Embeddings of Orlicz–Lorentz spaces into $L_1$
HTML articles powered by AMS MathViewer
- by J. Prochno
- St. Petersburg Math. J. 32 (2021), 59-70
- DOI: https://doi.org/10.1090/spmj/1638
- Published electronically: January 11, 2021
- PDF | Request permission
Abstract:
It is shown that the Orlicz–Lorentz spaces $\ell ^n_{M,a}$, $n\in \mathbb {N}$, with Orlicz function $M$ and weight sequence $a$ are uniformly isomorphic to subspaces of $L_1$ if the norm $\| \cdot \|_{M,a}$ satisfies certain Hardy-type inequalities. This includes the embedding of some Lorentz spaces $\mathrm {d}^n(a,p)$. The approach is based on combinatorial averaging techniques, and a new result of independent interest is proved, which relates suitable averages with Orlicz–Lorentz norms.References
- David Alonso-Gutiérrez and Jesús Bastero, The variance conjecture on hyperplane projections of the $\ell _p^n$ balls, Rev. Mat. Iberoam. 34 (2018), no. 2, 879–904. MR 3809461, DOI 10.4171/RMI/1007
- David Alonso-Gutiérrez, Markus Passenbrunner, and Joscha Prochno, Probabilistic estimates for tensor products of random vectors, Proc. Amer. Math. Soc. 144 (2016), no. 5, 2133–2148. MR 3460173, DOI 10.1090/proc/12883
- David Alonso-Gutiérrez and Joscha Prochno, On the geometry of random convex sets between polytopes and zonotopes, J. Math. Anal. Appl. 450 (2017), no. 1, 670–690. MR 3606188, DOI 10.1016/j.jmaa.2017.01.042
- Colin Bennett and Robert Sharpley, Interpolation of operators, Pure and Applied Mathematics, vol. 129, Academic Press, Inc., Boston, MA, 1988. MR 928802
- Steven Bloom and Ron Kerman, Weighted $L_\Phi$ integral inequalities for operators of Hardy type, Studia Math. 110 (1994), no. 1, 35–52. MR 1279373, DOI 10.4064/sm-110-1-35-52
- Jean Bretagnolle and Didier Dacunha-Castelle, Application de l’étude de certaines formes linéaires aléatoires au plongement d’espaces de Banach dans des espaces $L^{p}$, Ann. Sci. École Norm. Sup. (4) 2 (1969), 437–480 (French). MR 265930
- Yehoram Gordon, Alexander Litvak, Carsten Schütt, and Elisabeth Werner, Geometry of spaces between polytopes and related zonotopes, Bull. Sci. Math. 126 (2002), no. 9, 733–762. MR 1941083, DOI 10.1016/S0007-4497(02)01139-9
- A. Grothendieck, Résumé de la théorie métrique des produits tensoriels topologiques, Bol. Soc. Mat. São Paulo 8 (1953), 1–79 (French). MR 94682
- W. B. Johnson, B. Maurey, G. Schechtman, and L. Tzafriri, Symmetric structures in Banach spaces, Mem. Amer. Math. Soc. 19 (1979), no. 217, v+298. MR 527010, DOI 10.1090/memo/0217
- Marius Junge, The optimal order for the $p$-th moment of sums of independent random variables with respect to symmetric norms and related combinatorial estimates, Positivity 10 (2006), no. 2, 201–230. MR 2237498, DOI 10.1007/s11117-005-0008-z
- M. A. Krasnosel′skiĭ and Ja. B. Rutickiĭ, Convex functions and Orlicz spaces, P. Noordhoff Ltd., Groningen, 1961. Translated from the first Russian edition by Leo F. Boron. MR 0126722
- Stanisław Kwapień and Carsten Schütt, Some combinatorial and probabilistic inequalities and their application to Banach space theory, Studia Math. 82 (1985), no. 1, 91–106. MR 809774, DOI 10.4064/sm-82-1-91-106
- Stanisław Kwapień and Carsten Schütt, Some combinatorial and probabilistic inequalities and their application to Banach space theory. II, Studia Math. 95 (1989), no. 2, 141–154. MR 1038501, DOI 10.4064/sm-95-2-141-154
- Richard Lechner, Markus Passenbrunner, and Joscha Prochno, Uniform estimates for averages of order statistics of matrices, Electron. Commun. Probab. 20 (2015), no. 27, 12. MR 3327866, DOI 10.1214/ECP.v20-3992
- Richard Lechner, Markus Passenbrunner, and Joscha Prochno, Estimating averages of order statistics of bivariate functions, J. Theoret. Probab. 30 (2017), no. 4, 1445–1470. MR 3736179, DOI 10.1007/s10959-016-0702-8
- J. Lindenstrauss and A. Pełczyński, Absolutely summing operators in $L_{p}$-spaces and their applications, Studia Math. 29 (1968), 275–326. MR 231188, DOI 10.4064/sm-29-3-275-326
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. I, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 92, Springer-Verlag, Berlin-New York, 1977. Sequence spaces. MR 0500056
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. II, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 97, Springer-Verlag, Berlin-New York, 1979. Function spaces. MR 540367
- G. G. Lorentz, Some new functional spaces, Ann. of Math. (2) 51 (1950), 37–55. MR 33449, DOI 10.2307/1969496
- Stephen Montgomery-Smith and Evgueni Semenov, Random rearrangements and operators, Voronezh Winter Mathematical Schools, Amer. Math. Soc. Transl. Ser. 2, vol. 184, Amer. Math. Soc., Providence, RI, 1998, pp. 157–183. MR 1729932, DOI 10.1090/trans2/184/11
- S. J. Montgomery-Smith, Comparison of Orlicz-Lorentz spaces, Studia Math. 103 (1992), no. 2, 161–189. MR 1199324, DOI 10.4064/sm-103-2-161-189
- W. Orlicz, Über eine gewisse Klasse von Räumen vom Typ B, Bull. Intern. Acad. Pol. 8 (1932), 207–220.
- Albrecht Pietsch, Eigenvalues and $s$-numbers, Cambridge Studies in Advanced Mathematics, vol. 13, Cambridge University Press, Cambridge, 1987. MR 890520
- Gilles Pisier, The volume of convex bodies and Banach space geometry, Cambridge Tracts in Mathematics, vol. 94, Cambridge University Press, Cambridge, 1989. MR 1036275, DOI 10.1017/CBO9780511662454
- Joscha Prochno, A combinatorial approach to Musielak-Orlicz spaces, Banach J. Math. Anal. 7 (2013), no. 1, 132–141. MR 3004272, DOI 10.15352/bjma/1358864554
- Joscha Prochno, Musielak-Orlicz spaces that are isomorphic to subspaces of $L_1$, Ann. Funct. Anal. 6 (2015), no. 1, 84–94. MR 3297789, DOI 10.15352/afa/06-1-7
- Joscha Prochno and Carsten Schütt, Combinatorial inequalities and subspaces of $L_1$, Studia Math. 211 (2012), no. 1, 21–39. MR 2990557, DOI 10.4064/sm211-1-2
- M. M. Rao and Z. D. Ren, Theory of Orlicz spaces, Monographs and Textbooks in Pure and Applied Mathematics, vol. 146, Marcel Dekker, Inc., New York, 1991. MR 1113700
- Gideon Schechtman, Matrix subspaces of $L_1$, Studia Math. 215 (2013), no. 3, 281–285. MR 3080783, DOI 10.4064/sm215-3-5
- Carsten Schütt, On the positive projection constant, Studia Math. 78 (1984), no. 2, 185–198. MR 766715, DOI 10.4064/sm-78-2-185-198
- Carsten Schütt, Lorentz spaces that are isomorphic to subspaces of $L^1$, Trans. Amer. Math. Soc. 314 (1989), no. 2, 583–595. MR 974527, DOI 10.1090/S0002-9947-1989-0974527-8
- Carsten Schütt, On the embedding of $2$-concave Orlicz spaces into $L^1$, Studia Math. 113 (1995), no. 1, 73–80. MR 1315523, DOI 10.4064/sm-113-1-73-80
- Nicole Tomczak-Jaegermann, Banach-Mazur distances and finite-dimensional operator ideals, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 38, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1989. MR 993774
Bibliographic Information
- J. Prochno
- Affiliation: Institute of Mathematics & Scientific Computing, University of Graz, Heinrichstraße 36, 8010 Graz, Austria
- MR Author ID: 997160
- Email: joscha.prochno@uni-graz.at
- Received by editor(s): May 15, 2019
- Published electronically: January 11, 2021
- Additional Notes: The author was supported by a Visiting International Professor Fellowship from the Ruhr University Bochum and its Research School PLUS as well as by the Austrian Science Fund (FWF) Project P32405 “Asymptotic Geometric Analysis and Applications”.
- © Copyright 2021 American Mathematical Society
- Journal: St. Petersburg Math. J. 32 (2021), 59-70
- MSC (2020): Primary 46B45
- DOI: https://doi.org/10.1090/spmj/1638
- MathSciNet review: 4057877