## Inner factors of analytic functions of variable smoothness in the closed disk

HTML articles powered by AMS MathViewer

- by
N. A. Shirokov

Translated by: V. V. Kapustin - St. Petersburg Math. J.
**32**(2021), 929-954 - DOI: https://doi.org/10.1090/spmj/1678
- Published electronically: August 31, 2021
- PDF | Request permission

## Abstract:

Let $p(\zeta )$ be a positive function defined on the unit circle $\mathbb {T}$ and satisfying the condition \begin{equation*} |p(\zeta _2)-p(\zeta _1)|\le \frac {c_0}{\log \frac {e} {|\zeta _2-\zeta _1|}}, \quad \zeta _1,\zeta _2\in \mathbb {T}, \end{equation*} $p_-=\min _{\zeta \in \mathbb {T}}p(\zeta )$. Futhermore, let $0<\alpha <1$, $r\ge 0$, $r\in \mathbb {Z}$, and assume that $p_->\frac {1}{\alpha }$. Define a class of analytic functions in the unit disk $\mathbb {D}$ as follows: $f\in H^{p(\,\cdot \,)}_{r+\alpha }$ if \begin{equation*} \sup _{0<\rho <1}\,\sup _{0<|\theta |<\pi } \int ^{2\pi }_0 \bigg |\frac {f^{(r)}(\rho e^{i(\lambda +\theta )})-f^{(r)}(\rho e^{i\lambda })} {|\theta |^{\alpha }}\bigg |^{p(e^{i\lambda )}}\,d\lambda <\infty . \end{equation*} The following main results are proved.

**Theorem 1.** *Let $f\in H^{p(\,\cdot \,)}_{r+\alpha },$ and let $I$ be an inner function, $f/I\in H^1$. Then $f/I\in H^{p(\,\cdot \,)}_{r+\alpha }$.*

**Theorem 2.** *Let $f\in H^{p(\,\cdot \,)}_{r+\alpha },$ and let $I$ be an inner function, $f/I\in H^{\infty }$. Assume that the multiplicity of every zero of $f$ in $\mathbb {D}$ is at least $r+1$. Then $fI\in H^{p(\,\cdot \,)}_{r+\alpha }$.*

## References

- V. P. Havin,
*The factorization of analytic functions that are smooth up to the boundary*, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI)**22**(1971), 202–205 (Russian). MR**0289783** - Walter Rudin,
*The closed ideals in an algebra of analytic functions*, Canadian J. Math.**9**(1957), 426–434. MR**89254**, DOI 10.4153/CJM-1957-050-0 - Lennart Carleson,
*A representation formula for the Dirichlet integral*, Math. Z.**73**(1960), 190–196. MR**112958**, DOI 10.1007/BF01162477 - B. I. Korenbljum and V. S. Korolevič,
*Analytic functions that are regular in a disc and smooth on its boundary*, Mat. Zametki**7**(1970), 165–172 (Russian). MR**269850** - F. A. Šamojan,
*Division by an inner function in certain spaces of functions that are analytic in the disc*, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI)**22**(1971), 206–208 (Russian). MR**0289786** - S. A. Vinogradov and N. A. Širokov,
*The factorization of analytic functions with derivative in $H^{p}$*, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI)**22**(1971), 8–27 (Russian). MR**0299800** - V. P. Gurariĭ,
*The factorization of absolutely convergent Taylor series and Fourier integrals*, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI)**30**(1972), 15–32 (Russian). Investigations on linear operators and the theory of functions, III. MR**0340622** - E. M. Dyn′kin,
*Constructive characterization of S. L. Sobolev and O. V. Besov classes*, Trudy Mat. Inst. Steklov.**155**(1981), 41–76, 183 (Russian). Spectral theory of functions and operators, II. MR**615565** - Nikolai A. Shirokov,
*Analytic functions smooth up to the boundary*, Lecture Notes in Mathematics, vol. 1312, Springer-Verlag, Berlin, 1988. MR**947146**, DOI 10.1007/BFb0082810 - N. A. Shirokov,
*Inner functions in O. V. Besov’s analytic classes*, Algebra i Analiz**8**(1996), no. 4, 193–221 (Russian); English transl., St. Petersburg Math. J.**8**(1997), no. 4, 675–694. MR**1418260** - N. A. Shirokov,
*Outer functions in O. V. Besov’s analytic classes*, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI)**217**(1994), no. Issled. po Lineĭn. Oper. i Teor. Funktsiĭ. 22, 172–217, 222 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (New York)**85**(1997), no. 2, 1867–1897. MR**1327522**, DOI 10.1007/BF02355296 - David V. Cruz-Uribe and Alberto Fiorenza,
*Variable Lebesgue spaces*, Applied and Numerical Harmonic Analysis, Birkhäuser/Springer, Heidelberg, 2013. Foundations and harmonic analysis. MR**3026953**, DOI 10.1007/978-3-0348-0548-3 - K. M. D′yakonov,
*Smooth functions and co-invariant subspaces of the shift operator*, Algebra i Analiz**4**(1992), no. 5, 117–147 (Russian, with Russian summary); English transl., St. Petersburg Math. J.**4**(1993), no. 5, 933–959. MR**1202727** - K. M. Dyakonov,
*Blaschke products and nonideal ideals in higher order Lipschitz algebras*, Algebra i Analiz**21**(2009), no. 6, 182–201; English transl., St. Petersburg Math. J.**21**(2010), no. 6, 979–993. MR**2604546**, DOI 10.1090/S1061-0022-2010-01127-0 - O. Ženhen,
*On existence and uniqueness of solutions of integro-differential equations*, Doklady Akad. Nauk SSSR (N.S.)**86**(1952), 229–230 (Russian). MR**0050791**

## Bibliographic Information

**N. A. Shirokov**- Affiliation: St. Petersburg State University, 198504, Universitetskii pr. 28, St. Petersburg, Russia –and– HSE University, St. Petersburg, 194100, ul. Kantemirovskaya, 3, St. Petersburg, Russia
- Email: Nikolai.Shirokov@gmail.com
- Received by editor(s): March 10, 2019
- Published electronically: August 31, 2021
- Additional Notes: The research was supported by RFBR grant no. 17-01-00607
- © Copyright 2021 American Mathematical Society
- Journal: St. Petersburg Math. J.
**32**(2021), 929-954 - MSC (2020): Primary 30H99
- DOI: https://doi.org/10.1090/spmj/1678
- MathSciNet review: 4167877