Skip to Main Content

St. Petersburg Mathematical Journal

This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.

ISSN 1547-7371 (online) ISSN 1061-0022 (print)

The 2024 MCQ for St. Petersburg Mathematical Journal is 0.68.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Positivity principle for measures on uniformly convex Banach spaces
HTML articles powered by AMS MathViewer

by E. A. Riss
Translated by: S. V. Kislyakov
St. Petersburg Math. J. 33 (2022), 687-696
DOI: https://doi.org/10.1090/spmj/1722
Published electronically: June 27, 2022

Abstract:

A Banach space $X$ is said to satisfy the positivity principle for small balls if for every finite Borel measures $\mu$ and $\nu$ on $X$, the inequalities $\mu (B) \leq \nu (B)$ for all balls B of radius less than 1 imply that $\mu \leq \nu$. It is shown that no uniformly convex infinite-dimensional separable Banach space $X$ obeys the positivity principle for small balls.
References
  • Jens Peter Reus Christensen, A survey of small ball theorems and problems, Measure theory, Oberwolfach 1979 (Proc. Conf., Oberwolfach, 1979) Lecture Notes in Math., vol. 794, Springer, Berlin, 1980, pp. 24–30. MR 577955
  • Leif Mejlbro, David Preiss, and Jaroslav Tišer, Positivity principles in geometrical measure theory, Rend. Circ. Mat. Palermo (2) Suppl. 28 (1992), 163–167. Measure theory (Oberwolfach, 1990). MR 1183049
  • E. A. Riss, Measures that coincide on balls, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 177 (1989), no. Problemy Teorii Veroyatnost. Raspred. XI, 122–128, 190 (Russian). MR 1053134
  • David Preiss, Differentiation of measures in infinitely-dimensional spaces, Proceedings of the Conference Topology and Measure III, Part 1, 2 (Vitte/Hiddensee, 1980) Wissensch. Beitr., Ernst-Moritz-Arndt Univ., Greifswald, 1982, pp. 201–207. MR 677136
  • David Preiss and Jaroslav Tišer, Positivity principle for more concentrated measures, Math. Scand. 81 (1997), no. 2, 236–246. MR 1613788, DOI 10.7146/math.scand.a-12877
  • E. A. Riss, The positivity principle for equivalent norms, Algebra i Analiz 12 (2000), no. 3, 146–172 (Russian); English transl., St. Petersburg Math. J. 12 (2001), no. 3, 451–469. MR 1778193
  • Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. II, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 97, Springer-Verlag, Berlin-New York, 1979. Function spaces. MR 540367, DOI 10.1007/978-3-662-35347-9
  • T. Figiel, J. Lindenstrauss, and V. D. Milman, The dimension of almost spherical sections of convex bodies, Acta Math. 139 (1977), no. 1-2, 53–94. MR 445274, DOI 10.1007/BF02392234
Similar Articles
  • Retrieve articles in St. Petersburg Mathematical Journal with MSC (2020): 28C20
  • Retrieve articles in all journals with MSC (2020): 28C20
Bibliographic Information
  • E. A. Riss
  • Affiliation: Department of Mathematics, A. I. Gertsen Russian State Pedagogical University, St. Petersburg, Russia
  • Email: e.riss@bk.ru
  • Received by editor(s): February 28, 2020
  • Published electronically: June 27, 2022

  • Dedicated: To the radiant memory of Alexander Isaakovich Plotkin, Dear Teacher
  • © Copyright 2022 American Mathematical Society
  • Journal: St. Petersburg Math. J. 33 (2022), 687-696
  • MSC (2020): Primary 28C20
  • DOI: https://doi.org/10.1090/spmj/1722