On interpolation and $K$-monotonicity for discrete local Morrey spaces
HTML articles powered by AMS MathViewer
- by
E. I. Berezhnoi
Translated by: S. V. Kislyakov - St. Petersburg Math. J. 33 (2022), 427-447
- DOI: https://doi.org/10.1090/spmj/1707
- Published electronically: May 5, 2022
- PDF | Request permission
Abstract:
A formula is given that makes it possible to reduce the calculation of an interpolation functor on a pair of local Morrey spaces to the calculation of this functor on pairs of vector function spaces constructed from the ideal spaces involved in the definition of the Morrey spaces in question. It is shown that a pair of local Morrey spaces is $K$-monotone if and only if the pair of vector function spaces mentioned above is $K$-monotone. This reduction makes it possible to obtain new interpolation theorems even for classical local spaces.References
- E. I. Berežnoĭ, Approximation spaces and interpolation, Dokl. Akad. Nauk SSSR 255 (1980), no. 6, 1289–1291 (Russian). MR 597948
- E. I. Berezhnoĭ, A discrete version of Morrey local spaces, Izv. Ross. Akad. Nauk Ser. Mat. 81 (2017), no. 1, 3–30 (Russian, with Russian summary); English transl., Izv. Math. 81 (2017), no. 1, 1–28. MR 3608722, DOI 10.4213/im8379
- Jöran Bergh and Jörgen Löfström, Interpolation spaces. An introduction, Grundlehren der Mathematischen Wissenschaften, No. 223, Springer-Verlag, Berlin-New York, 1976. MR 0482275, DOI 10.1007/978-3-642-66451-9
- Oscar Blasco, Alberto Ruiz, and Luis Vega, Non-interpolation in Morrey-Campanato and block spaces, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28 (1999), no. 1, 31–40. MR 1679077
- Yu. A. Brudnyĭ and N. Ya. Krugljak, Interpolation functors and interpolation spaces. Vol. I, North-Holland Mathematical Library, vol. 47, North-Holland Publishing Co., Amsterdam, 1991. Translated from the Russian by Natalie Wadhwa; With a preface by Jaak Peetre. MR 1107298
- V. I. Burenkov, Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces. I, Eurasian Math. J. 3 (2012), no. 3, 11–32. MR 3024128
- V. I. Burenkov, Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces. II, Eurasian Math. J. 4 (2013), no. 1, 21–45. MR 3118889
- V. I. Burenkov and E. D. Nursultanov, Description of interpolation spaces for local Morrey-type spaces, Tr. Mat. Inst. Steklova 269 (2010), no. Teoriya Funktsiĭ i Differentsial′nye Uravneniya, 52–62 (Russian, with Russian summary); English transl., Proc. Steklov Inst. Math. 269 (2010), no. 1, 46–56. MR 2729972, DOI 10.1134/S0081543810020045
- V. I. Burenkov, E. D. Nursultanov, and D. K. Chigambayeva, Description of the interpolation spaces for a pair of local Morrey-type spaces and their generalizations, Proc. Steklov Inst. Math. 284 (2014), no. 1, 97–128. Published in Russian in Tr. Mat. Inst. Steklova 284 (2014), 105–137. MR 3479967, DOI 10.1134/S0081543814010064
- V. I. Burenkov, D. K. Darbayeva, and E. D. Nursultanov, Description of interpolation spaces for general local Morrey-type spaces, Eurasian Math. J. 4 (2013), no. 1, 46–53. MR 3118890
- A. V. Buhvalov, Integral operators, and the representation of completely linear functionals on spaces with mixed norm, Sibirsk. Mat. Ž. 16 (1975), no. 3, 483–493, 643 (Russian). MR 0405159
- A. V. Buhvalov, A. I. Veksler, and V. A. Geĭler, Normed lattices, Mathematical analysis, Vol. 18 (Russian), Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii, Moscow, 1980, pp. 125–184 (Russian). MR 597904
- A. V. Bukhvalov, Interpolation of operators in spaces of vector-valued functions, with applications to singular integral operators, Dokl. Akad. Nauk SSSR 278 (1984), no. 3, 523–526 (Russian). MR 764987
- A.-P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113–190. MR 167830, DOI 10.4064/sm-24-2-113-190
- Jan Gustavsson and Jaak Peetre, Interpolation of Orlicz spaces, Studia Math. 60 (1977), no. 1, 33–59. MR 438102, DOI 10.4064/sm-60-1-33-59
- L. V. Kantorovich and G. P. Akilov, Functional analysis, 2nd ed., Pergamon Press, Oxford-Elmsford, N.Y., 1982. Translated from the Russian by Howard L. Silcock. MR 664597
- S. G. Kreĭn, Yu. Ī. Petunīn, and E. M. Semënov, Interpolation of linear operators, Translations of Mathematical Monographs, vol. 54, American Mathematical Society, Providence, R.I., 1982. Translated from the Russian by J. Szűcs. MR 649411
- Alois Kufner, Lech Maligranda, and Lars-Erik Persson, The Hardy inequality, Vydavatelský Servis, Plzeň, 2007. About its history and some related results. MR 2351524
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. I, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 92, Springer-Verlag, Berlin-New York, 1977. Sequence spaces. MR 0500056, DOI 10.1007/978-3-642-66557-8
- G. Ja. Lozanovskiĭ, Certain Banach lattices. III, IV, Sibirsk. Mat. Ž. 13 (1972), 1304–1313, 1420; ibid. 14 (1973), 140–155, 237 (Russian). MR 0336314
- Charles B. Morrey Jr., On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc. 43 (1938), no. 1, 126–166. MR 1501936, DOI 10.1090/S0002-9947-1938-1501936-8
- V. I. Ovchinnikov, The method of orbits in interpolation theory, Math. Rep. 1 (1984), no. 2, i–x and 349–515. MR 877877
- Alberto Ruiz and Luis Vega, Corrigenda to: “Unique continuation for Schrödinger operators with potential in Morrey spaces” [Publ. Mat. 35 (1991), no. 1, 291–298; MR1103622 (92e:35039)] and a remark on interpolation of Morrey spaces, Publ. Mat. 39 (1995), no. 2, 405–411. MR 1370896, DOI 10.5565/PUBLMAT_{3}9295_{1}5
Bibliographic Information
- E. I. Berezhnoi
- Affiliation: Deparment of Mathematics, P. G. Demidov Yaroslavl State University, Sovetskaya 14, 150000 Yaroslavl, Russia
- Email: ber@uniyar.ac.ru
- Received by editor(s): April 6, 2020
- Published electronically: May 5, 2022
- Additional Notes: Supported by RFBR grant no. 18-51-06005
- © Copyright 2022 American Mathematical Society
- Journal: St. Petersburg Math. J. 33 (2022), 427-447
- MSC (2020): Primary 46E30; Secondary 46B42, 46B70
- DOI: https://doi.org/10.1090/spmj/1707
- MathSciNet review: 4445777