Heptagon relation in a direct sum
HTML articles powered by AMS MathViewer
- by
I. G. Korepanov
Translated by: the author - St. Petersburg Math. J. 33 (2022), 675-686
- DOI: https://doi.org/10.1090/spmj/1721
- Published electronically: June 27, 2022
- PDF | Request permission
Abstract:
An Ansatz is proposed for the heptagon relation, that is, an algebraic imitation of the five-dimensional Pachner move 4–3. The formula in question is realized in terms of matrices acting in a direct sum of one-dimensional linear spaces corresponding to 4-faces.References
- Aristophanes Dimakis and Igor G. Korepanov, Grassmannian-parameterized solutions to direct-sum polygon and simplex equations, J. Math. Phys. 62 (2021), no. 5, Paper No. 051701, 17. MR 4252051, DOI 10.1063/5.0035760
- Aristophanes Dimakis and Folkert Müller-Hoissen, Simplex and polygon equations, SIGMA Symmetry Integrability Geom. Methods Appl. 11 (2015), Paper 042, 49. MR 3353831, DOI 10.3842/SIGMA.2015.042
- J. Hietarinta, Permutation-type solutions to the Yang-Baxter and other $n$-simplex equations, J. Phys. A 30 (1997), no. 13, 4757–4771. MR 1479802, DOI 10.1088/0305-4470/30/13/024
- Igor G. Korepanov and Nurlan M. Sadykov, Pentagon relations in direct sums and Grassmann algebras, SIGMA Symmetry Integrability Geom. Methods Appl. 9 (2013), Paper 030, 16. MR 3056174, DOI 10.3842/SIGMA.2013.030
- I. G. Korepanov and N. M. Sadykov, Hexagon cohomologies and polynomial TQFT actions, arXiv:1707.02847.
- Igor G. Korepanov, Nonconstant hexagon relations and their cohomology, Lett. Math. Phys. 111 (2021), no. 1, Paper No. 1, 24. MR 4197419, DOI 10.1007/s11005-020-01338-1
- Kenneth Levenberg, A method for the solution of certain non-linear problems in least squares, Quart. Appl. Math. 2 (1944), 164–168. MR 10666, DOI 10.1090/S0033-569X-1944-10666-0
- W. B. R. Lickorish, Simplicial moves on complexes and manifolds, Proceedings of the Kirbyfest (Berkeley, CA, 1998) Geom. Topol. Monogr., vol. 2, Geom. Topol. Publ., Coventry, 1999, pp. 299–320. MR 1734414, DOI 10.2140/gtm.1999.2.299
- Donald W. Marquardt, An algorithm for least-squares estimation of nonlinear parameters, J. Soc. Indust. Appl. Math. 11 (1963), 431–441. MR 153071, DOI 10.1137/0111030
- Udo Pachner, P.L. homeomorphic manifolds are equivalent by elementary shellings, European J. Combin. 12 (1991), no. 2, 129–145. MR 1095161, DOI 10.1016/S0195-6698(13)80080-7
- Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York, 1978. MR 507725
Bibliographic Information
- I. G. Korepanov
- Affiliation: Moscow Aviation Institute, Moscow, Russia
- Email: paloff@ya.ru
- Received by editor(s): April 16, 2020
- Published electronically: June 27, 2022
- © Copyright 2022 American Mathematical Society
- Journal: St. Petersburg Math. J. 33 (2022), 675-686
- MSC (2020): Primary 57Q99
- DOI: https://doi.org/10.1090/spmj/1721