Skip to Main Content

St. Petersburg Mathematical Journal

This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.

ISSN 1547-7371 (online) ISSN 1061-0022 (print)

The 2024 MCQ for St. Petersburg Mathematical Journal is 0.68.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

The absence of eigenvalues for certain operators with partially periodic coefficients
HTML articles powered by AMS MathViewer

by N. D. Filonov
Translated by: the author
St. Petersburg Math. J. 33 (2022), 867-878
DOI: https://doi.org/10.1090/spmj/1730
Published electronically: August 24, 2022

Abstract:

The absence of eigenvalues is proved for the Schrödinger operator $-\Delta + V(x,y)$ in the Euclidean space whose potential is periodic in some variables and decays in the remaining variables faster than power $1$. A similar result for the Maxwell operator is established.
References
  • M. Sh. Birman and M. Z. Solomyak, The selfadjoint Maxwell operator in arbitrary domains, Algebra i Analiz 1 (1989), no. 1, 96–110 (Russian); English transl., Leningrad Math. J. 1 (1990), no. 1, 99–115. MR 1015335
  • M. Sh. Birman and T. A. Suslina, Absolute continuity of a two-dimensional periodic magnetic Hamiltonian with discontinuous vector potential, Algebra i Analiz 10 (1998), no. 4, 1–36 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 10 (1999), no. 4, 579–601. MR 1654063
  • N. Filonov, Absolute continuity of the two-dimensional Schrödinger operator with partially periodic coefficients, Algebra i Analiz 29 (2017), no. 2, 220–241 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 29 (2018), no. 2, 383–398. MR 3660679, DOI 10.1090/spmj/1498
  • N. D. Filonov, The Schrödinger operator in a cylinder with a decreasing potential, Algebra i Analiz 33 (2021), no. 1, 213–245 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 33 (2022), no. 1, 155–178. MR 4219510, DOI 10.1090/spmj/1694
  • N. Filonov and F. Klopp, Absolute continuity of the spectrum of a Schrödinger operator with a potential which is periodic in some directions and decays in others, Doc. Math. 9 (2004), 107–121. MR 2054982
  • N. Filonov and F. Klopp, Absolutely continuous spectrum for the isotropic Maxwell operator and coefficients that are periodic in some directions and decay in others, Comm. Math. Phys. 258 (2005), no. 1, 75–85. MR 2166840, DOI 10.1007/s00220-005-1303-z
  • Vu Hoang and Maria Radosz, Absence of bound states for waveguides in two-dimensional periodic structures, J. Math. Phys. 55 (2014), no. 3, 033506, 20. MR 3221271, DOI 10.1063/1.4868480
  • Abderemane Morame, The absolute continuity of the spectrum of Maxwell operator in a periodic media, J. Math. Phys. 41 (2000), no. 10, 7099–7108. MR 1781426, DOI 10.1063/1.1288794
  • A. O. Prokhorov and N. D. Filonov, The Maxwell operator with periodic coefficients in a cylinder, Algebra i Analiz 29 (2017), no. 6, 182–196 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 29 (2018), no. 6, 997–1006. MR 3723815, DOI 10.1090/spmj/1524
  • Michael Reed and Barry Simon, Methods of modern mathematical physics. IV. Analysis of operators, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 0493421
  • T. A. Suslina, Absolute continuity of the spectrum of the periodic Maxwell operator in a layer, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 288 (2002), no. Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts. 32, 232–255, 274 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 123 (2004), no. 6, 4654–4667. MR 1923552, DOI 10.1023/B:JOTH.0000041481.09722.86
  • D. R. Yafaev, Matematicheskaya teoriya rasseyaniya, Izdatel′stvo Sankt-Peterburgskogo Universiteta, St. Petersburg, 1994 (Russian, with Russian summary). Obshchaya teoriya. [General theory]. MR 1784870
  • D. R. Yafaev, Mathematical scattering theory, Mathematical Surveys and Monographs, vol. 158, American Mathematical Society, Providence, RI, 2010. Analytic theory. MR 2598115, DOI 10.1090/surv/158
Similar Articles
  • Retrieve articles in St. Petersburg Mathematical Journal with MSC (2020): 35Q40, 35Q61
  • Retrieve articles in all journals with MSC (2020): 35Q40, 35Q61
Bibliographic Information
  • N. D. Filonov
  • Affiliation: St. Petersburg Department of the Steklov Mathematical Institute, RAS, Fontanka 27, St. Petersburg, 191023, Russia; and St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
  • MR Author ID: 609754
  • Email: filonov@pdmi.ras.ru
  • Received by editor(s): April 23, 2021
  • Published electronically: August 24, 2022
  • Additional Notes: This work is supported by the project RSF 17-11-01069.
  • © Copyright 2022 American Mathematical Society
  • Journal: St. Petersburg Math. J. 33 (2022), 867-878
  • MSC (2020): Primary 35Q40; Secondary 35Q61
  • DOI: https://doi.org/10.1090/spmj/1730