Szegő-type limit theorems for “multiplicative Toeplitz” operators and non-Følner approximations
HTML articles powered by AMS MathViewer
- by N. Nikolski and A. Pushnitski
- St. Petersburg Math. J. 32 (2021), 1033-1050
- DOI: https://doi.org/10.1090/spmj/1683
- Published electronically: October 20, 2021
- PDF | Request permission
Abstract:
An analog of the First Szegő Limit Theorem for multiplicative Toeplitz operators is discussed, with the emphasis on the role of the multliplicative Følner condition in this topic.References
- Pere Ara, Fernando Lledó, and Dmitry V. Yakubovich, Følner sequences in operator theory and operator algebras, Operator theory, operator algebras and applications, Oper. Theory Adv. Appl., vol. 242, Birkhäuser/Springer, Basel, 2014, pp. 1–24. MR 3243304, DOI 10.1007/978-3-0348-0816-3_{1}
- Michel Balazard, Fonctions arithmétiques multiplicativement monotones, Bull. Belg. Math. Soc. Simon Stevin 26 (2019), no. 2, 161–176 (French, with English summary). MR 3975822, DOI 10.36045/bbms/1561687559
- Erik Bédos, On Følner nets, Szegő’s theorem and other eigenvalue distribution theorems, Exposition. Math. 15 (1997), no. 3, 193–228. MR 1458766
- Albrecht Böttcher and Bernd Silbermann, Introduction to large truncated Toeplitz matrices, Universitext, Springer-Verlag, New York, 1999. MR 1724795, DOI 10.1007/978-1-4612-1426-7
- Albrecht Böttcher and Peter Otte, The first Szegő limit theorem for non-selfadjoint operators in the Følner algebra, Math. Scand. 97 (2005), no. 1, 115–126. MR 2179593, DOI 10.7146/math.scand.a-14967
- Roland Hagen, Steffen Roch, and Bernd Silbermann, $C^*$-algebras and numerical analysis, Monographs and Textbooks in Pure and Applied Mathematics, vol. 236, Marcel Dekker, Inc., New York, 2001. MR 1792428
- Håkan Hedenmalm, Peter Lindqvist, and Kristian Seip, A Hilbert space of Dirichlet series and systems of dilated functions in $L^2(0,1)$, Duke Math. J. 86 (1997), no. 1, 1–37. MR 1427844, DOI 10.1215/S0012-7094-97-08601-4
- Titus Hilberdink, Singular values of multiplicative Toeplitz matrices, Linear Multilinear Algebra 65 (2017), no. 4, 813–829. MR 3606835, DOI 10.1080/03081087.2016.1204978
- A. Laptev and Yu. Safarov, Szegő type limit theorems, J. Funct. Anal. 138 (1996), no. 2, 544–559. MR 1395969, DOI 10.1006/jfan.1996.0075
- B. M. Levitan, Počti-periodičeskie funkcii, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow, 1953 (Russian). MR 0060629
- Daniel Li and Hervé Queffélec, Introduction to Banach spaces: analysis and probability. Vol. 2, Cambridge Studies in Advanced Mathematics, vol. 167, Cambridge University Press, Cambridge, 2018. Translated from the French by Danièle Gibbons and Greg Gibbons; With appendices by Gilles Godefroy, Olivier Guédon, Gilles Pisier and Luis Rodríguez-Piazza; For the French original see [ MR2124356]. MR 3729311
- Nikolaï Nikolski, Hardy spaces, Translated from the 2012 French edition, Cambridge Studies in Advanced Mathematics, vol. 179, Cambridge University Press, Cambridge, 2019. MR 3890074, DOI 10.1017/9781316882108
- —, Toeplitz matrices and operators, Cambridge Univ. Press, Cambridge. (to appear)
- Peter Otte, An abstract Szegő theorem, J. Math. Anal. Appl. 289 (2004), no. 1, 167–179. MR 2020534, DOI 10.1016/j.jmaa.2003.09.040
- Hervé Queffélec and Martine Queffélec, Diophantine approximation and Dirichlet series, Harish-Chandra Research Institute Lecture Notes, vol. 2, Hindustan Book Agency, New Delhi, 2013. MR 3099268, DOI 10.1007/978-93-86279-61-3
- K. Ramachandra, On the mean-value and omega-theorems for the Riemann zeta-function, Tata Institute of Fundamental Research Lectures on Mathematics and Physics, vol. 85, Published for the Tata Institute of Fundamental Research, Bombay; by Springer-Verlag, Berlin, 1995. MR 1332493
- Barry Simon, Orthogonal polynomials on the unit circle. Part 1, American Mathematical Society Colloquium Publications, vol. 54, American Mathematical Society, Providence, RI, 2005. Classical theory. MR 2105088, DOI 10.1090/coll054.1
- G. Szegö, Ein Grenzwertsatz über die Toeplitzschen Determinanten einer reellen positiven Funktion, Math. Ann. 76 (1915), no. 4, 490–503 (German). MR 1511838, DOI 10.1007/BF01458220
- G. Szegő, Beiträge zur Theorie der Toeplitzschen Formen, Math. Z. 6 (1920), no. 3-4, 167–202 (German). MR 1544404, DOI 10.1007/BF01199955
- E. C. Titchmarsh, The theory of the Riemann zeta-function, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1986. Edited and with a preface by D. R. Heath-Brown. MR 882550
- Otto Toeplitz, Zur Theorie der Dirichletschen Reihen, Amer. J. Math. 60 (1938), no. 4, 880–888 (German). MR 1507354, DOI 10.2307/2371266
- S. Verblunsky, On Positive Harmonic Functions, Proc. London Math. Soc. (2) 40 (1935), no. 4, 290–320. MR 1575824, DOI 10.1112/plms/s2-40.1.290
Bibliographic Information
- N. Nikolski
- Affiliation: Institut de Mathématiques de Bordeaux, Université de Bordeaux Talence, France; Leonhard Euler International Mathematical Institute at St.Petersburg PDMI RAS, St.Petersburg, Russia
- Email: nikolski@math.u-bordeaux.fr
- A. Pushnitski
- Affiliation: Department of Mathematics, King’s College London, Strand, London, WC2R 2LS, United Kingdom
- Email: alexander.pushnitski@kcl.ac.uk
- Received by editor(s): March 14, 2020
- Published electronically: October 20, 2021
- Additional Notes: The first author was supported by the Ministry of Science and Higher Education of the Russian Federation, agreement no. 075-15-2019-1620
- © Copyright 2021 American Mathematical Society
- Journal: St. Petersburg Math. J. 32 (2021), 1033-1050
- MSC (2020): Primary 47B35
- DOI: https://doi.org/10.1090/spmj/1683
- MathSciNet review: 4219493