Limit behavior of Weyl coefficients
HTML articles powered by AMS MathViewer
- by R. Pruckner and H. Woracek
- St. Petersburg Math. J. 33 (2022), 849-865
- DOI: https://doi.org/10.1090/spmj/1729
- Published electronically: August 24, 2022
- PDF | Request permission
Abstract:
The sets of radial or nontangential limit points towards $i\infty$ of a Nevanlinna function $q$ are studied. Given a nonempty, closed, and connected subset ${\mathcal {L}}$ of $\overline {{\mathbb {C}}_+}$, a Hamiltonian $H$ is constructed explicitly such that the radial and outer angular cluster sets towards $i\infty$ of the Weyl coefficient $q_H$ are both equal to ${\mathcal {L}}$. The method is based on a study of the continuous group action of rescaling operators on the set of all Hamiltonians.References
- F. V. Atkinson, Discrete and continuous boundary problems, Mathematics in Science and Engineering, Vol. 8, Academic Press, New York-London, 1964. MR 0176141
- Jussi Behrndt, Seppo Hassi, and Henk de Snoo, Boundary value problems, Weyl functions, and differential operators, Monographs in Mathematics, vol. 108, Birkhäuser/Springer, Cham, [2020] ©2020. MR 3971207, DOI 10.1007/978-3-030-36714-5
- C. L. Belna, P. Colwell, and G. Piranian, The radial behavior of Blaschke products, Proc. Amer. Math. Soc. 93 (1985), no. 2, 267–271. MR 770534, DOI 10.1090/S0002-9939-1985-0770534-0
- V. I. Bogachev, Measure theory. Vol. I, II, Springer-Verlag, Berlin, 2007. MR 2267655, DOI 10.1007/978-3-540-34514-5
- Louis de Branges, Some Hilbert spaces of entire functions. II, Trans. Amer. Math. Soc. 99 (1961), 118–152. MR 133456, DOI 10.1090/S0002-9947-1961-0133456-2
- Louis de Branges, Hilbert spaces of entire functions, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1968. MR 0229011
- E. F. Collingwood and A. J. Lohwater, The theory of cluster sets, Cambridge Tracts in Mathematics and Mathematical Physics, No. 56, Cambridge University Press, Cambridge, 1966. MR 0231999, DOI 10.1017/CBO9780511566134
- Eva Decker, On the boundary behavior of singular inner functions, Michigan Math. J. 41 (1994), no. 3, 547–562. MR 1297708, DOI 10.1307/mmj/1029005079
- J. J. Donaire, Radial behaviour of inner functions in $\scr B_0$, J. London Math. Soc. (2) 63 (2001), no. 1, 141–158. MR 1802763, DOI 10.1112/S0024610700001678
- Jonathan Eckhardt, Aleksey Kostenko, and Gerald Teschl, Spectral asymptotics for canonical systems, J. Reine Angew. Math. 736 (2018), 285–315. MR 3769992, DOI 10.1515/crelle-2015-0034
- Marián Fabian, Petr Habala, Petr Hájek, Vicente Montesinos Santalucía, Jan Pelant, and Václav Zizler, Functional analysis and infinite-dimensional geometry, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, vol. 8, Springer-Verlag, New York, 2001. MR 1831176, DOI 10.1007/978-1-4757-3480-5
- P. M. Gauthier, A characterization of non-tangential cluster sets for holomorphic functions $f\colon \mathbb {D}\to \mathbb {D}''$, lecture given at Recent Advances in Complex and Harmonic Analysis, Réunion dété SMC, 2021.
- Fritz Gesztesy and Eduard Tsekanovskii, On matrix-valued Herglotz functions, Math. Nachr. 218 (2000), 61–138. MR 1784638, DOI 10.1002/1522-2616(200010)218:1<61::AID-MANA61>3.3.CO;2-4
- Daniel Girela and Daniel Suárez, On Blaschke products, Bloch functions and normal functions, Rev. Mat. Complut. 24 (2011), no. 1, 49–57. MR 2763365, DOI 10.1007/s13163-010-0027-6
- Pamela Gorkin and Raymond Mortini, Cluster sets of interpolating Blaschke products, J. Anal. Math. 96 (2005), 369–395. MR 2177193, DOI 10.1007/BF02787836
- Seppo Hassi, Henk De Snoo, and Henrik Winkler, Boundary-value problems for two-dimensional canonical systems, Integral Equations Operator Theory 36 (2000), no. 4, 445–479. MR 1759823, DOI 10.1007/BF01232740
- I. S. Kac and M. G. Krein, $R$-functions — analytic functions mapping the upper half plane into itself, Amer. Math. Soc. Transl. (2) 103 (1974), 1–19.
- Yuji Kasahara, Spectral theory of generalized second order differential operators and its applications to Markov processes, Japan. J. Math. (N.S.) 1 (1975/76), no. 1, 67–84. MR 405615, DOI 10.4099/math1924.1.67
- Yuji Kasahara and Shinzo Watanabe, Asymptotic behavior of spectral measures of Krein’s and Kotani’s strings, Kyoto J. Math. 50 (2010), no. 3, 623–644. MR 2723865, DOI 10.1215/0023608X-2010-007
- M. Langer, R. Pruckner, and H. Woracek, Canonical systems whose Weyl coefficients have regularly varying asymptotics, manuscript in preparation.
- B. Ja. Levin, Distribution of zeros of entire functions, Revised edition, Translations of Mathematical Monographs, vol. 5, American Mathematical Society, Providence, R.I., 1980. Translated from the Russian by R. P. Boas, J. M. Danskin, F. M. Goodspeed, J. Korevaar, A. L. Shields and H. P. Thielman. MR 589888
- B. M. Levitan, On the asymptotic behavior of the spectral function of a self-adjoint differential equation of the second order, Izv. Akad. Nauk SSSR Ser. Mat. 16 (1952), 325–352 (Russian). MR 0058067
- Kiyoshi Noshiro, Cluster sets, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Heft 28, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1960. MR 0133464, DOI 10.1007/978-3-642-85928-1
- R. Pruckner and H. Woracek, Limit behaviour of Nevanlinna functions, ASC Report 16, 29 pp., http://www.asc.tuwien.ac.at/preprint/2019/asc16x2019.pdf, Vienna Univ. Technology, 2019.
- Christian Remling, Spectral theory of canonical systems, De Gruyter Studies in Mathematics, vol. 70, De Gruyter, Berlin, 2018. MR 3890099, DOI 10.1515/9783110563238
- R. Romanov, Canonical systems and de Branges spaces, version 1, arXiv:1408.6022, 2014.
- E. C. Titchmarsh, Eigenfunction Expansions Associated with Second-Order Differential Equations, Oxford, at the Clarendon Press, 1946 (German). MR 0019765
- Hermann Weyl, Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen, Math. Ann. 68 (1910), no. 2, 220–269 (German). MR 1511560, DOI 10.1007/BF01474161
Bibliographic Information
- R. Pruckner
- Affiliation: Institute for Analysis and Scientific Computing, Vienna University of Technology Wiedner Hauptstrasse, 8–10/101, 1040 Wien, Austria
- Email: raphael.pruckner@tuwien.ac.at
- H. Woracek
- Affiliation: Institute for Analysis and Scientific Computing, Vienna University of Technology Wiedner Hauptstrasse, 8–10/101, 1040 Wien, Austria
- Email: harald.woracek@tuwien.ac.at
- Received by editor(s): June 11, 2019
- Published electronically: August 24, 2022
- Additional Notes: This work was supported by the project P 30715–N35 of the Austrian Science Fund. The second author was supported by the joint project I 4600 of the Austrian Science Fund (FWF) and the Russian Foundation of Basic Research (RFBR)
- © Copyright 2022 American Mathematical Society
- Journal: St. Petersburg Math. J. 33 (2022), 849-865
- MSC (2020): Primary 30D35
- DOI: https://doi.org/10.1090/spmj/1729