A new characterization of GCD domains of formal power series
HTML articles powered by AMS MathViewer
- by A. Hamed
- St. Petersburg Math. J. 33 (2022), 879-889
- DOI: https://doi.org/10.1090/spmj/1731
- Published electronically: August 24, 2022
- PDF | Request permission
Abstract:
By using the $v$-operation, a new characterization of the property for a power series ring to be a GCD domain is discussed. It is shown that if $D$ is a $\operatorname {UFD}$, then $D\lBrack X\rBrack$ is a GCD domain if and only if for any two integral $v$-invertible $v$-ideals $I$ and $J$ of $D\lBrack X\rBrack$ such that $(IJ)_{0}\neq (0),$ we have $((IJ)_{0})_{v}$ $= ((IJ)_{v})_{0},$ where $I_0=\{f(0) \mid f\in I\}$. This shows that if $D$ is a GCD domain such that $D\lBrack X\rBrack$ is a $\pi$-domain, then $D\lBrack X\rBrack$ is a GCD domain.References
- D. D. Anderson, $\pi$-domains, overrings, and divisorial ideals, Glasgow Math. J. 19 (1978), no.Β 2, 199β203. MR 485845, DOI 10.1017/S001708950000361X
- D. D. Anderson and D. F. Anderson, Generalized GCD domains, Comment. Math. Univ. St. Paul. 28 (1980), no.Β 2, 215β221. MR 578675
- D. D. Anderson, David F. Anderson, and Muhammad Zafrullah, Splitting the $t$-class group, J. Pure Appl. Algebra 74 (1991), no.Β 1, 17β37. MR 1129127, DOI 10.1016/0022-4049(91)90046-5
- D. D. Anderson, Ahmed Hamed, and Muhammad Zafrullah, On $S$-GCD domains, J. Algebra Appl. 18 (2019), no.Β 4, 1950067, 14. MR 3928511, DOI 10.1142/S0219498819500671
- D. D. Anderson, B. G. Kang, and M. H. Park, Anti-Archimedean rings and power series rings, Comm. Algebra 26 (1998), no.Β 10, 3223β3238. MR 1641603, DOI 10.1080/00927879808826338
- David F. Anderson and Driss Nour El Abidine, The $A+XB[X]$ and $A+XB[\![X]\!]$ constructions from GCD-domains, J. Pure Appl. Algebra 159 (2001), no.Β 1, 15β24. MR 1823503, DOI 10.1016/S0022-4049(00)00066-9
- Robert Gilmer, Multiplicative ideal theory, Queenβs Papers in Pure and Applied Mathematics, vol. 90, Queenβs University, Kingston, ON, 1992. Corrected reprint of the 1972 edition. MR 1204267
- Ahmed Hamed, The local $S$-class group of an integral domain, Rocky Mountain J. Math. 48 (2018), no.Β 5, 1585β1605. MR 3866560, DOI 10.1216/RMJ-2018-48-5-1585
- Ahmed Hamed and Hwankoo Kim, Unique factorization and $S$-Picard groups of domains of power series, Comm. Algebra 47 (2019), no.Β 8, 3359β3370. MR 3963090, DOI 10.1080/00927872.2018.1559324
- Hamed Ahmed and Hizem Sana, On the class group and $S$-class group of formal power series rings, J. Pure Appl. Algebra 221 (2017), no.Β 11, 2869β2879. MR 3655708, DOI 10.1016/j.jpaa.2017.02.007
- James A. Huckaba, Commutative rings with zero divisors, Monographs and Textbooks in Pure and Applied Mathematics, vol. 117, Marcel Dekker, Inc., New York, 1988. MR 938741
- D. D. Anderson, B. G. Kang, and M. H. Park, GCD domains and power series rings, Comm. Algebra 30 (2002), no.Β 12, 5955β5960. MR 1941935, DOI 10.1081/AGB-120016025
- Pierre Samuel, On unique factorization domains, Illinois J. Math. 5 (1961), 1β17. MR 121382
Bibliographic Information
- A. Hamed
- Affiliation: Department of Mathematics, Faculty of Sciences, Monastir, Tunisia
- Email: hamed.ahmed@hotmail.fr
- Received by editor(s): October 15, 2019
- Published electronically: August 24, 2022
- © Copyright 2022 American Mathematical Society
- Journal: St. Petersburg Math. J. 33 (2022), 879-889
- MSC (2020): Primary 13F25, 13F05
- DOI: https://doi.org/10.1090/spmj/1731