Short wave diffraction on a contour with a Hölder singularity of the curvature
HTML articles powered by AMS MathViewer
- by
E. A. Zlobina and A. P. Kiselev
Translated by: S. V. Kislyakov - St. Petersburg Math. J. 33 (2022), 207-222
- DOI: https://doi.org/10.1090/spmj/1697
- Published electronically: March 4, 2022
- PDF | Request permission
Abstract:
Formulas are constructed for the short-wave asymptotics in the problem of diffraction of a plane wave on a contour with continuous curvature that is smooth everywhere except for one point near which it has a power-like behavior. The wave field is described in the boundary layers surrounding the singular point of the contour and the limit ray. An expression for the diffracted wave is found.References
- Joseph B. Keller, Geometrical theory of diffraction, J. Opt. Soc. Amer. 52 (1962), 116–130. MR 135064, DOI 10.1364/JOSA.52.000116
- V. A. Borovikov and B. E. Kinber, Geometricheskaya teoriya difraktsii, “Svyaz′”, Moscow, 1978 (Russian). MR 526930
- V. A. Fock, Electromagnetic diffraction and propagation problems, International Series of Monographs on Electromagnetic Waves, Vol. 1, Pergamon Press, Oxford-Edinburgh-New York, 1965. MR 0205569
- R. N. Buchal and J. B. Keller, Boundary layer problems in diffraction theory, Comm. Pure Appl. Math. 13 (1960), 85–114. MR 119789, DOI 10.1002/cpa.3160130109
- V. M. Babič and N. Y. Kirpičnikova, The boundary-layer method in diffraction problems, Springer Series in Electrophysics, vol. 3, Springer-Verlag, Berlin-New York, 1979. Translated from the Russian and with an introduction by Edward F. Kuester. MR 555574, DOI 10.1007/978-3-642-88391-0
- A. M. Il′in, Matching of asymptotic expansions of solutions of boundary value problems, Translations of Mathematical Monographs, vol. 102, American Mathematical Society, Providence, RI, 1992. Translated from the Russian by V. Minachin [V. V. Minakhin]. MR 1182791, DOI 10.1090/mmono/102
- Vladimir Maz′ya, Serguei Nazarov, and Boris Plamenevskij, Asymptotic theory of elliptic boundary value problems in singularly perturbed domains. Vol. II, Operator Theory: Advances and Applications, vol. 112, Birkhäuser Verlag, Basel, 2000. Translated from the German by Plamenevskij. MR 1779978
- Ekaterina A. Zlobina and Aleksei P. Kiselev, Boundary-layer approach to high-frequency diffraction by a jump of curvature, Wave Motion 96 (2020), 102571, 13. MR 4092432, DOI 10.1016/j.wavemoti.2020.102571
- V. H. Weston, The effect of a discontinuity in curvature in high-frequency scattering, IEEE Trans. AP 10 (1962), 775–780.
- V. H. Weston, Effect of a discontinuity of curvature in high-frequency scattering. Pt. II, IEEE Trans. AP 13 (1965), 611–613.
- T. B. A. Senior, The diffraction matrix for a discontinuity in curvature, IEEE Trans. AP 20 (1972), no. 3, 326–333.
- A. Michaeli, Diffraction by a discontinuity in curvature including the effect of creeping wave, IEEE Trans. AP 38 (1990), no. 6, 929–931.
- A. V. Popov, The inverse scattering from a line of jamp of curvature, Proc. V All-Union simpoz. on Diffraction and propagation of waves, Nauka, Leningrad, 1975, pp. 171–175. (Russian)
- I. V. Andronov, D. Bouche, N. Ya. Kirpichnikova, and V. B. Philippov, Creeping wave diffraction by a junction with plane surface, Ann. Télécommunic. 52 (1997), 483–488.
- N. Ya. Kirpichnikova and V. B. Filippov, Diffraction of a whispering gallery wave near the line of curvature jump, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 239 (1997), no. Mat. Vopr. Teor. Rasprostr. Voln. 26, 95–109, 265–266 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (New York) 96 (1999), no. 4, 3342–3350. MR 1700643, DOI 10.1007/BF02172810
- N. Ya. Kirpichnikova, V. B. Filippov, and A. S. Kirpichnikova, Diffraction of creeping waves from the line of curvature jump (an acoustic three-dimensional medium), Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 257 (1999), no. Mat. Vopr. Teor. Rasprostr. Voln. 28, 75–92, 347–348 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (New York) 108 (2002), no. 5, 689–702. MR 1754693, DOI 10.1023/A:1013247112086
- Anna Sergeevna Kirpichnikova and Vjacheslav Borisovish Philippov, Diffraction by a line of curvature jump (a special case), IEEE Trans. Antennas and Propagation 49 (2001), no. 12, 1618–1623. MR 1891666, DOI 10.1109/8.982437
- Lee Kaminetzky and Joseph B. Keller, Diffraction coefficients for higher order edges and vertices, SIAM J. Appl. Math. 22 (1972), 109–134. MR 311212, DOI 10.1137/0122013
- A. F. Filippov, Reflection of a wave from a boundary composed of arcs of variable curvature, Prikl. Mat. Mekh. 34 (1971), 1076–1084; English transl., J. Appl. Math. Mech. 34 (1971), no. 6, 1014–1023.
- Z. M. Rogoff and A. P. Kiselev, Diffraction at jump of curvature on an impedance boundary, Wave Motion 33 (2001), no. 2, 183–208.
- N. V. Cepelev, Certain special solutions of the Helmholtz equation, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 51 (1975), 197–202, 220 (Russian). Mathematical questions in the theory of wave propagation, 7. MR 0417563
- I. M. Gel’fand and G. E. Shilov, Generalized functions. Vol. I: Properties and operations, Academic Press, New York-London, 1964. Translated by Eugene Saletan. MR 0166596
- V. M. Babich and V. S. Buldyrev, Asimptoticheskie metody v zadachakh difraktsii korotkikh voln. Tom l, Izdat. “Nauka”, Moscow, 1972 (Russian). Metod ètalonnykh zadach. [The method of canonical problems]; With the collaboration of M. M. Popov and I. A. Molotkov. MR 0426630
- V. I. Smirnov, Kurs vyssheĭ matematiki. Tom IV. Chast′ 1, Izdat. “Nauka”, Moscow, 1974 (Russian). Sixth edition, revised and augmented. MR 0361650
- Geraldo S. S. Ávila and Joseph B. Keller, The high-frequency asymptotic field of a point source in an inhomogeneous medium, Comm. Pure Appl. Math. 16 (1963), 363–381. MR 164133, DOI 10.1002/cpa.3160160402
- Vassily M. Babich and Aleksei P. Kiselev, Elastic waves, Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, FL, 2018. High frequency theory; Translated from the 2014 Russian edition by Irina A. So. MR 3822378, DOI 10.1201/b21845
- M. V. Fedoryuk, Asimptotika: integraly i ryady, Spravochnaya Matematicheskaya Biblioteka. [Mathematical Reference Library], “Nauka”, Moscow, 1987 (Russian). MR 950167
- A. Erdélyi, Asymptotic expansions, Dover Publications, Inc., New York, 1956. MR 0078494
- Philip M. Morse and Herman Feshbach, Methods of theoretical physics. 2 volumes, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1953. MR 0059774
- E. A. Zlobina, Short-wavelength diffraction by a contours with nonsmooth curvature. Boundary layer approach, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 493 (2020), no. Matematicheskie Voprosy Teorii Rasprostraneniya Voln. 50, 169–185 (Russian, with English summary). MR 4230738
- Milton Abramowitz and Irene A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, No. 55, U. S. Government Printing Office, Washington, D.C., 1964. For sale by the Superintendent of Documents. MR 0167642
- Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger, and Francesco G. Tricomi, Higher transcendental functions. Vols. I, II, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1953. Based, in part, on notes left by Harry Bateman. MR 0058756, DOI 10.1016/0021-8928(70)90165-6
Bibliographic Information
- E. A. Zlobina
- Affiliation: St. Petersburg State University, 3 Ul′yanovskaya Street, Petrodvorets 198504 St. Petersburg; and St. Petersburg Branch of the V. A. Steklov Mathematical Institute, RAS, 27 Fontanka, 191023 St. Petersburg, Russia
- Email: ezlobina2@yandex.ru
- A. P. Kiselev
- Affiliation: St. Petersburg Branch of the V. A. Steklov Mathematical Institute, RAS, 27 Fontanka, 191023 St. Petersburg, Russia; St. Petersburg State University, 3 Ul′yanovskaya Street, Petrodvorets, 198504, St. Petersburg; and Institute for Problems Mechanical Engineering of the Russian Academy of Sciences, Bol′shoi Ave. V.O. 61, 199178 St. Petersburg, Russia
- Email: aleksei.kiselev@gmail.com
- Received by editor(s): July 1, 2020
- Published electronically: March 4, 2022
- Additional Notes: Supported by RFBR grant 20-01-00627
- © Copyright 2022 American Mathematical Society
- Journal: St. Petersburg Math. J. 33 (2022), 207-222
- MSC (2020): Primary 35J25; Secondary 35L05, 35Q60
- DOI: https://doi.org/10.1090/spmj/1697
- MathSciNet review: 4445756
Dedicated: Dedicated to Vasiliĭ Mikhaĭlovich Babich