A posteriori estimates of the deviation from exact solutions to variational problems under nonstandard coerciveness and growth conditions
HTML articles powered by AMS MathViewer
- by
S. E. Pastukhova
Translated by: The author - St. Petersburg Math. J. 32 (2021), 39-57
- DOI: https://doi.org/10.1090/spmj/1637
- Published electronically: January 11, 2021
- PDF | Request permission
Abstract:
A posteriori estimates are proved for the accuracy of approximations of solutions to variational problems with nonstandard power functionals. More precisely, these are integral functionals with power type integrands having a variable exponent $p( \cdot )$. It is assumed that $p( \cdot )$ is bounded away from one and infinity. Estimates in the energy norm are obtained for the difference of the approximate and exact solutions. The majorant $M$ in these estimates depends only on the approximation $v$ and the data of the problem, but is independent of the exact solution $u$. It is shown that $M=M(v)$ vanishes as $v$ tends to $u$ and $M(v)=0$ only if $v=u$. The superquadratic and subquadratic cases (which means that $p( \cdot )\ge 2$, or $p( \cdot )\le 2$, respectively) are treated separately.References
- V. V. Zhikov, Questions of convergence, duality and averaging for functionals of the calculus of variations, Izv. Akad. Nauk SSSR Ser. Mat. 47 (1983), no. 5, 961–998 (Russian). MR 718413
- V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), no. 4, 675–710, 877 (Russian). MR 864171
- V. V. Jikov, S. M. Kozlov, and O. A. Oleĭnik, Homogenization of differential operators and integral functionals, Springer-Verlag, Berlin, 1994. Translated from the Russian by G. A. Yosifian [G. A. Iosif′yan]. MR 1329546, DOI 10.1007/978-3-642-84659-5
- V. V. Zhikov, On variational problems and nonlinear elliptic equations with nonstandard growth conditions, J. Math. Sci. (N.Y.) 173 (2011), no. 5, 463–570. Problems in mathematical analysis. No. 54. MR 2839881, DOI 10.1007/s10958-011-0260-7
- Ondrej Kováčik and Jiří Rákosník, On spaces $L^{p(x)}$ and $W^{k,p(x)}$, Czechoslovak Math. J. 41(116) (1991), no. 4, 592–618. MR 1134951
- Lars Diening, Petteri Harjulehto, Peter Hästö, and Michael Růžička, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, vol. 2017, Springer, Heidelberg, 2011. MR 2790542, DOI 10.1007/978-3-642-18363-8
- Vasily Zhikov, Lavrentiev phenomenon and homogenization for some variational problems, C. R. Acad. Sci. Paris Sér. I Math. 316 (1993), no. 5, 435–439 (English, with English and French summaries). MR 1209262
- Vasiliĭ V. Zhikov, On Lavrentiev’s phenomenon, Russian J. Math. Phys. 3 (1995), no. 2, 249–269. MR 1350506
- V. V. Zhikov, On the Lavrent′ev effect, Dokl. Akad. Nauk 345 (1995), no. 1, 10–14 (Russian). MR 1374178
- V. V. Zhikov, On the density of smooth functions in Sobolev-Orlicz spaces, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 310 (2004), no. Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts. 35 [34], 67–81, 226 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 132 (2006), no. 3, 285–294. MR 2120185, DOI 10.1007/s10958-005-0497-0
- V. V. Zhikov and S. E. Pastukhova, On the improved integrability of the gradient of solutions of elliptic equations with a variable nonlinearity exponent, Mat. Sb. 199 (2008), no. 12, 19–52 (Russian, with Russian summary); English transl., Sb. Math. 199 (2008), no. 11-12, 1751–1782. MR 2489687, DOI 10.1070/SM2008v199n12ABEH003980
- David E. Edmunds and Jiří Rákosník, Density of smooth functions in $W^{k,p(x)}(\Omega )$, Proc. Roy. Soc. London Ser. A 437 (1992), no. 1899, 229–236. MR 1177754, DOI 10.1098/rspa.1992.0059
- S. E. Pastukhova, On consequences of the strong convergence in Lebesgue-Orlich spaces, J. Math. Sci. (N.Y.) 235 (2018), no. 3, Problems in mathematical analysis. No. 95 (Russian), 312–321. MR 3865464, DOI 10.1007/s10958-018-4075-7
- Ivar Ekeland and Roger Temam, Convex analysis and variational problems, Studies in Mathematics and its Applications, Vol. 1, North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1976. Translated from the French. MR 0463994
- S. I. Repin, A posteriori error estimation for nonlinear variational problems by duality theory, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 243 (1997), no. Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funktsiĭ. 28, 201–214, 342 (English, with English and Russian summaries); English transl., J. Math. Sci. (New York) 99 (2000), no. 1, 927–935. MR 1629741, DOI 10.1007/BF02673600
- M. Bildhauer and S. I. Repin, Estimates of the deviation from the minimizer for variational problems with power growth functionals, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 336 (2006), no. Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts. 37, 5–24, 274 (English, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 143 (2007), no. 2, 2845–2856. MR 2270877, DOI 10.1007/s10958-007-0170-x
- Sergey I. Repin, A posteriori error estimation for variational problems with uniformly convex functionals, Math. Comp. 69 (2000), no. 230, 481–500. MR 1681096, DOI 10.1090/S0025-5718-99-01190-4
- S. Repin, On variational representations of the constant in the inf sup condition for the Stokes problem, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 444 (2016), no. Kraevye Zadachi Matematicheskoĭ Fiziki i Smezhnye Voprosy Teorii Funktsiĭ. 45, 110–123; English transl., J. Math. Sci. (N.Y.) 224 (2017), no. 3, 456–467. MR 3509680, DOI 10.1007/s10958-017-3428-y
- S. I. Repin, Estimates for deviations from exact solutions of some boundary value problems with the incompressibility condition, Algebra i Analiz 16 (2004), no. 5, 124–161 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 16 (2005), no. 5, 837–862. MR 2106670, DOI 10.1090/S1061-0022-05-00882-4
- V. V. Zhikov and D. A. Yakubovich, Galerkin approximations in problems with p-Laplacian, J. Math. Sci. (N.Y.) 219 (2016), no. 1, Problems in mathematical analysis. No. 85 (Russian), 99–111. MR 3563637, DOI 10.1007/s10958-016-3086-5
- S. E. Pastukhova and D. A. Yakubovich, On Galerkin approximations in the Dirichlet problem with the $p(x)$-Laplacian, Mat. Sb. 210 (2019), no. 1, 155–174 (Russian, with Russian summary); English transl., Sb. Math. 210 (2019), no. 1, 145–164. MR 3894482, DOI 10.4213/sm9019
- S. E. Pastukhova and D. A. Yakubovich, Galerkin approximations in problems with anisotropic $p$($\cdot$)-Laplacian, Appl. Anal. 98 (2019), no. 1-2, 345–361. MR 3902134, DOI 10.1080/00036811.2018.1451641
- Peter Lindqvist, Notes on the $p$-Laplace equation, Report. University of Jyväskylä Department of Mathematics and Statistics, vol. 102, University of Jyväskylä, Jyväskylä, 2006. MR 2242021
- S. E. Pastukhova and A. S. Khripunova, Gamma-closure of some classes of nonstandard convex integrands, J. Math. Sci. (N.Y.) 177 (2011), no. 1, 83–108. Problems in mathematical analysis. No. 59. MR 2838988, DOI 10.1007/s10958-011-0449-9
- S. E. Pastukhova, A posteriori estimates for the accuracy of approximations in variational problems with power functionals, J. Math. Sci. (N.Y.) 244 (2020), no. 3, Problems in mathematical analysis. No. 100, 509–523. MR 4050281, DOI 10.1007/s10958-019-04631-0
- David E. Edmunds and Jiří Rákosník, Sobolev embeddings with variable exponent, Studia Math. 143 (2000), no. 3, 267–293. MR 1815935, DOI 10.4064/sm-143-3-267-293
Bibliographic Information
- S. E. Pastukhova
- Affiliation: MIREA – Russian Technological University, 78 Vernadsky Avenue, Moscow 119454, Russia
- Email: pas-se@yandex.ru
- Received by editor(s): October 18, 2018
- Published electronically: January 11, 2021
- © Copyright 2021 American Mathematical Society
- Journal: St. Petersburg Math. J. 32 (2021), 39-57
- MSC (2020): Primary 49J40
- DOI: https://doi.org/10.1090/spmj/1637
- MathSciNet review: 4057876