Cantor uniqueness and multiplicity along subsequences
HTML articles powered by AMS MathViewer
- by G. Kozma and A. Olevskiĭ
- St. Petersburg Math. J. 32 (2021), 261-277
- DOI: https://doi.org/10.1090/spmj/1647
- Published electronically: March 2, 2021
- PDF | Request permission
Abstract:
We construct a sequence $c_{l}\to 0$ such that the trigonometric series $\sum c_{l}e^{ilx}$ converges to zero everywhere on a subsequence $n_{k}$. We show, for any such series, that the $n_{k}$ must be very sparse, and that the support of the related distribution must be quite large.References
- F. G. Arutjunjan and A. A. Talaljan, Uniqueness of series in Haar and Walsh systems, Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), 1391–1408 (Russian). MR 0172056
- J. Marshall Ash, A new proof of uniqueness for multiple trigonometric series, Proc. Amer. Math. Soc. 107 (1989), no. 2, 409–410. MR 984780, DOI 10.1090/S0002-9939-1989-0984780-8
- N. K. Bari, Subsequences converging to zero everywhere of partial sums of trigonometric series, Izv. Akad. Nauk SSSR Ser. Mat. 24 (1960), 531–548 (Russian). MR 0113083
- N. K. Bary, A treatise on trigonometric series. Vols. I, II, A Pergamon Press Book, The Macmillan Company, New York, 1964. Authorized translation by Margaret F. Mullins. MR 0171116
- Michael Benedicks, The support of functions and distributions with a spectral gap, Math. Scand. 55 (1984), no. 2, 285–309. MR 787203, DOI 10.7146/math.scand.a-12082
- G. Cantor, Beweis, dass eine für jeden reellen Werth von $x$ durch eine trigonometrische Reihe gegebene Function $f(x)$ sich nur auf eine einzige Weise in dieser Form darstellen lässt, J. Reine Angew. Math. 72 (1870), 139–142 (German). MR 1579489, DOI 10.1515/crll.1870.72.139
- Roger Cooke, Uniqueness of trigonometric series and descriptive set theory, 1870–1985, Arch. Hist. Exact Sci. 45 (1993), no. 4, 281–334. MR 1220732, DOI 10.1007/BF01886630
- Kenneth Falconer, Fractal geometry, 3rd ed., John Wiley & Sons, Ltd., Chichester, 2014. Mathematical foundations and applications. MR 3236784
- Jean-Pierre Kahane and Raphaël Salem, Ensembles parfaits et séries trigonométriques, 2nd ed., Hermann, Paris, 1994 (French, with French summary). With notes by Kahane, Thomas W. Körner, Russell Lyons and Stephen William Drury. MR 1303593
- Yitzhak Katznelson, An introduction to harmonic analysis, 3rd ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2004. MR 2039503, DOI 10.1017/CBO9781139165372
- Alexander S. Kechris and Alain Louveau, Descriptive set theory and the structure of sets of uniqueness, London Mathematical Society Lecture Note Series, vol. 128, Cambridge University Press, Cambridge, 1987. MR 953784, DOI 10.1017/CBO9780511758850
- V. Ya. Kozlov, On complete systems of orthogonal functions, Mat. Sbornik N.S. 26(68) (1950), 351–364 (Russian). MR 0036860
- A. M. Olevskiĭ, Modifications of functions and Fourier series, Uspekhi Mat. Nauk 40 (1985), no. 3(243), 157–193, 240 (Russian). MR 795189
- Thomas Ransford, Potential theory in the complex plane, London Mathematical Society Student Texts, vol. 28, Cambridge University Press, Cambridge, 1995. MR 1334766, DOI 10.1017/CBO9780511623776
- V. A. Skvorcov, An example of a Walsh series with a subsequence of partial sums that converges to zero everywhere, Mat. Sb. (N.S.) 97(139) (1975), no. 4(8), 517–539, 633 (Russian). MR 0382989
- A. A. Talaljan, The representation of measurable functions by series, Russian Math. Surveys 15 (1960), no. 5, 75–136. MR 0125401, DOI 10.1070/RM1960v015n05ABEH001115
- P. L. Ul′janov, Solved and unsolved problems in the theory of trigonometric and orthogonal series, Uspehi Mat. Nauk 19 (1964), no. 1 (115), 3–69 (Russian). MR 0161085
- A. Zygmund, Trigonometric series. Vol. I, II, 3rd ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2002. With a foreword by Robert A. Fefferman. MR 1963498
Bibliographic Information
- G. Kozma
- Affiliation: Ziskind, Weizmann Institute of Science, Rehovot, Israel
- MR Author ID: 321409
- Email: gady.kozma@weizmann.ac.il
- A. Olevskiĭ
- Affiliation: Schreiber, Tel Aviv University, Tel Aviv, Israel
- MR Author ID: 224313
- Email: olevskii@post.tau.ac.il
- Received by editor(s): January 3, 2019
- Published electronically: March 2, 2021
- Additional Notes: Both authors were supported by their respective Israel Science Foundation grants.
The first author was supported by the Jesselson Foundation, and by Paul and Tina Gardner - © Copyright 2021 American Mathematical Society
- Journal: St. Petersburg Math. J. 32 (2021), 261-277
- MSC (2020): Primary 42A63
- DOI: https://doi.org/10.1090/spmj/1647
- MathSciNet review: 4075002