vol. II, Monografie Matematyczne, Tom 21, Państwowe Wydawnictwo Naukowe, Warsaw, 1961 (French). Troisième édition, corrigèe et complétée de deux appendices. MR 0133124
- Jussi Väisälä, Lectures on $n$-dimensional quasiconformal mappings, Lecture Notes in Mathematics, Vol. 229, Springer-Verlag, Berlin-New York, 1971. MR 0454009
- F. W. Gehring and O. Martio, Quasiextremal distance domains and extension of quasiconformal mappings, J. Analyse Math. 45 (1985), 181–206. MR 833411, DOI 10.1007/BF02792549
- F. W. Gehring, Rings and quasiconformal mappings in space, Trans. Amer. Math. Soc. 103 (1962), 353–393. MR 139735, DOI 10.1090/S0002-9947-1962-0139735-8
- William P. Ziemer, Extremal length and conformal capacity, Trans. Amer. Math. Soc. 126 (1967), 460–473. MR 210891, DOI 10.1090/S0002-9947-1967-0210891-0
- William P. Ziemer, Extremal length and $p$-capacity, Michigan Math. J. 16 (1969), 43–51. MR 247077
- Joseph Hesse, A $p$-extremal length and $p$-capacity equality, Ark. Mat. 13 (1975), 131–144. MR 379871, DOI 10.1007/BF02386202
- R. R. Salimov, Estimation of the measure of the image of the ball, Sibirsk. Mat. Zh. 53 (2012), no. 4, 920–930 (Russian, with Russian summary); English transl., Sib. Math. J. 53 (2012), no. 4, 739–747. MR 3013536, DOI 10.1134/S0037446612040155
- D. P. Il′yutko and E. A. Sevost′yanov, On the boundary behaviour of open discrete mappings on Riemannian manifolds, Mat. Sb. 209 (2018), no. 5, 3–53 (Russian, with Russian summary); English transl., Sb. Math. 209 (2018), no. 5, 605–651. MR 3795149, DOI 10.4213/sm8860
- O. Martio and U. Srebro, Periodic quasimeromorphic mappings, J. Analyse Math. 28 (1975), 20–40.
- E. S. Smolovaya, Boundary behavior of ring $Q$-homeomorphisms in metric spaces, Ukraïn. Mat. Zh. 62 (2010), no. 5, 682–689 (Russian, with Russian summary); English transl., Ukrainian Math. J. 62 (2010), no. 5, 785–793. MR 2888634, DOI 10.1007/s11253-010-0388-5
- V. I. Ryazanov, R. R. Salimov, and E. A. Sevostyanov, On convergence analysis of space homeomorphisms, Siberian Adv. Math. 23 (2013), no. 4, 263–293. MR 3489236, DOI 10.3103/s1055134413040044
- Anatoly Golberg and Ruslan Salimov, Topological mappings of integrally bounded $p$-moduli, Ann. Univ. Buchar. Math. Ser. 3(LXI) (2012), no. 1, 49–66. MR 3034962
- Anatoly Golberg, Ruslan Salimov, and Evgeny Sevost’yanov, Normal families of discrete open mappings with controlled $p$-module, Complex analysis and dynamical systems VI. Part 2, Contemp. Math., vol. 667, Amer. Math. Soc., Providence, RI, 2016, pp. 83–103. MR 3511254, DOI 10.1090/conm/667/13533
- Mihai Cristea, The limit mapping of generalized ring homeomorphisms, Complex Var. Elliptic Equ. 61 (2016), no. 5, 608–622. MR 3482785, DOI 10.1080/17476933.2015.1107906
- Tatyana Lomako, Ruslan Salimov, and Evgeny Sevostyanov, On equicontinuity of solutions to the Beltrami equations, Ann. Univ. Buchar. Math. Ser. 1(LIX) (2010), no. 2, 263–274. MR 2920236
- E. A. Sevost′yanov, On the local behavior of open discrete mappings of Orlicz-Sobolev classes, Ukraïn. Mat. Zh. 68 (2016), no. 9, 1259–1272 (Russian, with English and Ukrainian summaries); English transl., Ukrainian Math. J. 68 (2017), no. 9, 1447–1465. MR 3552373
- B. V. Shabat, Vvedenie v kompleksnyĭ analiz. Chast′I. Funktsii odnogo peremennogo, Izdat. “Nauka”, Moscow, 1976 (Russian). Second edition, revised and augmented. MR 0584934
- E. A. Sevost′yanov, On the local and boundary behavior of mappings in metric spaces, Algebra i Analiz 28 (2016), no. 6, 118–146 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 28 (2017), no. 6, 807–824. MR 3637579, DOI 10.1090/spmj/1475
- Hans Martin Reimann and Thomas Rychener, Funktionen beschränkter mittlerer Oszillation, Lecture Notes in Mathematics, Vol. 487, Springer-Verlag, Berlin-New York, 1975 (German). MR 0511997
- O. Martio and J. Sarvas, Injectivity theorems in plane and space, Ann. Acad. Sci. Fenn. Ser. A I Math. 4 (1979), no. 2, 383–401. MR 565886, DOI 10.5186/aasfm.1978-79.0413
- R. Salimov and E. Sevost’yanov, The Poletskii and Väisälä inequalities for the mappings with $(p,q)$-distortion, Complex Var. Elliptic Equ. 59 (2014), no. 2, 217–231. MR 3170755, DOI 10.1080/17476933.2012.731397
- Juha Heinonen, Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001. MR 1800917, DOI 10.1007/978-1-4613-0131-8
- Piotr Hajłasz and Pekka Koskela, Sobolev met Poincaré, Mem. Amer. Math. Soc. 145 (2000), no. 688, x+101. MR 1683160, DOI 10.1090/memo/0688
- Tomasz Adamowicz and Nageswari Shanmugalingam, Non-conformal Loewner type estimates for modulus of curve families, Ann. Acad. Sci. Fenn. Math. 35 (2010), no. 2, 609–626. MR 2731711, DOI 10.5186/aasfm.2010.3538
- E. Sevost′yanov, On boundary behavior of mappings in terms of prime ends, arXiv:1602.00660.
Bibliographic Information
- E. A. Sevost′yanov
- Affiliation: Zhytomyr Ivan Franko State University, ul. Bol′shaya Berdichevskaya 40, 10008 Zhitomir, Ukraine
- Email: esevostyanov2009@gmail.com
- Received by editor(s): January 25, 2017
- Published electronically: September 16, 2019
- © Copyright 2019 American Mathematical Society
- Journal: St. Petersburg Math. J. 30 (2019), 973-1005
- MSC (2010): Primary 30C64; Secondary 30D40
- DOI: https://doi.org/10.1090/spmj/1579
- MathSciNet review: 3882541