Diagonal complexes for surfaces of finite type and surfaces with involution
HTML articles powered by AMS MathViewer
- by G. Panina and J. Gordon
- St. Petersburg Math. J. 33 (2022), 465-481
- DOI: https://doi.org/10.1090/spmj/1709
- Published electronically: May 5, 2022
- PDF | Request permission
Abstract:
Two constructions are studied that are inspired by the ideas of a recent paper by the authors.
— The diagonal complex $\mathcal {D}$ and its barycentric subdivision $\mathcal {BD}$ related to an oriented surface of finite type $F$ equipped with a number of labeled marked points. This time, unlike the paper mentioned above, boundary components without marked points are allowed, called holes.
— The symmetric diagonal complex $\mathcal {D}^{\operatorname {inv}}$ and its barycentric subdivision $\mathcal {BD}^{\operatorname {inv}}$ related to a symmetric (=with an involution) oriented surface $F$ equipped with a number of (symmetrically placed) labeled marked points.
The symmetric complex is shown to be homotopy equivalent to the complex of a surface obtained by “taking a half” of the initial symmetric surface.
References
- Raoul Bott and Clifford Taubes, On the self-linking of knots, J. Math. Phys. 35 (1994), no. 10, 5247–5287. Topology and physics. MR 1295465, DOI 10.1063/1.530750
- Michael P. Carr and Satyan L. Devadoss, Coxeter complexes and graph-associahedra, Topology Appl. 153 (2006), no. 12, 2155–2168. MR 2239078, DOI 10.1016/j.topol.2005.08.010
- I. A. Gordon and G. Yu. Panina, Diagonal complexes, Izv. Ross. Akad. Nauk Ser. Mat. 82 (2018), no. 5, 3–22 (Russian, with Russian summary); English transl., Izv. Math. 82 (2018), no. 5, 861–879. MR 3859377, DOI 10.4213/im8763
- Sergey Fomin and Andrei Zelevinsky, $Y$-systems and generalized associahedra, Ann. of Math. (2) 158 (2003), no. 3, 977–1018. MR 2031858, DOI 10.4007/annals.2003.158.977
- L. Frappat, A. Sciarrino, and P. Sorba, Dictionary on Lie algebras and superalgebras, Academic Press, Inc., San Diego, CA, 2000. With 1 CD-ROM (Windows, Macintosh and UNIX). MR 1773773
- Robin Forman, Morse theory for cell complexes, Adv. Math. 134 (1998), no. 1, 90–145. MR 1612391, DOI 10.1006/aima.1997.1650
- Robin Forman, A user’s guide to discrete Morse theory, Sém. Lothar. Combin. 48 (2002), Art. B48c, 35. MR 1939695
- Allen Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002. MR 1867354
- John L. Harer, The virtual cohomological dimension of the mapping class group of an orientable surface, Invent. Math. 84 (1986), no. 1, 157–176. MR 830043, DOI 10.1007/BF01388737
- W. J. Harvey, Boundary structure of the modular group, Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978) Ann. of Math. Stud., vol. 97, Princeton Univ. Press, Princeton, N.J., 1981, pp. 245–251. MR 624817
- Kiyoshi Igusa, Combinatorial Miller-Morita-Mumford classes and Witten cycles, Algebr. Geom. Topol. 4 (2004), 473–520. MR 2077674, DOI 10.2140/agt.2004.4.473
- Maxim Kontsevich, Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Phys. 147 (1992), no. 1, 1–23. MR 1171758, DOI 10.1007/BF02099526
- Mustafa Korkmaz and Athanase Papadopoulos, On the arc and curve complex of a surface, Math. Proc. Cambridge Philos. Soc. 148 (2010), no. 3, 473–483. MR 2609303, DOI 10.1017/S0305004109990387
- Sergei K. Lando and Alexander K. Zvonkin, Graphs on surfaces and their applications, Encyclopaedia of Mathematical Sciences, vol. 141, Springer-Verlag, Berlin, 2004. With an appendix by Don B. Zagier; Low-Dimensional Topology, II. MR 2036721, DOI 10.1007/978-3-540-38361-1
- M. Mulase and M. Penkava, Ribbon graphs, quadratic differentials on Riemann surfaces, and algebraic curves defined over $\overline {\mathbf Q}$, Asian J. Math. 2 (1998), no. 4, 875–919. Mikio Sato: a great Japanese mathematician of the twentieth century. MR 1734132, DOI 10.4310/AJM.1998.v2.n4.a11
- G. Panina, Diagonal complexes for punctured polygons, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 448 (2016), no. Teoriya Predstavleniĭ, Dinamicheskie Sistemy, Kombinatornye Metody. XXVII, 246–251; English transl., J. Math. Sci. (N.Y.) 224 (2017), no. 2, 335–338. MR 3576261, DOI 10.1007/s10958-017-3418-0
- R. C. Penner, The structure and singularities of quotient arc complexes, J. Topol. 1 (2008), no. 3, 527–550. MR 2417441, DOI 10.1112/jtopol/jtn006
- R. C. Penner, Decorated Teichmüller theory of bordered surfaces, Comm. Anal. Geom. 12 (2004), no. 4, 793–820. MR 2104076, DOI 10.4310/CAG.2004.v12.n4.a2
- Daniel Quillen, Higher algebraic $K$-theory. I, Algebraic $K$-theory, I: Higher $K$-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Lecture Notes in Math., Vol. 341, Springer, Berlin, 1973, pp. 85–147. MR 0338129
- James Dillon Stasheff, Homotopy associativity of $H$-spaces. I, II, Trans. Amer. Math. Soc. 108 (1963), 293–312. 108 (1963), 275-292; ibid. MR 0158400, DOI 10.1090/S0002-9947-1963-0158400-5
- William P. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. (N.S.) 19 (1988), no. 2, 417–431. MR 956596, DOI 10.1090/S0273-0979-1988-15685-6
- Michelle L. Wachs, Poset topology: tools and applications, Geometric combinatorics, IAS/Park City Math. Ser., vol. 13, Amer. Math. Soc., Providence, RI, 2007, pp. 497–615. MR 2383132, DOI 10.1090/pcms/013/09
Bibliographic Information
- G. Panina
- Affiliation: St. Petersburg Department of Steklov Mathematical Institute, Fontanka 27, St. Petersburg, 191023, Russia; and Department of Mathematics and Computer Science, St. Petersburg State University, Line 14, 29B, V.O., St. Petersburg, 199178, Russia
- Email: gaiane-panina@rambler.ru
- J. Gordon
- Affiliation: St. Petersburg Department of Steklov Mathematical Institute, Fontanka 27, St. Petersburg, 191023, Russia
- Email: joseph-gordon@yandex.ru
- Received by editor(s): May 11, 2019
- Published electronically: May 5, 2022
- Additional Notes: This research was supported by the Russian Science Foundation under grant no. 16-11-10039
- © Copyright 2022 American Mathematical Society
- Journal: St. Petersburg Math. J. 33 (2022), 465-481
- MSC (2020): Primary 57N60
- DOI: https://doi.org/10.1090/spmj/1709
- MathSciNet review: 4445779