Parametrized symmetric groups and the second homology of a group
HTML articles powered by AMS MathViewer
- by S. Sinchuk
- St. Petersburg Math. J. 32 (2021), 1067-1080
- DOI: https://doi.org/10.1090/spmj/1685
- Published electronically: October 20, 2021
- PDF | Request permission
Abstract:
The notion of a symmetric group parametrized by elements of a group is introduced. It is shown that this group is an extension of a subgroup of the wreath product $G \wr S_n$ by $\operatorname {H}_2(G, \mathbb {Z})$. Motivation behind this construction is also discussed.References
- Hans-Joachim Baues, Homotopy type and homology, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1996. Oxford Science Publications. MR 1404516
- Ronald Brown, Philip J. Higgins, and Rafael Sivera, Nonabelian algebraic topology, EMS Tracts in Mathematics, vol. 15, European Mathematical Society (EMS), Zürich, 2011. Filtered spaces, crossed complexes, cubical homotopy groupoids; With contributions by Christopher D. Wensley and Sergei V. Soloviev. MR 2841564, DOI 10.4171/083
- Roger W. Carter, Simple groups of Lie type, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1989. Reprint of the 1972 original; A Wiley-Interscience Publication. MR 1013112
- R. K. Dennis, In search of new homology functors having a close relationship to $K$-theory, Preprint, Cornell Univ., 1976; https://www.math.uni-bielefeld.de/~rehmann/Publ/in\_search.pdf
- Paul G. Goerss and John F. Jardine, Simplicial homotopy theory, Modern Birkhäuser Classics, Birkhäuser Verlag, Basel, 2009. Reprint of the 1999 edition [MR1711612]. MR 2840650, DOI 10.1007/978-3-0346-0189-4
- Christian Kassel and Christophe Reutenauer, Une variante à la Coxeter du groupe de Steinberg, $K$-Theory 14 (1998), no. 4, 305–318 (French, with English and French summaries). MR 1641551, DOI 10.1023/A:1007701619464
- Jean-Louis Loday and Michael R. Stein, Parameterized braid groups of Chevalley groups, Doc. Math. 10 (2005), 391–416. MR 2184460
- Wilhelm Magnus, Abraham Karrass, and Donald Solitar, Combinatorial group theory, Second revised edition, Dover Publications, Inc., New York, 1976. Presentations of groups in terms of generators and relations. MR 0422434
- J. P. May, A concise course in algebraic topology, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1999. MR 1702278
- Clair Miller, The second homology group of a group; relations among commutators, Proc. Amer. Math. Soc. 3 (1952), 588–595. MR 49191, DOI 10.1090/S0002-9939-1952-0049191-5
- Semën Podkorytov, Straight homotopy invariants, Topology Proc. 49 (2017), 41–64. MR 3491055
- Ulf Rehmann, Zentrale Erweiterungen der speziellen linearen Gruppe eines Schiefkörpers, J. Reine Angew. Math. 301 (1978), 77–104 (German). MR 506073, DOI 10.1515/crll.1978.301.77
- Charles A. Weibel, The $K$-book, Graduate Studies in Mathematics, vol. 145, American Mathematical Society, Providence, RI, 2013. An introduction to algebraic $K$-theory. MR 3076731, DOI 10.1090/gsm/145
Bibliographic Information
- S. Sinchuk
- Affiliation: Chebyshev laboratory, St. Petersburg State University, St. Petersburg, Russia
- Email: sinchukss@gmail.com
- Received by editor(s): December 5, 2019
- Published electronically: October 20, 2021
- Additional Notes: During the final stage of this work the author was supported by the Russian Science Foundation grant no. 19-71-30002
- © Copyright 2021 American Mathematical Society
- Journal: St. Petersburg Math. J. 32 (2021), 1067-1080
- MSC (2020): Primary 20F05; Secondary 55Q05, 20B30, 20E06, 20J06, 20F55
- DOI: https://doi.org/10.1090/spmj/1685
- MathSciNet review: 4219495