On holomorphic realizations of 5-dimensional Lie algebras
HTML articles powered by AMS MathViewer
- by
R. C. Akopyan and A. V. Loboda
Translated by: S. Kislyakov - St. Petersburg Math. J. 31 (2020), 911-937
- DOI: https://doi.org/10.1090/spmj/1629
- Published electronically: October 27, 2020
- PDF | Request permission
Abstract:
Realizations are studied for a particular block of 5-dimensional Lie algebras (within the well-known Mubarakzyanov classification) in the form of algebras of holomorphic vector fields on homogeneous real hypersurfaces of the 3-dimensional complex space. All (locally) holomorphically homogeneous and Levi nondegenerate real hypersurfaces associated with algebras in the block in question are described. A majority of such manifolds are holomorphic images of tubular hypersurfaces with affine homogeneous base. At the same time, two new holomorphically homogeneous hypersurfaces are obtained that do not reduce to tubes, have sign-indefinite Levi form, and are algebraic surfaces of degree $3$.References
- A. V. Loboda, Homogeneous strictly pseudoconvex hypersurfaces in $\Bbb C^3$ with two-dimensional isotropy groups, Mat. Sb. 192 (2001), no. 12, 3–24 (Russian, with Russian summary); English transl., Sb. Math. 192 (2001), no. 11-12, 1741–1761. MR 1885911, DOI 10.1070/SM2001v192n12ABEH000614
- V. G. Zverev, On a special difference scheme for the solution of boundary value problems of heat and mass exchange, Zh. Vychisl. Mat. Mat. Fiz. 43 (2003), no. 2, 265–278 (Russian, with Russian summary); English transl., Comput. Math. Math. Phys. 43 (2003), no. 2, 255–267. MR 1992630
- B. Doubrov, A. Medvedev, and D. The, Homogeneous Levi non-degenerate hypersurfaces in $\mathbb C^3$, arXiv:1711.02389v1 [math.DG] 7 Nov. 2017.
- Gregor Fels and Wilhelm Kaup, Classification of Levi degenerate homogeneous CR-manifolds in dimension 5, Acta Math. 201 (2008), no. 1, 1–82. MR 2448066, DOI 10.1007/s11511-008-0029-0
- R. S. Akopyan and A. V. Loboda, On holomorphic realizations of nilpotent Lie algebras, Funktsional. Anal. i Prilozhen. 53 (2019), no. 2, 59–63 (Russian); English transl., Funct. Anal. Appl. 53 (2019), no. 2, 124–128. MR 3950328, DOI 10.1134/S0016266319020059
- G. M. Mubarakzjanov, Classification of real structures of Lie algebras of fifth order, Izv. Vysš. Učebn. Zaved. Matematika 1963 (1963), no. 3 (34), 99–106 (Russian). MR 0155871
- V. K. Beloshapka and I. G. Kossovskiy, Homogeneous hypersurfaces in $\Bbb C^3$, associated with a model CR-cubic, J. Geom. Anal. 20 (2010), no. 3, 538–564. MR 2610889, DOI 10.1007/s12220-010-9117-4
- G. M. Mubarakzjanov, On solvable Lie algebras, Izv. Vysš. Učebn. Zaved. Matematika 1963 (1963), no. 1 (32), 114–123 (Russian). MR 0153714
- Richard L. Bishop and Richard J. Crittenden, Geometry of manifolds, Pure and Applied Mathematics, Vol. XV, Academic Press, New York-London, 1964. MR 0169148
- Elie Cartan, Sur la géométrie pseudo-conforme des hypersurfaces de l’espace de deux variables complexes, Ann. Mat. Pura Appl. 11 (1933), no. 1, 17–90 (French). MR 1553196, DOI 10.1007/BF02417822
- Boris Doubrov, Boris Komrakov, and Maxim Rabinovich, Homogeneous surfaces in the three-dimensional affine geometry, Geometry and topology of submanifolds, VIII (Brussels, 1995/Nordfjordeid, 1995) World Sci. Publ., River Edge, NJ, 1996, pp. 168–178. MR 1434565
- B. V. Shabat, Introduction to complex analysis. Part II, Translations of Mathematical Monographs, vol. 110, American Mathematical Society, Providence, RI, 1992. Functions of several variables; Translated from the third (1985) Russian edition by J. S. Joel. MR 1192135, DOI 10.1090/mmono/110
- A. V. Loboda, Homogeneous real hypersurfaces in $\Bbb C^3$ with two-dimensional isotropy groups, Tr. Mat. Inst. Steklova 235 (2001), no. Anal. i Geom. Vopr. Kompleks. Analiza, 114–142 (Russian, with Russian summary); English transl., Proc. Steklov Inst. Math. 4(235) (2001), 107–135. MR 1886578
- S. S. Chern and J. K. Moser, Real hypersurfaces in complex manifolds, Acta Math. 133 (1974), 219–271. MR 425155, DOI 10.1007/BF02392146
- V. V. Ezhov, A. V. Loboda, and G. Shmal′ts, Canonical form of a fourth-degree polynomial in a normal equation of a real hypersurface in $\mathbf C^3$, Mat. Zametki 66 (1999), no. 4, 624–626 (Russian); English transl., Math. Notes 66 (1999), no. 3-4, 513–515 (2000). MR 1747090, DOI 10.1007/BF02679102
- V. I. Lagno, S. V. Spichak, and V. I. Stogniĭ, Simetrīĭniĭ analīz rīvnyan′evolyutsīĭnogo tipu, Pratsī Īnstitutu Matematiki Natsīonal′noï Akademīï Nauk Ukraïni. Matematika ta ïï Zastosuvannya [Proceedings of Institute of Mathematics of NAS of Ukraine. Mathematics and its Applications], vol. 45, Natsīonal′na Akademīya Nauk Ukraïni, Īnstitut Matematiki, Kiev, 2002 (Ukrainian, with English and Ukrainian summaries). MR 2187425
Bibliographic Information
- R. C. Akopyan
- Affiliation: MIREA — Russian Technological University, Moscow, Russia
- Email: akrim111@yandex.ru
- A. V. Loboda
- Affiliation: Voronezh state technical university, Voronezh, Russia
- Email: lobvgasu@yandex.ru
- Received by editor(s): August 20, 2018
- Published electronically: October 27, 2020
- Additional Notes: Supported in part by RFBR grant no. 17-01-00592-a)
- © Copyright 2020 American Mathematical Society
- Journal: St. Petersburg Math. J. 31 (2020), 911-937
- MSC (2010): Primary 17B66
- DOI: https://doi.org/10.1090/spmj/1629
- MathSciNet review: 4039346