Inner factors of analytic functions of variable smoothness in the closed disk
HTML articles powered by AMS MathViewer
- by
N. A. Shirokov
Translated by: V. V. Kapustin - St. Petersburg Math. J. 32 (2021), 929-954
- DOI: https://doi.org/10.1090/spmj/1678
- Published electronically: August 31, 2021
- PDF | Request permission
Abstract:
Let $p(\zeta )$ be a positive function defined on the unit circle $\mathbb {T}$ and satisfying the condition \begin{equation*} |p(\zeta _2)-p(\zeta _1)|\le \frac {c_0}{\log \frac {e} {|\zeta _2-\zeta _1|}}, \quad \zeta _1,\zeta _2\in \mathbb {T}, \end{equation*} $p_-=\min _{\zeta \in \mathbb {T}}p(\zeta )$. Futhermore, let $0<\alpha <1$, $r\ge 0$, $r\in \mathbb {Z}$, and assume that $p_->\frac {1}{\alpha }$. Define a class of analytic functions in the unit disk $\mathbb {D}$ as follows: $f\in H^{p(\,\cdot \,)}_{r+\alpha }$ if \begin{equation*} \sup _{0<\rho <1}\,\sup _{0<|\theta |<\pi } \int ^{2\pi }_0 \bigg |\frac {f^{(r)}(\rho e^{i(\lambda +\theta )})-f^{(r)}(\rho e^{i\lambda })} {|\theta |^{\alpha }}\bigg |^{p(e^{i\lambda )}}\,d\lambda <\infty . \end{equation*} The following main results are proved.
Theorem 1. Let $f\in H^{p(\,\cdot \,)}_{r+\alpha },$ and let $I$ be an inner function, $f/I\in H^1$. Then $f/I\in H^{p(\,\cdot \,)}_{r+\alpha }$.
Theorem 2. Let $f\in H^{p(\,\cdot \,)}_{r+\alpha },$ and let $I$ be an inner function, $f/I\in H^{\infty }$. Assume that the multiplicity of every zero of $f$ in $\mathbb {D}$ is at least $r+1$. Then $fI\in H^{p(\,\cdot \,)}_{r+\alpha }$.
References
- V. P. Havin, The factorization of analytic functions that are smooth up to the boundary, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 22 (1971), 202–205 (Russian). MR 0289783
- Walter Rudin, The closed ideals in an algebra of analytic functions, Canadian J. Math. 9 (1957), 426–434. MR 89254, DOI 10.4153/CJM-1957-050-0
- Lennart Carleson, A representation formula for the Dirichlet integral, Math. Z. 73 (1960), 190–196. MR 112958, DOI 10.1007/BF01162477
- B. I. Korenbljum and V. S. Korolevič, Analytic functions that are regular in a disc and smooth on its boundary, Mat. Zametki 7 (1970), 165–172 (Russian). MR 269850
- F. A. Šamojan, Division by an inner function in certain spaces of functions that are analytic in the disc, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 22 (1971), 206–208 (Russian). MR 0289786
- S. A. Vinogradov and N. A. Širokov, The factorization of analytic functions with derivative in $H^{p}$, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 22 (1971), 8–27 (Russian). MR 0299800
- V. P. Gurariĭ, The factorization of absolutely convergent Taylor series and Fourier integrals, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 30 (1972), 15–32 (Russian). Investigations on linear operators and the theory of functions, III. MR 0340622
- E. M. Dyn′kin, Constructive characterization of S. L. Sobolev and O. V. Besov classes, Trudy Mat. Inst. Steklov. 155 (1981), 41–76, 183 (Russian). Spectral theory of functions and operators, II. MR 615565
- Nikolai A. Shirokov, Analytic functions smooth up to the boundary, Lecture Notes in Mathematics, vol. 1312, Springer-Verlag, Berlin, 1988. MR 947146, DOI 10.1007/BFb0082810
- N. A. Shirokov, Inner functions in O. V. Besov’s analytic classes, Algebra i Analiz 8 (1996), no. 4, 193–221 (Russian); English transl., St. Petersburg Math. J. 8 (1997), no. 4, 675–694. MR 1418260
- N. A. Shirokov, Outer functions in O. V. Besov’s analytic classes, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 217 (1994), no. Issled. po Lineĭn. Oper. i Teor. Funktsiĭ. 22, 172–217, 222 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (New York) 85 (1997), no. 2, 1867–1897. MR 1327522, DOI 10.1007/BF02355296
- David V. Cruz-Uribe and Alberto Fiorenza, Variable Lebesgue spaces, Applied and Numerical Harmonic Analysis, Birkhäuser/Springer, Heidelberg, 2013. Foundations and harmonic analysis. MR 3026953, DOI 10.1007/978-3-0348-0548-3
- K. M. D′yakonov, Smooth functions and co-invariant subspaces of the shift operator, Algebra i Analiz 4 (1992), no. 5, 117–147 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 4 (1993), no. 5, 933–959. MR 1202727
- K. M. Dyakonov, Blaschke products and nonideal ideals in higher order Lipschitz algebras, Algebra i Analiz 21 (2009), no. 6, 182–201; English transl., St. Petersburg Math. J. 21 (2010), no. 6, 979–993. MR 2604546, DOI 10.1090/S1061-0022-2010-01127-0
- O. Ženhen, On existence and uniqueness of solutions of integro-differential equations, Doklady Akad. Nauk SSSR (N.S.) 86 (1952), 229–230 (Russian). MR 0050791
Bibliographic Information
- N. A. Shirokov
- Affiliation: St. Petersburg State University, 198504, Universitetskii pr. 28, St. Petersburg, Russia –and– HSE University, St. Petersburg, 194100, ul. Kantemirovskaya, 3, St. Petersburg, Russia
- Email: Nikolai.Shirokov@gmail.com
- Received by editor(s): March 10, 2019
- Published electronically: August 31, 2021
- Additional Notes: The research was supported by RFBR grant no. 17-01-00607
- © Copyright 2021 American Mathematical Society
- Journal: St. Petersburg Math. J. 32 (2021), 929-954
- MSC (2020): Primary 30H99
- DOI: https://doi.org/10.1090/spmj/1678
- MathSciNet review: 4167877