Skip to Main Content

St. Petersburg Mathematical Journal

This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.

ISSN 1547-7371 (online) ISSN 1061-0022 (print)

The 2024 MCQ for St. Petersburg Mathematical Journal is 0.68.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Lagrange multipliers for evolution problems with constraints on the derivatives
HTML articles powered by AMS MathViewer

by A. Azevedo, J. F. Rodrigues and L. Santos
St. Petersburg Math. J. 32, 435-448
DOI: https://doi.org/10.1090/spmj/1655
Published electronically: May 11, 2021

Abstract:

The existence of generalized Lagrange multipliers is proved for a class of evolution problems for linear differential operators of various types subject to constraints on the derivatives. Those Lagrange multipliers and the respective solutions are stable for the vanishing of the coercive parameter and are naturally associated with evolution variational inequalities with time-dependent convex sets of gradient type. These results are applied to the sandpile problem, to superconductivity problems, to flows of thick fluids, to problems with the biharmonic operator, and to first order vector fields of subelliptic type.
References
  • Assis Azevedo and Lisa Santos, Lagrange multipliers and transport densities, J. Math. Pures Appl. (9) 108 (2017), no. 4, 592–611 (English, with English and French summaries). MR 3698170, DOI 10.1016/j.matpur.2017.05.004
  • H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Mathematics Studies, No. 5, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973 (French). MR 0348562
  • L. Capogna, D. Danielli, and N. Garofalo, Subelliptic mollifiers and a characterization of Rellich and Poincaré domains, Rend. Sem. Mat. Univ. Politec. Torino 51 (1993), no. 4, 361–386 (1994). Partial differential equations, I (Turin, 1993). MR 1289895
  • Robert Dautray and Jacques-Louis Lions, Mathematical analysis and numerical methods for science and technology. Vol. 4, Springer-Verlag, Berlin, 1990. Integral equations and numerical methods; With the collaboration of Michel Artola, Philippe Bénilan, Michel Bernadou, Michel Cessenat, Jean-Claude Nédélec, Jacques Planchard and Bruno Scheurer; Translated from the French by John C. Amson. MR 1081946
  • Makhlouf Derridj and João-Paulo Dias, Le problème de Dirichlet pour une classe d’opérateurs non linéaires, J. Math. Pures Appl. (9) 51 (1972), 219–230. MR 419998
  • Piotr Hajłasz and Pekka Koskela, Sobolev met Poincaré, Mem. Amer. Math. Soc. 145 (2000), no. 688, x+101. MR 1683160, DOI 10.1090/memo/0688
  • Claus Gerhardt, On the existence and uniqueness of a warpening function in the elastic-plastic torsion of a cylindrical bar with multiply connected cross-section, Applications of methods of functional analysis to problems in mechanics (Joint Sympos., IUTAM/IMU, Marseille, 1975) Lecture Notes in Math., vol. 503, Springer, Berlin, 1976, pp. 328–342. MR 0669229
  • Noureddine Igbida, Evolution Monge-Kantorovich equation, J. Differential Equations 255 (2013), no. 7, 1383–1407. MR 3072657, DOI 10.1016/j.jde.2013.04.020
  • Fernando Miranda, José-Francisco Rodrigues, and Lisa Santos, On a $p$-curl system arising in electromagnetism, Discrete Contin. Dyn. Syst. Ser. S 5 (2012), no. 3, 605–629. MR 2861829, DOI 10.3934/dcdss.2012.5.605
  • Fernando Miranda, José Francisco Rodrigues, and Lisa Santos, Evolutionary quasi-variational and variational inequalities with constraints on the derivatives, Adv. Nonlinear Anal. 9 (2020), no. 1, 250–277. MR 3935872, DOI 10.1515/anona-2018-0113
  • L. B. Prigozhin, Quasivariational inequality for a problem of the form of a dam, Zh. Vychisl. Mat. i Mat. Fiz. 26 (1986), no. 7, 1072–1080, 1119 (Russian). MR 851756
  • L. Prigozhin, On the Bean critical-state model in superconductivity, European J. Appl. Math. 7 (1996), no. 3, 237–247. MR 1401169, DOI 10.1017/S0956792500002333
  • J.-F. Rodrigues, On the mathematical analysis of thick fluids, J. Math. Sci. (N.Y.) 210 (2015), no. 6, 835–848. MR 3407796, DOI 10.1007/s10958-015-2594-z
  • J.-F. Rodrigues and L. Santos, Variational and quasi-variational inequalities with gradient type constraints, Topics in Applied Analysis and Optimisation, Proc. of the CIM-WIAS Workshop, CIM-Springer Series, 2019, arXiv:1809:02059.
  • Tomáš Roubíček, Nonlinear partial differential equations with applications, 2nd ed., International Series of Numerical Mathematics, vol. 153, Birkhäuser/Springer Basel AG, Basel, 2013. MR 3014456, DOI 10.1007/978-3-0348-0513-1
  • Lisa Santos, A diffusion problem with gradient constraint and evolutive Dirichlet condition, Portugal. Math. 48 (1991), no. 4, 441–468. MR 1147610
  • Lisa Santos, Variational problems with non-constant gradient constraints, Port. Math. (N.S.) 59 (2002), no. 2, 205–248. MR 1907415
  • Kôsaku Yosida, Functional analysis, 6th ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 123, Springer-Verlag, Berlin-New York, 1980. MR 617913
Similar Articles
  • Retrieve articles in St. Petersburg Mathematical Journal with MSC (2020): 49J40
  • Retrieve articles in all journals with MSC (2020): 49J40
Bibliographic Information
  • A. Azevedo
  • Affiliation: CMAT — Departamento de Matemática, Escola de Ciências, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
  • Email: assis@math.uminho.pt
  • J. F. Rodrigues
  • Affiliation: CMAFcIO — Departamento de Matemática, Faculdade de Ciências, Universidade de Lisboa P-1749-016 Lisboa, Portugal
  • MR Author ID: 190027
  • Email: jfrodrigues@ciencias.ulisboa.pt
  • L. Santos
  • Affiliation: CMAT — Departamento de Matemática, Escola de Ciências, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
  • Email: lisa@math.uminho.pt
  • Received by editor(s): April 25, 2019
  • Published electronically: May 11, 2021
  • Additional Notes: The research of the first and third authors was partially supported by the Research Centre of Mathematics of the University of Minho with the Portuguese Funds from the “Fundação para a Ciência e a Tecnologia,” through the Project UID/MAT/00013/2013, and the one by the second author was done partially in the framework of the Project PTDC/MAT-PUR/28686/2017.

  • Dedicated: Dedicated to Nina Nikolaevna Ural’tseva on the occasion of her $85$th birthday.
  • © Copyright 2021 American Mathematical Society
  • Journal: St. Petersburg Math. J. 32, 435-448
  • MSC (2020): Primary 49J40
  • DOI: https://doi.org/10.1090/spmj/1655
  • MathSciNet review: 4099094