Weighted Littlewood–Paley inequality for arbitrary rectangles in $\mathbb {R}^2$
HTML articles powered by AMS MathViewer
- by
V. Borovitskiy
Translated by: the author - St. Petersburg Math. J. 32 (2021), 975-997
- DOI: https://doi.org/10.1090/spmj/1680
- Published electronically: October 20, 2021
- PDF | Request permission
Abstract:
Weighted counterparts of the one-sided Littlewood–Paley inequalities for arbitrary rectangles in $\mathbb {R}^2$ are proved.
For a partition $\mathcal {I}$ of the plane $\mathbb {R}^2$ into rectangles with sides parallel to coordinate axes and a weight $w(\,\cdot \,, \,\cdot \,)$ satisfying the two-parameter Muckenhoupt condition $A_{p/2}$ for $2 < p < \infty$, the following inequality holds: \begin{equation*} c_{p, w}\lVert \{M_I f\}_{I \in \mathcal {I}} \rVert _{L^p_w(l^2)} \leq \lVert f \rVert _{L_w^p} , \end{equation*} where the symbols $\widehat {M_I f} = \widehat {f} \chi _{I}$ denote the corresponding Fourier multipliers.
For $\mathcal {I}$ as above, $p$ in the range $0 < p < 2$, and weights $w$ satisfying a dual condition $\alpha _{r(p)}$, the following inequality holds \begin{equation*} \Big \|{\sum }_{I \in \mathcal {I}} f_I\Big \|_{L^p_w} \leq C_{p, w} \big \| \left \{ f_I \right \}_{I \in \mathcal {I}} \big \|_{L^p_w(l^2)} , \text { where } \operatorname {supp}{\widehat {f_I}} \subseteq I \text { for } I \in \mathcal {I}. \end{equation*} The proof is based on the theory of two-parameter singular integral operators on Hardy spaces developed by R. Fefferman and some of its more recent weighted generalizations. The former and the latter inequalities are extensions to the weighted setting, respectively, for Journe’s result of 1985 and Osipov’s result of 2010.
References
- J. Bourgain, On square functions on the trigonometric system, Bull. Soc. Math. Belg. Sér. B 37 (1985), no. 1, 20–26. MR 847119
- Anthony Carbery and Andreas Seeger, $H^p$- and $L^p$-variants of multiparameter Calderón-Zygmund theory, Trans. Amer. Math. Soc. 334 (1992), no. 2, 719–747. MR 1072104, DOI 10.1090/S0002-9947-1992-1072104-4
- Yong Ding, Yongsheng Han, Guozhen Lu, and Xinfeng Wu, Boundedness of singular integrals on multiparameter weighted Hardy spaces $H^p_w\ (\Bbb R^n\times \Bbb R^m)$, Potential Anal. 37 (2012), no. 1, 31–56. MR 2928237, DOI 10.1007/s11118-011-9244-y
- Charles Fefferman, The multiplier problem for the ball, Ann. of Math. (2) 94 (1971), 330–336. MR 296602, DOI 10.2307/1970864
- Robert Fefferman, Calderón-Zygmund theory for product domains: $H^p$ spaces, Proc. Nat. Acad. Sci. U.S.A. 83 (1986), no. 4, 840–843. MR 828217, DOI 10.1073/pnas.83.4.840
- Robert Fefferman, Harmonic analysis on product spaces, Ann. of Math. (2) 126 (1987), no. 1, 109–130. MR 898053, DOI 10.2307/1971346
- José García-Cuerva, Weighted $H^{p}$ spaces, Dissertationes Math. (Rozprawy Mat.) 162 (1979), 63. MR 549091
- Jean-Lin Journé, Calderón-Zygmund operators on product spaces, Rev. Mat. Iberoamericana 1 (1985), no. 3, 55–91. MR 836284, DOI 10.4171/RMI/15
- Ming-Yi Lee, Boundedness of Calderón-Zygmund operators on weighted product Hardy spaces, J. Operator Theory 72 (2014), no. 1, 115–133. MR 3246984, DOI 10.7900/jot.2012nov06.1993
- Eugenia Malinnikova and Nikolay N. Osipov, Two types of Rubio de Francia operators on Triebel-Lizorkin and Besov spaces, J. Fourier Anal. Appl. 25 (2019), no. 3, 804–818. MR 3953487, DOI 10.1007/s00041-018-9617-3
- N. N. Osipov, The Littlewood-Paley-Rubio de Francia inequality in Morrey-Campanato spaces, Mat. Sb. 205 (2014), no. 7, 95–114 (Russian, with Russian summary); English transl., Sb. Math. 205 (2014), no. 7-8, 1004–1023. MR 3242647, DOI 10.1070/sm2014v205n07abeh004407
- Zhuo Ping Ruan, The Calderón-Zygmund decomposition and interpolation on weighted Hardy spaces, Acta Math. Sin. (Engl. Ser.) 27 (2011), no. 10, 1967–1978. MR 2835219, DOI 10.1007/s10114-011-9338-x
- José L. Rubio de Francia, A Littlewood-Paley inequality for arbitrary intervals, Rev. Mat. Iberoamericana 1 (1985), no. 2, 1–14. MR 850681, DOI 10.4171/RMI/7
- Fernando Soria, A note on a Littlewood-Paley inequality for arbitrary intervals in $\textbf {R}^2$, J. London Math. Soc. (2) 36 (1987), no. 1, 137–142. MR 897682, DOI 10.1112/jlms/s2-36.1.137
- Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR 1232192
- Jan-Olov Strömberg and Richard L. Wheeden, Relations between $H^p_u$ and $L^p_u$ in a product space, Trans. Amer. Math. Soc. 315 (1989), no. 2, 769–797. MR 951891, DOI 10.1090/S0002-9947-1989-0951891-7
- V. A. Borovitskiĭ, $K$-closedness for weighted Hardy spaces on the torus $\Bbb T^2$, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 456 (2017), no. Issledovaniya po Lineĭnym Operatoram i Teorii Funktsiĭ. 45, 25–36 (Russian, with English summary); English transl., J. Math. Sci. (N.Y.) 234 (2018), no. 3, 282–289. MR 3693782, DOI 10.1007/s10958-018-4004-9
- S. V. Kislyakov and D. V. Parilov, On the Littlewood-Paley theorem for arbitrary intervals, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 327 (2005), no. Issled. po Lineĭn. Oper. i Teor. Funkts. 33, 98–114, 236–237 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 139 (2006), no. 2, 6417–6424. MR 2184431, DOI 10.1007/s10958-006-0359-4
- S. V. Kislyakov, The Littlewood-Paley theorem for arbitrary intervals: weighted estimates, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 355 (2008), no. Issledovaniya po Lineĭnym Operatoram i Teorii Funktsiĭ. 36, 180–198, 239 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 156 (2009), no. 5, 824–833. MR 2744539, DOI 10.1007/s10958-009-9293-6
- N. N. Osipov, The Littlewood-Paley inequality for arbitrary rectangles in $\Bbb R^2$ for $0<p\leq 2$, Algebra i Analiz 22 (2010), no. 2, 164–184 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 22 (2011), no. 2, 293–306. MR 2668127, DOI 10.1090/S1061-0022-2011-01141-0
- N. N. Osipov, A one-sided Littlewood-Paley inequality in $\Bbb R^n$ for $0<p\le 2$, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 376 (2010), no. Issledovaniya po Lineĭnym Operatoram i Teoriya Funktsiĭ. 38, 88–115, 182 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 172 (2011), no. 2, 229–242. MR 2749287, DOI 10.1007/s10958-010-0195-4
Bibliographic Information
- V. Borovitskiy
- Affiliation: St. Petersburg Department of Steklov Mathematical Institute and St. Petersburg State University
- Email: viacheslav.borovitskiy@gmail.com
- Received by editor(s): December 14, 2019
- Published electronically: October 20, 2021
- Additional Notes: This research was supported by the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-2019-1620), and by the Foundation for the Advancement of Theoretical Physics and Mathematics “BASIS”
- © Copyright 2021 American Mathematical Society
- Journal: St. Petersburg Math. J. 32 (2021), 975-997
- MSC (2020): Primary 42B25; Secondary 42B30
- DOI: https://doi.org/10.1090/spmj/1680
- MathSciNet review: 4219490